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Preface and Acknowledgement

This document accompanies the Development Package for Hardware Im-
plementations Compliant with the CAESAR Hardware API v.2.0 [1]. It
replaces the previous version entitled Implementer’s Guide to the CAE-
SAR Hardware API, v.1.1, which accompanied the Development Package
for the CAESAR Hardware API, v1.0, last revised on June 10, 2016. The
previous versions of the Implementer’s Guide and the Development Pack-
age were successfully used in hardware implementation and benchmarking
of the majority of Round 2 and Round 3 CAESAR candidates.

In Round 2, 14 groups from all over the world contributed a total of 43
hardware design packages, covering 28 candidate families and 75 variant-
architecture pairs [2–5]. In Round 3, 10 groups developed 27 hardware
design packages, covering all 15 candidate families [4–6]. The majority
of these groups used the Development Package v1.0. Some of the groups
modified the design files belonging to the Package (e.g., the PreProcessor
and/or PostProcessor) to better suite the needs of the respective candidates.
Others, reported their problems to the GMU Benchmarking Team, which
led to a few customized versions of the design files, not released to the
general public.

The current release is intended to incorporate all lessons learned to date,
and pave the way for effective and time-efficient hardware benchmarking of
CAESAR candidates in the final rounds of the competition.

Apart from the feedback received from the submitters of the VHDL/Ver-
ilog code, very important contributions were made by the group attempting
the experimental validation of the CAESAR cores, using general-purpose
All Programmable System on Chip boards, such as Pynq. We would like
to express our special gratitude to our colleagues from Technische Univer-
sität München (TUM), Germany, for reporting multiple problems related to
practical experimental testing of CAESAR cores [7,8]. As a result of these
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changes, any cores based on the Development Package v.2.0 are likely to be
much better suited for experimental testing using arbitrary general-purpose
and specialized FPGA and SoC boards.

Additionally, the current release introduces also a much requested ex-
tension of our framework to support lightweight cipher cores. This support
is particularly desired for the CAESAR Use Case 1 candidates, targeting
lightweight applications and constrained environments. In the current ver-
sion of the Development Package, the supporting files are provided for both
high-speed designs (assumed in versions 1.0), as well as for the lightweight
designs (supported starting in v.2.0). Both types of designs share the same
interface (up to the data port widths), testbench, and test-vector generator.
They differ only in terms of the internal CipherCore interface, and the de-
tailed designs for the PreProcessor and PostProcessor cores. For both types
of designs, we provide separate examples of the hardware implementations
of dummy authenticated ciphers. We would like to express our apprecia-
tion to Fabrizio De Santis and Michael Tempelmeier from TUM, who have
helped us to shape the control logic for our framework, as well as to validate
our example cores.

Major changes introduced in the new Development Package v2.0 are
described in the next section. Additionally, for designers who have already
developed implementations of Round 2 or Round 3 CAESAR candidates
based on the Development Package v1.0, we provide a clear migration path.



Major Changes in v2.0

This major release provides additional support for the development of lightweight
implementations of authenticated ciphers. We have also resolved vari-
ous bugs that manifested themselves when the high-speed implementations
based on the previous Development Package v1.0 were experimentally tested
using FPGA and SoC boards.

The most important changes include:

• Introducing enhanced handshaking mechanism for the transfer of the
message authentication result from the CipherCore to the PostPro-
cessor during authenticated decryption

• fixing a bug that caused an incorrect behavior when the input data
bus was idle in a certain state

• fixing a stall bug that manifested itself when DBLK_SIZE = W

• fixing a stall bug that manifested itself when ABLK_SIZE < DBLK_SIZE.

The change in the handshaking mechanism has necessitated a small
change in our internal CipherCore API. In particular, msg_auth* signals
are now synchronized via AXI-like handshaking signals.
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Migration from v1.0 to v2.0 for
high-speed designs

The following ports of the CipherCore and the PostProceesor should be
modified as follows:

• msg_auth_valid → msg_auth

• msg_auth_done → msg_auth_valid

Then, when the authentication result is transferred to the PostPro-
cessor, msg_auth and msg_auth_valid should be held constant until the
msg_auth_ready is active. The high value of the msg_auth_ready port in-
dicates that the PostProcessor is ready to receive the authentication result
using the msg_auth port.
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1 Introduction

The CAESAR Hardware API [9, 10] is intended to meet the requirements
of all algorithms submitted to the CAESAR competition, as well as many
earlier developed authenticated ciphers, such as AES-GCM, AES-CCM,
etc. The major parts of its specification [9] include the minimum compli-
ance criteria, interface, communication protocol, and timing characteris-
tics supported by the core. All of these parts have been defined with the
goals of guaranteeing (a) compatibility among implementations of the same
algorithm developed by different designers, and (b) fair benchmarking of
authenticated ciphers in hardware.

The CAESAR API is suitable for both high-speed and lightweight im-
plementations of authenticated ciphers. The only difference at the API level
is the width of the Public Data Input (PDI) and Data Output (DO) ports,
which is defined as follows:

Lightweight implementations: w = 8, 16, 32
High-speed implementations: 32 ≤ w ≤ 256.

From the implementer’s point of view, this difference is important, as small
values of w (used in lightweight implementations) imply that any prepro-
cessing (such as padding) and any postprocessing (such as zeroization of
unused bytes) are significantly easier to implement compared to the case of
large values of w (used in high-speed implementations).

The designers of both types of implementations are provided with the
following support aimed at speeding-up and simplifying the development
process:

• universal top-level block diagram

• universal VHDL code for the PreProcessing unit

• universal VHDL code for the PostProcessing unit

8
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• hardware API for the heart of the design, called the CipherCore

• recommended design procedure for the CipherCore

• examples of VHDL code for the CipherCore of several dummy au-
thenticated ciphers, fully compliant with the CipherCore API

• universal testbench

• universal test vector generator, based on the reference C implemen-
tations of the respective authenticated ciphers.

Below we describe all these supporting materials one by one. It should
be stressed that the implementations of authenticated ciphers compliant
with the CAESAR Hardware API can be also developed without using any
resources described in this document, by just following directly the specifi-
cation of the CAESAR Hardware API [9,10].



2 Top-level Block Diagrams

2.1 High-Speed Implementations
The proposed top-level block diagram of a high-speed, non-pipelined imple-
mentation of a single-pass authenticated cipher compliant with the CAE-
SAR Hardware API is shown in Fig. 2.1. The corresponding block diagram
for a two-pass authenticated cipher is shown in Fig. 2.2. The only differ-
ences are in the ports used for communication with an external Two-Pass
FIFO, which is used to store an output from the first pass of an implemented
algorithm.

In each case, the top-level unit is divided into four lower-level units,
called the PreProcessor, PostProcessor, Command (CMD) FIFO, and Ci-
pherCore. The universal VHDL code of the first three units are designed to
be suitable for all authenticated ciphers to be implemented as a part of the
CAESAR benchmarking project. This code is provided as a part of the sup-
porting Development Package [1]. Due to the availability of this package, as
well as the well-defined hardware API of the CipherCore itself (described
in Chapter 5), the implementers of any specific authenticated cipher do
not need to be concerned with the internal details of the PreProcessor, the
PostProcessor, and the CMD FIFO. Instead they can focus exclusively on
the development of the CipherCore unit, which can be further separated
into its own datapath and controller, if desired.

Below is a high-level description of major functions of these units.

2.1.1 PreProcessor

The PreProcessor is responsible for the execution of the following tasks
common for the majority of CAESAR candidates:

10
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Figure 2.1: Top-level block diagram of a high-speed architecture of a single-
pass authenticated cipher core, AEAD
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Figure 2.2: Top-level block diagram of a high-speed architecture of a two-
pass authenticated cipher core, AEAD_TP
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Figure 2.3: The PreProcessor Design. SIPO = Serial-In Parallel-Out unit.
pdi_* and bdi_* stand for all PreProcessor ports, shown in Fig. 2.1, with
the names starting from the respective strings.

• parsing segment headers

• loading and activating keys

• Serial-In-Parallel-Out loading of input blocks

• padding input blocks, and

• keeping track of the number of data bytes left to process.

An overview of the PreProcessor design is shown Fig. 2.3. This unit
can be configured to operate in two modes, registered and non-registered.
The choice between these modes is made based on the width of public data
input, pdi_data, (denoted as w in Fig. 2.1) and the size of an input block
(denoted as DBLK_SIZE in Fig. 2.1).

In a typical scenario, where the size of an input block is larger than the
width of pdi_data, w, the PreProcessor operates in the registered mode. If
the width of pdi_data is the same as the size of an input block, the non-
registered mode should be used. The non-registered mode ensures a high-
throughput operation for algorithms that require a new block of data every
clock cycle. It must be noted that operating the design in non-registered
mode may affect the overall maximum clock frequency of the design due to
additional critical path associated with the padding logic (if used).

2.1.2 PostProcessor

The PostProcessor is responsible for the following tasks:
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do_data
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ZeroizePISO
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Control
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Figure 2.4: The PostProcessor Design. PISO = Parallel-In Serial-Out unit.
msg_*, bdo_*, and do_* stand for all the PostProcessor ports, shown in
Fig. 2.1, with the names starting from the respective strings.

• clearing any portions of output blocks not belonging to the ciphertext
or plaintext

• Parallel-In-Serial-Out conversion of output blocks into words

• formatting output words into segments

• generating the status block with the result of authentication.

An overview of the PostProcessor design is shown Fig. 2.4. This unit
can be configured to operate in either registered or non-registerd mode.
The choice is made based on the dependence between the size of an output
block (equal to the size of an input block, DBLK_SIZE ) and the width
of the do_data port (equal to width of the public data input, pdi_data).
Namely, when an output block size is larger than the width of do_data, the
registered mode is preferable. Otherwise, the non-registered mode should
be used. Similarly to the PreProcessor design, when the unit operates in
the non-registered mode, the maximum clock frequency maybe be affected.

The PreProcessor and PostProcessor units are highly configurable using
generics of AEAD. These generics can be used, for example, to determine:

• the widths of the pdi, sdi, and do ports

• the size of the associated data block, message/ciphertext block, key,
and tag

• padding for the associated data and the message.

They have been designed to assure:
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• Ease of use

• No influence on the maximum clock frequency of AEAD (up to 300
MHz in Virtex 7)

• Limited area overhead.

2.1.3 CMD FIFO

The Command (CMD) FIFO is a small 4x24 First-Word-Fall-Through (FWFT)
FIFO that temporarily stores all significant bits of instructions and segment
headers that need to be passed to the output. This module allows the Pre-
Processor to operate with the maximum efficiency. This FIFO’s width is
selected based on the fact that the instructions defined in [9], Fig. 7, contain
only 4 significant bits, and segment headers, defined in [9], Fig. 8, contain
only 24 significant bits.

2.2 Lightweight Implementations
Fig. 2.5 shows the proposed non-pipelined lightweight architecture of a
single-pass authenticated cipher compliant with the CAESAR Hardware
API.

For lightweight implementations, the top-level unit is made of four lower-
level units called the PreProcessor, CipherCore, Header/Tag FIFO, and
PostProcessor.

2.2.1 PreProcessor

The PreProcessor is responsible for the following tasks

• parsing segment headers

• loading keys

• passing input blocks to the CipherCore, along with information re-
quired for padding

• keeping track of the number of data bytes left to process.
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Figure 2.5: Top-level block diagram of a lightweight architecture of a single-
pass authenticated cipher core, AEAD
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pdi_data

sdi_* Logic
Control

bdi_valid_bytes
&

bdi_pad_loc

bdi

key

pdi_*

other bdi_*

bdi_valid

bdi_ready

key_valid

key_ready

sdi_data

Figure 2.6: The PreProcessor Design. pdi_* and bdi_* stand for all the
PreProcessor ports, shown in Figs. 2.5, with the names starting from the
respective strings.

This unit only supports non-registered mode and does not include padding
unit. It is assumed that padding is performed within the CipherCore. The
PreProcessor provides all the necessary information required for padding
to the CipherCore. The bdi_type signal specifies the type of data on the
bdi_data bus. Table 6.2 lists the encoding for different data types. An
overview of the PreProcessor design is shown in Fig. 2.6.

2.2.2 PostProcessor

The PostProcessor is responsible for the following tasks:

• clearing any portions of output words not belonging to the ciphertext
or plaintext

• generating the header for the output data blocks

• Tag comparison1

• generating the status block with the result of authentication.

An overview of the PostProcessor design is shown in Fig. 2.7. The
lightweight version only supports non-registered mode. The PostProcessor
performs the tag comparison if G_TAG_INTERNAL=False. In this case,
the tag is not provided as an input to the CipherCore. Instead it bypasses

1only when G_TAG_INTERNAL=False
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do_data

Logic
Control

do_*

bdo

&

bdo_*

msg_*

&
cmd_*

cmd

Figure 2.7: The PostProcessor Design. msg_*, cmd_*, bdo_*, and do_*
stand for all the PostProcessor ports, shown in Figs. 2.5 with the names
starting from the respective strings.

the CipherCore using the Header/Tag FIFO module. Consequently, the
CipherCore should not have ports msg_auth_* and the ports msg_auth_*
of the PostProcessor should be left unconnected.

2.2.3 Header/Tag FIFO

The Header/Tag FIFO is a small 4xW First-Word-Fall-Through (FWFT)
FIFO that temporarily stores all segment headers that need to be passed
to the output. As stated in Section 2.2.2, it also provides a bypass path for
the tag when the tag comparator within the PostProcessor is used.



3 CipherCore Development and
Benchmarking

The development and benchmarking of a high-speed implementation of a
selected authenticated cipher can be performed using the following major
steps, described in the subsequent chapters of this guide:

1. Configure the provided AEAD or AEAD_TP entity declaration for
high-speed implementations (Chapter 4.1)

2. Develop the CipherCore (Chapter 5)

3. Generate test vectors (Chapter 7.1.3)

4. Verify the AEAD design (including the CipherCore design) using func-
tional simulation (Chapter 7.2)

5. Generate optimized results for AEAD or AEAD_TP using FPGA
tools (Chapter 8).

The development and benchmarking of a lightweight implementation
of a selected authenticated cipher can be performed using the following
major steps, described in the subsequent chapters of this guide:

1. Configure the provided AEAD entity declaration for lightweight im-
plementations (Chapter 4.1)

2. Develop the CipherCore (Chapter 6)

3. Generate test vectors (Chapter 7.1.3)

4. Verify the AEAD design using functional simulation (Chapter 7.2)

19
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5. Generate optimized results for AEAD using FPGA tools (Chapter 8).

As can be seen from the above description, only the first two steps are
different. All remaining steps are universal and apply to both high-speed
and lightweight implementations.



4 The AEAD Configuration

4.1 High-Speed Implementations
The entity declarations of AEAD and AEAD_TP for high-speed imple-
mentations are available as a part of the supporting Development Package
in the files

$ROOT/hardware/AEAD/src_rtl_hs/AEAD.vhd
$ROOT/hardware/AEAD/src_rtl_hs/AEAD_TP.vhd

These entity declarations contain multiple generics defined in Table 4.1. Ad-
ditional generics, used to determine the desired padding scheme are defined
in Tables 4.2 and 4.3. The names of all generics, listed in the aforementioned
tables, are supplemented in the VHDL code with the prefix G_.

The following restrictions must be considered when configuring the AEAD
and AEAD_TP entities for high-speed implementations:

4.1.1 I/O Port Widths

Consistently with the specification of the CAESAR Hardware API [9], the
allowed values of the port widths for high-speed implementations are as
follows:

32 ≤ w ≤ 256,
32 ≤ sw ≤ 64.

These widths are set in the AEAD and AEAD_TP entity declarations using
generics W and SW.

4.1.2 Block sizes

Values of the generics ABLK_SIZE and DBLK_SIZE, describing the sizes
of input blocks for associated data and message/ciphertext, respectively,

21
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must be multiples of the generic W. Similarly, the generic KEY_SIZE must
be a multiple of the generic SW. Additionally, ABLK_SIZE is assumed to
be smaller than or equal to DBLK_SIZE.

4.1.3 The Preprocessor and PostProcessor Maximum
Input/Output Rates

The maximum rate at which the PreProcessor can provide a block of data
and the PostProcessor can accept a block of data is dependent on the size
of the message/ciphertext block (DBLK_SIZE) and the I/O port width
(W). In the registered mode of operation, a new block of input data can
be provided by the PreProcessor and accepted by the PostProcessor every
DBLK_SIZE/W + 1 clock cycles. In the non-registered mode, a new
block of input data can be provided by the PreProcessor and accepted by
the PostProcessor every clock cycle.

4.1.4 Limitations

The current implementation of the Pre- and PostProcessor do not support
the following features:

• Ciphertext||Tag segment

• Intermediate tags

• multiple segments of the same type separated by segments of another
type, e.g. header and trailer, treated as two segments of the type AD,
separated by message segments.

• data blocks are never split across two segments as shown in Fig-
ures 4.1, and 4.2.

4.2 Lightweight Implementations
The entity declaration of AEAD for lightweight implementations is avail-
able as a part of the Development Package in the file

$ROOT/hardware/AEAD/src_rtl_lw/AEAD.vhd
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This entity declaration contains multiple generics defined in Table 4.4.
The names of all generics, listed in the aforementioned table, are supple-
mented in the VHDL code with the prefix G_. All the generic used for
lightweight implementation can be configured in the package file

$ROOT/hardware/AEAD/src_rtl_lw/design_pkg.vhd
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4.2.1 I/O Port Widths

The generics W and SW are used to determine the I/O port widths, w
and sw, respectively. Consistently with the specification of the CAESAR
Hardware API [9], the allowed values of these port widths are as follows:

w = 8, 16, 32,
sw = 8, 16, 32.

In order to limit the use of additional logic, widths of both ports are assumed
to be equal, and thus both generics, W and SW, have to be set to the same
value.
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4.2.2 Block Sizes

Values of generics ABLK_SIZE, DBLK_SIZE, KEY_SIZE, and TAG_SIZE
describe the sizes of associated data blocks, message/ciphertext blocks, key,
and tag respectively.

4.2.3 Tag Comparison

The tag comparison can be performed either within the CipherCore or in
the PostProcessor. If the generic TAG_INTERNAL is set to True, the
comparison is performed within the CipherCore. Hence, the expected tag
is passed to the CipherCore. If the tag comparison needs to be performed
in the PostProcessor, the generic must be set to False. In this case, the
tag words have to be passed to PostProcessor by a FIFO, bypassing the
CipherCore.

4.2.4 Limitations

On top of the limitations described in Section 4.1.4, which are the same for
High-Speed and Lightweight implementations, the PreProcessor does not
apply any padding to the data blocks.
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Table 4.1: The AEAD and AEAD_TP Generics for High-Speed

Generic Type Default Definition
Value

I/O Widths in Bits
W Integer 32 Public data input and data output width
SW Integer 32 Secret data input width
FW Integer 32 Two-pass FIFO data input and data output width

Reset Behavior
ASYNC_RSTN Boolean False Reset behavior. True=Asynchronous active low,

False= Synchronous active high.
Special Features

ENABLE_PAD Boolean False Enable padding (See additional settings in Tables
4.2 and 4.3)

CIPH_EXP Boolean False Ciphertext expansion mode. This option should
be used when the ciphertext size is not the same
as the plaintext size, i.e., the ciphertext is ex-
panded. It should also be used when Cipher-
text=Ciphertext||Tag.

REVERSE_CIPH Boolean False Reverse ciphertext mode. Used, for example, by
PRIMATEs-APE. Currently not supported.

MERGE_TAG Boolean False No tag segment. This parameter should be set to
True when the CipherCore does not separate Tag
from Ciphertext, i.e., Ciphertext=Ciphertext||Tag.
Currently not supported.

Block Size Parameters in Bits
ABLK_SIZE integer 128 Size of Associated Data block to be transferred

through the bdi bus. This value should be smaller
than or equal to DBLK_SIZE.

DBLK_SIZE integer 128 The bdi and bdo data bus size (may be a divisor of
the Data block size).

KEY_SIZE integer 128 The key bus size (may be a divisor of the Key size).
TAG_SIZE integer 128 Tag size. Note: This value is not used when

MERGE_TAG is True.
Padding Parameters

PAD_STYLE integer 0 Padding style. See Table 4.2.
PAD_AD integer 1 Padding behavior for associated data. See Table 4.3.
PAD_D integer 1 Padding behavior for message. See Table 4.3.

Maximum supported AD/message/ciphertext length
MAX_LEN integer See the Definition Maximum supported AD/message/ciphertext

length = 2MAX_LEN − 1, where two default values
of MAX_LEN are SINGLE_PASS_MAX=32
for AEAD, and TWO_PASS_MAX=11 for
AEAD_TP.
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Table 4.2: Supported padding rules, determined by the allowed values of
the generic PAD_STYLE.

Value Description
0 No padding
1 10* padding rule
2 ICEPOLE padding rule
3 0000_0001_0* padding rule

Table 4.3: Supported values of the generics PAD_AD and PAD_D, and
their respective meaning. A = Pad enable. B = Extra block is added
when AD/D is empty. C = Extra block is added when AD/D is a non-zero
multiple of a block size.

Value Feature
A B C

0
1 x
2 x x
3 x x
4 x x x

Table 4.4: AEAD Generics for Lightweight

Generic Type Default Definition
Value

I/O Widths in Bits
W Integer 32 Public data input and data output width. Only 8,

16, and 32 are the allowed widths.
SW Integer 32 Secret data input width. Only 8, 16, and 32 are the

allowed widths.
Block Size Parameters in Bits

ABLK_SIZE integer 128 Associated data block size.
DBLK_SIZE integer 128 Message/ciphertext block size.
KEY_SIZE integer 128 Key size.
TAG_SIZE integer 128 Tag size.

Padding Parameters
TAG_INTERNAL Boolean False False = Verification done by the PostProcessor, True

= Verification done by the CipherCore



5 CipherCore Development for
High-Speed Implementations

5.1 Interface
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Figure 5.1: Interface of the CipherCore for High-Speed Implementations

The interface of the CipherCore for High-Speed Implementations is
shown in Figure 5.1. Ports marked using dashed arrows are optional and
used only if required. This approach allows the synthesis tool to trim the
unused ports and the associated logic from the design, resulting in a better
resource utilization.
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Data input ports are limited to key and bdi (block data input). The key
port is controlled using the handshake signals key_valid and key_ready.
key_update is used to notify the CipherCore that it should update the
internal key prior to processing the next message.

The decrypt signal informs the core whether the current operation is
encryption or decryption. The bdi port is controlled using the bdi_valid
and bdi_ready handshake signals. The bdi_type input indicates the type
of input data, with the encoding shown in Table 5.1.

Table 5.1: bdi_type Encoding. – represents don’t care.

Encoding Type
00– Associated Data/Associated Data||Npub/

Npub||Associated Data
01– Message/Ciphertext/Ciphertext||Tag
100 Tag
101 Length
110 Public message number
111 Secret message number

The signal bdi_eot indicates that the current BDI block is the last block
of its type. This signal is used only when the type is either AD, Message,
or Ciphertext. The signal bdi_eoi indicates that the current BDI block is
the last block of input other than a block of the Length segment, a block of
the Tag segment, or a block of padding. The input bdi_partial indicates
the case of partial block.

The correct values of bdi_valid_bytes, bdi_pad_loc and bdi_size for
various numbers of valid bytes within a 4-byte data block are shown in
Table 5.2, where:

• Case A: Either not the last block or the last block with all 4 bytes
valid.

• Case B: The last block with 3 bytes valid.

• Case C: The last block with 1 byte valid.

• Case D: The last block with no valid bytes. Assuming the 10* padding,
this block consists of a single 1 followed by 31 zeros.
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Table 5.2: Values of the special control signals bdi_valid_bytes,
bdi_pad_loc, and bdi_size for the bdi bus with the width
DBLK_SIZE = 32. Byte Validity represents the byte locations in
bdi that were the part of input (e.g., AD or message) before padding.

Byte/Bit Position 3 2 1 0 3 2 1 0
Case A Case B

Byte Validity
bdi_valid_bytes 1 1 1 1 1 1 1 0
bdi_pad_loc 0 0 0 0 0 0 0 1
bdi_size 1 0 0 0 1 1

Case C Case D
Byte Validity
bdi_valid_bytes 1 0 0 0 0 0 0 0
bdi_pad_loc 0 1 0 0 1 0 0 0
bdi_size 0 0 1 0 0 0

It must be noted that all ports of the BDI Control group and bdi are
synchronized with the bdi_valid input. Their values should be read only
when the bdi_valid signal is high. The same scenario also applies to the
BDO Control group and bdo, which are synchronized with the value of the
bdo_valid output.

The bdo port is controlled using the bdo_valid and bdo_ready hand-
shake signals. bdo_size is not used unless the CIPH_EXP generic of
AEAD is set to True. When this is the case, each active value of bdo_valid
must be accompanied by providing the size of an output block, in bytes,
using the bdo_size port.

The Tag Verification ports (msg_auth∗) are only used during the au-
thenticated decryption operation, when the core must provide output sig-
nals indicating whether the authentication is done and the result is (or is
not) valid. Similar to bdo port, msg_auth is synchronized via AXI com-
patible handshake signals.

The description of all CipherCore ports are provided in Table 5.3. Ports
related to the bdi control are categorized according to the following criteria:

COMM A handshake signal.



CHAPTER 5. CIPHERCORE DEVELOPMENT FOR HIGH-SPEED
IMPLEMENTATIONS 30

INPUT INFO An auxiliary signal that remains valid until a given input is fully
processed. Deactivation is typically done at the end of input.

SEGMENT INFO An auxiliary signal that remains valid for the current segment. Its
value changes when a new segment is received via the PDI data bus.

BLOCK INFO An auxiliary signal that is valid for the current input block. Its value
changes when a new block is read.

For the CipherCore that supports Two-Pass algorithms, additional ports
have been added to accommodate the communication with the external
FIFO, as shown in Figure 5.2.
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Figure 5.2: Interface of Two-Pass CipherCore

The additional port descriptions required for a CipherCore that supports
Two-Pass algorithms are provided in Table 5.4. It must be noted that all
the ports listed in Table 5.3 are also present in the interface of the Two-Pass
core.
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Table 5.3: CipherCore Port Descriptions for High-Speed Implementations.
LBS_BYTES = log2(DBLK_SIZE/8)

Name Direction Size Description
Data Input & Output

key in KEY_SIZE Key data
bdi in DBLK_SIZE Block data input
bdo out DBLK_SIZE Block data output

Key Control
key_valid in 1 Key data is valid
key_ready out 1 CipherCore is ready to receive a new key
key_update in 1 Key must be updated prior to processing a new

input
BDI Control

decrypt in 1 [INPUT INFO] 0=Encryption, 1=Decryption
bdi_valid in 1 [COMM] BDI data is valid
bdi_ready out 1 [COMM] CipherCore is ready to receive data
bdi_type in 3 [BLOCK INFO] Type of BDI data. See Ta-

ble 5.1.
bdi_eot in 1 [BLOCK INFO] The current BDI block is the

last block of its type. Note: Only applies when
the type is either AD, Message, or Ciphertext.

bdi_eoi in 1 [BLOCK INFO] The current BDI block is the
last block of input other than a block of the
Length segment, a block of the Tag segment,
or a block of padding.

bdi_partial in 1 [SEGMENT INFO] The current block is either
a partial block of AD or Message, or the re-
sult of encryption of a partial message block.
Note: This optional signal is used only in the
implementations of the ciphertext expansion
algorithms. We are aware of its necessity only
for the implementation of the Round 2 AES-
COPA.

bdi_pad_loc in DBLK_SIZE/8 [BLOCK INFO] Encoding of the byte location
where padding begins. See Table ??.

bdi_valid_bytes in DBLK_SIZE/8 [BLOCK INFO] Encoding of the byte locations
that are valid. See Table ??.

bdi_size in LBS_BYTES+1 [BLOCK INFO] Number of valid bytes in bdi.
BDO Control

bdo_valid out 1 BDO data is valid
bdo_ready in 1 PostProcessor is ready to receive data.
bdo_size out LBS_BYTES+1 Number of valid bytes in bdo. This port must

be used when CIPH_EXP is active.
Tag Verification

msg_auth out 1 1=Authentication success, 0=Authentication
failure

msg_auth_valid out 1 Authentication output is valid
msg_auth_ready in 1 PostProcessor is ready to accept authentica-

tion result
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Table 5.4: Additional Port Descriptions for a Two-Pass CipherCore.

Name Direction Size Description
Data Input & Output

fdi_data in FW Input data from the two-pass FIFO
fdo_data out FW Output data to the two-pass FIFO

Control
fdi_valid in 1 fdi data is valid
fdi_ready out 1 CipherCore is ready to receive a new two-pass

data
fdo_valid out 1 CipherCore is ready to send a new two-pass

data
fdo_ready in 1 two-pass FIFO is ready to receive a new data

5.2 Handshakes

This section presents examples of handshakes. All ports in the figures of
this section are represented by a blue and red color, for input and output
ports, respectively.

Fig. 5.3 provides an example of a handshake used for loading a block of
data using the (bdi) port. Data and its auxiliary signals are synchronized
with the bdi_valid signal. Similarly for key, data is synchronized with the
key_valid signal, as shown in Figure 5.4.

Fig. 5.5 provides an example of a handshake used to write output to
the PostProcessor. Fig. 5.5a presents an example for the standard mode
of operation of an authenticated cipher. Fig. 5.5b presents an example for
the case of an algorithm operating in the ciphertext expansion mode. An
additional output port (bdo_size) is now required to inform the PostPro-
cessor about the size of the current message block after decryption. This
information is used by the PostProcessor to update the header with correct
value of the last segment size.

Finally, an example of signal timing for message authentication is shown
in Fig. 5.6. For every decryption operation, CipherCore must provide
msg_auth signal to indicate authentication result to PostProcessor via its
corresponding handshake signals (msg_auth_valid and msg_auth_ready).

5.3 Design Procedure

It is recommended that you start the development of the CipherCore, spe-
cific to a given authenticated cipher, by using the code provided in the
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Figure 5.3: An example of a handshake used for loading data using the
input bdi

Figure 5.4: An example of a handshake used for loading a key

(a) Standard mode (b) Ciphertext expansion mode

Figure 5.5: An example of a handshake used for writing data in the a)
Standard mode, b) Ciphertext expansion mode

Figure 5.6: An example of a handshake used to perform message authenti-
cation
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Development Package, in the folder
$ROOT/hardware/AEAD/src_rtl_hs

In particular, the appropriate connections among the CipherCore, the Pre-
Processor, the PostProcessor, and the CMD FIFO modules are already
specified in this code. A designer needs to modify generics in the AEAD
module, and then develop the CipherCore Datapath and the CipherCore
Controller.

The development of the CipherCore is left to individual designers and
can be performed using their own preferred design methodology. Typically,
when using a traditional RTL (Register Transfer Level) methodology, the
CipherCore Datapath is first modeled using a block diagram, and then
translated to a hardware description language (VHDL or Verilog HDL).
The CipherCore Controller is then described using an algorithmic state
machine (ASM) chart or a state diagram, further translated to HDL.

An ASM chart of the CipherCore Controller typically contains the fol-
lowing states:

1. Idle
2. Activate Key
3. Load Npub
4. Load Data
5. Process AD
6. Process AD Last
7. Process Data
8. Process Data Last
9. Generate/verify Tag (GenVer Tag).

An example ASM chart for the CipherCore Controller is shown Fig. 5.7.
After a new instruction or after reset, the control should wait for the
first block of data in the Idle state. The CipherCore should monitor the
bdi_valid for the first block of data, which is typically Npub. When this
signal is active, the circuit should check whether the current key requires
an update by inspecting the key_update signal. If it does, the controller
changes its state to Activate Key. In this state either a new key is stored
internally within the CipherCore or the corresponding round keys are pre-
computed. Once this task is completed, key_ready should be activated to
acknowledge the key activation.
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Figure 5.7: A typical Algorithmic State Machine (ASM) chart of the Ci-
pherCore Controller. Each shaded state in this diagram may need to be
replaced by a sequence of states in the actual implementation of a com-
plex authenticated cipher. *_r are status registers storing values of the
respective inputs read during the last bdi handshake.
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Once a new key is activated or no new key is required (key_update=0),
the circuit is ready to process the first block of data (Npub) in the Load Npub
state. At the same time, that the Npub block is loaded into the Cipher-
Core, the circuit needs to acknowledge its receipt by setting the bdi_ready
output to high. The controller then moves to the next processing state,
Load Data. In the case that Npub is the last block of data (AD size =
Message/Ciphertext size = 0), which can be determined using the bdi_eoi
input, the controller state can change directly to Generate/verify tag.

In the Load Data state, the circuit waits until the next input block is
valid (bdi_valid=1), and then processes data based on the incoming input
type (bdi_type). Depending on the algorithm, additional processing may
be required for the last block of data. This block can be determined using
the end-of-type input (bdi_eot). At the same time, the end-of-input signal
(bdi_eoi) may be stored in a register within the CipherCore to keep track
of the last input state. This status register is useful to determine when
no additional data block is expected after processing of the last AD block,
so that the controller can progress to the last state (Generate/verify tag)
directly.

In the last state, Generate/verify tag, during the authenticated encryp-
tion operation, the core should generate a new tag and pass it to the Post-
Processor via the bdo bus. During the authenticated decryption operation,
msg_auth should be provided. At the same time, the msg_auth_valid signal
should remain active until the PostProcessor is ready to receive msg_auth,
which is indicated by an active value of the msg_auth_ready signal.

5.4 Dummy Authenticated Ciphers
Five example designs of the CipherCore and AEAD, corresponding to five
Dummy Authenticated Ciphers, are provided as a part of our distribution.
The first three Dummy Authenticated Ciphers are specified using the fol-
lowing equations:

AD = AD1, AD2, ..., ADn−1, ADn (5.1)

PT = PT1, PT2, ..., PTm−1, PTm (5.2)

CT = CT1, CT2, ..., CTm−1, CTm (5.3)
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CTi = PTi ⊕ i⊕Key ⊕Npub (5.4)

for i = 1..m− 1.

CTm = Trunc(PTm ⊕ i⊕Key ⊕Npub, PTm) (5.5)

when CIPH_EXP=False.

CTm = Pad(PTm)⊕m⊕Key ⊕Npub (5.6)

when CIPH_EXP=True.

Tag = Key⊕Npub⊕Len⊕
n−1⊕
i=1

ADi ⊕ Pad(ADn)⊕
m−1⊕
i=1

PTi ⊕ Pad(PTm)

(5.7)
where,

• PTi and CTi are the plaintext (message) and ciphertext blocks, re-
spectively,

• ADi = associated data block,

• Pad(·) represents a padding operation applied to the last AD and/or
the last plaintext block,

• Trunc(X, Y ) truncates X to the size of Y,

• i = 128-bit block number,

• Key = 128-bit key,

• Npub = Public message number,

• Len = 64-bit associated data length (in bits) || 64-bit plaintext length
(in bits).

For an XOR operation with inputs of different sizes, the smaller operands
are appended with zeros to have the same length as the longest operand.
The result has the length of the longest operand. All examples are based
on a 128-bit data block, unless specified otherwise. The differences between
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each Dummy Authenticated Cipher are primarily based on the definition
of padding and values of parameters described below. Please note that a
typical padding behavior is either appending all zeros (0∗) or one followed
by zeros (10∗).

The design of the controllers used in our dummy cores is based on the
ASM chart discussed in the previous section. The features of all five dummy
cores are summarized in Table 5.5.

Table 5.5: Summary of features/parameters of five dummy high-speed au-
thenticated ciphers

CIPH Npub AD PT Tag Off- Pre-Processor
EXP? Size Block Pad? Block Pad? Size line? Data Key

size size buffer? buffer?
dummy1 False 96 128 True 128 True 128 False True True
dummy2 False 128 96 False 128 True 128 True True True
dummy3 True 128 128 True 128 True 128 False True True
dummy4 False 128 32 True 32 True 64 False False True
dummy5 False 128 32 True 32 True 128 False False False

5.4.1 dummy1

This example is aimed at presenting the behavior of the Pre- and Post-
processors for a typical CipherCore. The following parameters are used:

• ADblock_size = PTblock_size = 128 bits

• Npubsize = 96 bits

• Pad(ADn) = ADn if len(ADn) = block_size else ADn||10∗

• Pad(PTm) = PTm if len(PTm) = block_size else PTm||10∗

• CIPH_EXP=False

5.4.2 dummy2

This example aims at presenting the behavior of the PreProcessor when
ADblock_size 6= PTblock_size, and zero padding is applied to AD. The following
parameters are used:

• ADblock_size = 96 bits
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• PTblock_size = Npubsize = 128 bits

• Pad(ADn) = ADn if len(ADn) = block_size else ADn||0∗

• Pad(PTm) = PTm if len(PTm) = block_size else PTm||10∗

• CIPH_EXP=False

5.4.3 dummy3

This example aims at presenting an example implementation for algorithms
that have ciphertext expansion. The following parameters are used:

• ADblock_size = PTblock_size = Npubsize = 128 bits

• Pad(ADn) = ADn if len(ADn) = block_size else ADn||10∗

• Pad(PTm) = PTm if len(PTm) = block_size else PTm||10∗

• CIPH_EXP=True

Additionally, the Len segment is removed from the tag generation for
this dummy core, so the new equation for Tag is

Tag = Key⊕Npub⊕
n−1⊕
i=1

ADi⊕Pad(ADn)⊕
m−1⊕
i=1

PTi⊕Pad(PTm) (5.8)

5.4.4 dummy4

This example aims at presenting the behavior of the Pre- and Post-processor
for the following cases:

• External public bus size is equal to the internal data bus size, i.e.,
W = DBLK_SIZE. This allows the PreProcessor to operate in the
non-registered mode for the bdi input.

• Tag size is larger than the data bus size, i.e., TAG_SIZE > DBLK_SIZE.

• Npub size is larger than the data bus size.
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For this example, the same padding rules as those used in dummy1 are
applied, together with the following values of parameters:

• ADblock_size = PTblock_size = 32 bits

• Npubsize = 128 bits

• Key = 128 bits

• Tag = 64 bits.

Additionally, the ciphertext and the tag are described as followed:

CTi = PTi ⊕ i⊕KN (5.9)

for i = 1..m− 1.

CTm = Trunc(PTm ⊕m⊕KN,PTm) (5.10)

Tag63..32 = KN ⊕
n−1⊕
i=1

ADi ⊕ Pad(ADn)⊕
m−1⊕
i=1

PTi ⊕ Pad(PTm) (5.11)

Tag31..0 =
n−1⊕
i=1

ADi ⊕ Pad(ADn)⊕
m−1⊕
i=1

PTi ⊕ Pad(PTm) (5.12)

where,

KN = Key127..96 ⊕Key95..64 ⊕Key63..32 ⊕Key31..0

⊕Npub127..96 ⊕Npub95..64 ⊕Npub63..32 ⊕Npub31..0

5.4.5 dummy5

This example uses the same algorithm as dummy4 except that the hardware
implementation relies on the different PreProcessor settings. In particular,
the key bus size (KEY_SIZE) is set to the same width as sdi bus size
(SW). As a result, the PreProcessor operates in a non-registered mode for
the key as well as the bdi input. This mode reduces the AEAD overall
resource utilization as the key is not buffered inside the PreProcessor.
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5.5 AES and Keccak Permutation F
Additional support is provided for designers of cipher cores of CAESAR
candidates based on AES and Keccak. Fully verified VHDL code, block
diagrams, and ASM charts of AES and Keccak Permutation F have been
developed and made available at [8]. Our AES core implements a basic it-
erative architecture of a block cipher, with the SubBytes operation realized
using memory. Either distributed memory (implemented using multipur-
pose LUTs) or block memory is inferred depending on the specific options
of FPGA tools.



6 CipherCore Development for
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Figure 6.1: Interface of CipherCore for Lightweight Implementations.

The interface of CipherCore for Lightweight Implementations is shown
in Figure 6.1. Ports marked using dashed arrows are optional and used
only if required. This approach allows the synthesis tool to trim the unused
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ports and the associated logic from the design, resulting in a better resource
utilization.

Data input ports are limited to key and bdi (block data input). The key
port is controlled using the handshake signals key_valid and key_ready.
key_update is used to notify the CipherCore that it should update the
internal key prior to processing the next message.

The bdi port is controlled using the bdi_valid and bdi_ready handshake
signals. The input bdi_partial indicates the case of partial block.

The correct values of bdi_valid_bytes, bdi_pad_loc and bdi_size for
various numbers of valid bytes within a 4-byte data block are shown in
Table 6.1, where:

• Case A: Either not the last block or the last block with all 4 bytes
valid.

• Case B: The last block with 3 bytes valid.

• Case C: The last block with 1 byte valid.

• Case D: The last block with no valid bytes. Assuming the 10* padding,
this block consists of a single 1 followed by 31 zeros.

Table 6.1: Values of the special control signals bdi_valid_bytes,
bdi_pad_loc, and bdi_size for the bdi bus with the width
DBLK_SIZE = 32. Byte Validity represents the byte locations in bdi
that were the part of input (e.g., AD or message) before padding.

Byte/Bit Position 3 2 1 0 3 2 1 0
Case A Case B

Byte Validity
bdi_valid_bytes 1 1 1 1 1 1 1 0
bdi_pad_loc 0 0 0 0 0 0 0 1
bdi_size 1 0 0 0 1 1

Case C Case D
Byte Validity
bdi_valid_bytes 1 0 0 0 0 0 0 0
bdi_pad_loc 0 1 0 0 1 0 0 0
bdi_size 0 0 1 0 0 0



CHAPTER 6. CIPHERCORE DEVELOPMENT FOR LIGHTWEIGHT
IMPLEMENTATION 44

The signal bdi_eot indicates that the current BDI block is the last block
of its type. This signal is used only when the type is either AD, Message,
or Ciphertext. The signal bdi_eoi indicates that the current BDI block is
the last block of input other than a block of the Length segment, a block
of the Tag segment, or a block of padding.

The input and output data types are indicated by bdi_type and bdo_type
using the encoding shown in Table. 6.2.

The input decrypt_in signal informs the core whether the current op-
eration is encryption or decryption. The output decrypt_out passes this
information to the PostProcessor.

It must be noted that all ports of the BDI Control group and bdi are
synchronized with the bdi_valid input. Their values should be read only
when the bdi_valid signal is high. The same scenario also applies to the
BDO Control group and bdo, which are synchronized with the value of the
bdo_valid output.

The bdo port is controlled using the bdo_valid and bdo_ready hand-
shake signals. bdo_valid_bytes is the encoding of the byte locations in bdo
that are valid, using the same convention as that concerning bdi_valid_bytes,
illustrated in Table 6.1. The end_of_block signal indicates the last word
of an output block.

The Tag Verification ports (msg_auth_∗) are only used when the generic
TAG_INTERNAL is set to True, meaning that the verification is done
by CipherCore. If the generic is set to True, the ports are used only dur-
ing an authenticated decryption operation. The CipherCore must provide
msg_auth to indicate its result and set msg_auth_valid to high until the
PostProcessor is ready (msg_auth_ready is active).

The description of all CipherCore ports are provided in Table 6.3. Ports
related to the bdi control are categorized according to the following criteria:

COMM A handshake signal.

INPUT INFO An auxiliary signal that remains valid until a given input is fully
processed. Deactivation is typically done at the end of input.

SEGMENT INFO An auxiliary signal that remains valid for the current segment. Its
value changes when a new segment is received via the PDI data bus.

BLOCK INFO An auxiliary signal that is valid for the current input block. Its value
changes when a new block is read.
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Table 6.2: bdi_type and bdo_type Encoding

Encoding Generic Type
0001 HDR_AD Associated Data
0100 HDR_MSG Message
0101 HDR_CT Ciphertext
1000 HDR_TAG Tag
1100 HDR_KEY Key
1101 HDR_NPUB Npub
1110 HDR_NSEC Nsec
1111 HDR_ENSEC Enc Nsec

The description of all ports of the Tag/Header FIFO are provided in
Table 6.4.

6.2 Handshakes
This section presents examples of handshakes. All ports in the figures of
this section are represented by a blue and red color, for input and output
ports, respectively.

The data on the buses is controlled using the handshake signals. The
*_valid signals are set to high if the data on the corresponding bus is valid.
If the module is ready to receive the data, the corresponding *_ready signals
are set to high. These two handshaking signals operate independently.

Fig. 6.2 shows an example of loading a 128-bit key, for sw = 32. The
key_update signal indicates the update of the key by asserting high for one
clock cycle. The transfer of the key follows. An example of loading a 128-bit
Npub is shown in Fig. 6.3.

Figure 6.2: Handshake example of loading a key, for sw=32
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Table 6.3: CipherCore Port Descriptions.

Name Direction Size Description
Data Input & Output

key in sw Key data
bdi_data in w Block data input
bdo_data out w Block data output

Key Control
key_valid in 1 Key data is valid
key_ready out 1 CipherCore is ready to receive a new key
key_update in 1 Key must be updated prior to processing a new input

BDI Control
bdi_valid in 1 [COMM] BDI data is valid
bdi_ready out 1 [COMM] CipherCore is ready to receive data
bdi_partial in 1 [SEGMENT INFO] The current block is either a partial block

of AD or Message, or the result of encryption of a partial
message block.

bdi_pad_loc in w/8 [BLOCK INFO] Encoding of the byte location where padding
begins.

bdi_valid_bytes in w/8 [BLOCK INFO] Encoding of the byte locations that are valid.
bdi_size in w/8+1 [BLOCK INFO] Number of valid bytes in bdi.
bdi_eot in 1 [BLOCK INFO] The current BDI block is the last block of its

type. Note: Only applies when the type is either AD, Message,
or Ciphertext.

bdi_eoi in 1 [BLOCK INFO] The current BDI block is the last block of
input other than a block of the Length segment, a block of
the Tag segment, or a block of padding.

bdi_type in 4 [BLOCK INFO] Type of BDI data. See Table 6.2.
decrypt_in in 1 [INPUT INFO] 0=Encryption, 1=Decryption

BDO Control
bdo_valid out 1 BDO data is valid
bdo_ready in 1 PostProcessor is ready to receive data.
bdo_valid_bytes in w/8 [BLOCK INFO] Encoding of the byte locations that are valid.
end_of_block out 1 [BLOCK INFO] The current BDO block is the last block of

its type.
bdo_type out 4 [BLOCK INFO] Type of BDO data. See Table 6.2.
decrypt_out out 1 [INPUT INFO] 0=Encryption, 1=Decryption

TAG Verification
msg_auth out 1 1=Authentication success, 0=Authentication failure
msg_auth_valid out 1 Authentication output is valid
msg_auth_ready in 1 PostProcessor is ready to accept authentication result
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Table 6.4: Header/Tag FIFO Port Descriptions.

Name Direction Size Description
PreProcesor & FIFO

din in w Header info or Tag input
din_valid in 1 data is valid
din_ready out 1 FIFO ready to receive data

PostProcesor & FIFO
dout out w Header info or Tag out
dout_valid out 1 data is valid
dout_ready in 1 PostProcessor ready to receive data

Figure 6.3: Handshake example of loading Npub, for w=32

Figures 6.4 and 6.5 illustrate examples of loading 120-bit AD and 104-bit
message respectively.

Finally, an example of a handshake for authentication is shown in Fig. 6.6.
For every decryption operation, the PostProcessor will set themsg_auth_ready
signal to indicate its readyness to accept verification result. The result
should be provided by CipherCore via msg_auth and indicated that it’s
valid by msg_auth_valid.
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Figure 6.4: Handshake example of loading AD, for w=32, with data[3]
containing the last 3 bytes of AD

Figure 6.5: Handshake example of loading a message, for w=32, with data[3]
containing the last 1 byte for encryption mode

Figure 6.6: Handshake example for message authentication
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6.3 Design Procedure
It is recommended that you start the development of the CipherCore, spe-
cific to a given authenticated cipher, by using the code provided in the
Development Package, in the folder

$ROOT/hardware/AEAD/src_rtl_lw
In particular, the appropriate connections among the CipherCore, the Pre-
Processor, the PostProcessor, and the Header/Tag FIFO modules are al-
ready specified in this code. A designer needs to modify generics in the
AEAD module, and then develop the CipherCore Datapath and the Cipher-
Core Controller. The development of the CipherCore is left to individual
designers and can be performed using their own preferred design method-
ology. Typically, when using a traditional RTL (Register Transfer Level)
methodology, the CipherCore Datapath is first modeled using a block dia-
gram, and then translated to a hardware description language (VHDL or
Verilog HDL). The CipherCore Controller is then described using an algo-
rithmic state machine (ASM) chart or a state diagram, further translated
to HDL. An ASM chart of the CipherCore Controller typically contains the
following states:

1. Idle
2. Wait Key
3. Load Key
4. Wait Npub
5. Load Npub
6. Wait AD
7. Load AD
8. Wait Data
9. Load Data
10. Process Data
11. Output Data
12. Process Tag
13. Output/Verify Tag (GenVer Tag).

An example ASM chart for the CipherCore Controller is shown Fig. 6.7.
After a new instruction or after reset, the Controller should wait for the
first block of data in the Idle state. The CipherCore should monitor the
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bdi_valid for the first block of data, which is typically Npub. When this
signal is active, the circuit should check whether the current key requires
an update by inspecting the key_update signal. If it does, the controller
changes its state to Wait_Key. In this state, the Controller waits for the ac-
tive value of the input key_valid, and then changes the state to Load_Key.
The key_ready should be activated in this state until all words of the key
are read, and the new key is stored internally within the CipherCore or the
corresponding round keys are pre-computed. A counter is needed to count
the number of words at each load or process state. The counter will be in-
cremented after each key_valid or bdi_valid signal and the value of counter
is compared to the corresponding number of words generics (NumKwords,
NumNwords, NumADwords, NumDwords and NumTwords).

Once a new key is activated or no new key is required (key_update=0),
the circuit is ready to process the first block of data (Npub). It waits
for the bdi_valid signal in Wait_Npub state and loads the Npub in the
Load_Npub state. The bdi_ready signal must remain high until all words
of Npub are loaded. The controller then moves to the next processing
states, Wait_AD and Load_AD to load the Associated Data. In the case
that Npub is the last block of data (AD size = Message/Ciphertext size =
0), which can be determined using the bdi_eoi input, the controller state
can change directly to Process_Tag. In the Wait_Data state, the circuit
waits until the next input block is valid (bdi_valid=1), and then loads and
processes data in Load_Data and Process_Data states respectively.

Depending on the algorithm, additional processing may be required for
the last block of data. This block can be determined using the end-of-type
input (bdi_eot). At the same time, the end-of-input signal (bdi_eoi) may
be stored in a register within the CipherCore to keep track of the last input
state. This status register is useful to determine when no additional data
block is expected after processing of the last AD block, so that the controller
can progress to the Process_Tag state directly.

In the Process_Tag state, we finalize tag generation process and based
on the decrypt_in signal, one of the Output_Tag or Verify_Tag states
will be selected. During the authenticated encryption operation, the core
should generate a new tag and pass it to the PostProcessor via the bdo bus.
During the authenticated decryption operation, msg_auth_valid should be
activated, and the msg_auth signal should be used to provide the result of
authentication until msg_auth_ready is active.
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Figure 6.7: A typical Algorithmic State Machine (ASM) chart of the Ci-
pherCore Controller. Each shaded state in this diagram may need to be
replaced by a sequence of states in the actual implementation of a complex
authenticated cipher. *_r are status registers storing values of the respec-
tive inputs read during the last bdi handshake. HDR_KEY, HDR_NPUB,
HDR_AD and HDR_DATA are defined in LWPI_pkg.vhd based on Ta-
ble 6.2. NumDwords = DBLK_SIZE/W, NumKwords = KEY_SIZE/W,
NumNwords = NPUB_SIZE/W, NumTwords = TAG_SIZE/W, and cnt
is a counter value.
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6.4 Dummy Authenticated Cipher
An example design of the ligtweight CipherCore and AEAD, corresponding
to a dummy authenticated cipher, dummy1, is provided as a part of our
distribution.

The following parameters are used:

• ADblock_size = PTblock_size = Npubsize = 128 bits

• Pad(ADn) = ADn if len(ADn) = block_size else ADn||10∗

• Pad(PTm) = PTm if len(PTm) = block_size else PTm||10∗

CTi = PTi ⊕ i⊕Key ⊕Npub (6.1)

for i = 1..m− 1.

CTm = Trunc(PTm ⊕ i⊕Key ⊕Npub, PTm) (6.2)

Tag = Key⊕Npub⊕Len⊕
n−1⊕
i=1

ADi ⊕ Pad(ADn)⊕
m−1⊕
i=1

PTi ⊕ Pad(PTm)

(6.3)
The code of the CipherCore is developed to work correctly with W=8,

16, and 32.



7 Verification

7.1 Test vector generation (aeadtvgen)

The Python script called aeadtvgen and accompanying examples provide a
framework to generate test vectors for any authenticated cipher based on
the user’s specified parameters. The script is located in the folder

$ROOT/software/aeadtvgen/aeadtvgen
and the examples of calling it with parameters specific to multiple authen-
ticated ciphers in the folder

$ROOT/software/aeadtvgen/examples

The framework relies on the reference implementations of authenticated
ciphers (including, but not limited to CAESAR candidates) placed in the
folder

$ROOT/software/CAESAR
Multiple reference implementations by themselves rely on the OpenSSL
library.

7.1.1 Setup

In order to run aeadtvgen, you need to have installed in your system:

• gcc

• OpenSSL

• Python v3.5+

The below instructions describe how to install and configure these pack-
ages from scratch.

53



CHAPTER 7. VERIFICATION 54

Windows

Download and install the latest 64-bit version of MSYS2 from http://www.
msys2.org. The 64-bit version is the package with x86-64 identifier, e.g.,
msys2-x86_64_20161025.exe. The package will install MSYS2 and
MinGW in C:/msys64 by default. Navigate to this folder and open
mingw64.exe. We will use this terminal for all subsequent operations.
pacman -Syu # Update
# Close the terminal and open a new one once completed
pacman -Syu # Second update

### Install tools to create shared libraries
pacman -S make # Install make tool
# Warning! The following instructions use _pacboy_ command
pacboy -S gcc # Install GCC
pacboy -S openssl # Install openssl

### Install python3 and dependencies
pacboy -S python3 # install python3
pacboy -S python3-pip # Install python3 package manager
pacboy -S python3-cffi # Install python3-cffi and its dependencies

### Compile a distribution wheel (Optional)
# A distribution wheel (*.whl) will be created in the subfolder /dist
cd $ROOT/software/aeadtvgen
pip3 install wheel
python3 setup.py bdist_wheel

### Install test vector generation script
cd $ROOT/software/aeadtvgen/dist # Go to the distribution folder
pip3 install aeadtvgen-<package_version>-py3-none-any.whl # Install test vector

generation tool

### Test that the program has been installed
### by calling help
python3 -m aeadtvgen -h

Linux
The following instructions assume the use of Ubuntu v16.04 or above.
### Install required tools
sudo apt-get install libssl-dev
sudo apt-get install python3-pip
sudo apt-get install python3-cffi

### Compile a distribution wheel (Optional)
# A distribution wheel (*.whl) will be created in the subfolder /dist
cd $ROOT/software/aeadtvgen
python3 -m pip install --upgrade pip

http://www.msys2.org
http://www.msys2.org
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python3 -m pip install --upgrade setuptools
python3 -m pip install cffi==1.3.1
python3 -m pip install wheel
python3 setup.py bdist_wheel

### Install wheel
cd dist
python -m pip install aeadtvgen-{<package_version>}-py3-none-any.whl

### Test that the program has been installed
### by calling help
python3 -m aeadtvgen -h

7.1.2 Compiling shared libraries

### Compile example shared libraries
cd $ROOT/software/CAESAR

# Clean previously generated libraries
make clean

# Edit the PRIMITIVES variable inside of Makefile.txt to include libraries for the
selected authenticated ciphers

# (make sure there is no trailing character after "/")

# Generate shared libraries
make

7.1.3 Adding a new library

A new software library, corresponding to a new authenticated cipher, can be
added to our framework by first placing a CAESAR Software API compliant
C/C++ source code in

$ROOT/software/CAESAR/$new_algorithm/ref
and performing the following modifications:

1. include the following line in the top-level file encrypt.c
#include "../../dll.h"

2. prepend the keyword EXPORT to the definitions of the CAESAR
API functions crypto_aead_encrypt() and crypto_aead_decrypt()
located in the same file.
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EXPORT int crypto\_aead\_encrypt(..) { ... }
EXPORT int crypto\_aead\_decrypt(..) { ... }

3. Edit the PRIMITIVES variable inside Makefile.txt to include the
new algorithm.

7.1.4 Generating test vectors

It is recommended that the user understands the arguments of aeadtvgen,
in order to properly create test vectors for the design under verification.
The arguments to be used are the function of

• algorithm

• parameters of the algorithm (e.g., key size, block size)

• parameters of the implementation (e.g., public data input width, se-
cret data input width, output width)

• phase of verification.

As a result, basic knowledge of the target design, including the parame-
ters of the algorithm and implementation, are required. While it is possible
to generate test vectors using pure shell command syntax, this process is
likely to be error prone due to the large number of available options. In-
stead, we recommend that the user creates a Python script that utilizes
aeadtvgen as a third party library in Python and then calls it using aeadtv-
gen(args).

Various examples of such Python scripts be found in
$ROOT/software/aeadtvgen/examples

An example of generating a set of test vectors for dummy1 (high-speed
version) is shown below:
### Generate test vectors for dummy1
cd $ROOT/software/aeadtvgen/examples

# Create test vectors for high speed core dummy1
# Output files will be automatically copied to
# $ROOT/hardware/hs_examples/dummy1/scripts
python3 hs_dummy1.py
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The user is encouraged to use the file
$ROOT/software/aeadtvgen/examples/hs_dummy_1.py

as a template and a starting point to create the customized script for the
targeted design.

The provided template contains a list of possible options for the majority
of use cases. It must be noted, however, that the user must take into account
the specific characteristics of the algorithm and design when generating
these test vectors. Providing as much coverage as possible ensures that the
design can withstand a real-world usage.

In particular, a typical process of verifying the functionality of an au-
thenticated cipher module includes the following phases, devoted to the
verification of:

1. Single AD and Message/Ciphertext Block

2. Random Inputs with Custom Selected Sizes

3. Empty Message, Empty AD, Basic Message/ID Sizes

4. Randomly Generated Test Vectors with Varying AD, Message, and
Ciphertext Lengths.

Test vectors for these phases can be generated using the aeadtvgen op-
tions:

1. --gen_single

2. --gen_custom

3. --gen_test_routine, and

4. --gen_random,

respectively, as illustrated in hs_dummy_1.py.
The choice of one of these phases can be accomplished simply by un-

commenting the respective line of the script, e.g.,
## PHASE 3:

args = basic_args + gen_test_routine

Please note that only for the --gen_single option, the knowledge of the
key, Npub, Nsec, AD, and Data sizes is required to generate test vectors. For
all other cases, these sizes are inferred from the values of basic arguments
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(basic_args), such as --io, --key_size, --block_size, etc., which need to be
specified only once.

After the analysis using these most commonly used sets of option, the de-
signer has the flexibility of generating his own verification strategy, based on
the detailed knowledge and understanding of options of aeadtvgen. This ad-
ditional verification may be necessary to cover the full functionality offered
by the specific algorithm, especially in case of encrypting and decrypting
multiple inputs of various sizes and internal compositions.

7.2 Hardware Simulation

Once test vectors are generated, copy them into your simulation folder and
ensure that the PWIDTH and SWIDTH generics of the testbench are set
to PW and SW, respectively. Note that PW and SW are the widths, for
the pdi/do and sdi buses, respectively. These parameters should be located
in a package file called design_pkg.vhd.

Simulation is performed until the end-of-file is reached or a mismatch
between expected output and actual output occurs. A clock signal is deacti-
vated when either of these two conditions is met. In the case that user wants
to ignore the simulation mismatch, one can set the STOP_AT_FAULT
generic to False and the testbench will ignore the verification error.

In the case that the target implementation is ASIC, the design can be
simulated by setting ASYNC_RSTN to True.

Finally, in the practical experimental testing of any module, there is no
guarantee that the input source will be ready with the new input whenever
the module attempts to read it. Similarly, the destination circuit may
not be always ready to receive the new output. These conditions must be
comprehensively verified using simulation, before the experimental testing
is attempted.

In our testbench, these conditions can be accomplished using the fea-
tures of stalling input and stalling output. The rate at which the data
is stalled can be configured using TEST_IPSTALL (public input stall),
TEST_IPSTALL (secret input stall) and TEST_OSTALL (output stall),
expressed in clock cycles. These settings will only become active if TEST_MODE
is set to the value shown in Table 7.1.

Finally, it must be stressed that the aforementioned verification is paramount
to ensuring that the design can withstand a real-world usage, where the in-
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Table 7.1: Test modes

Value Description
0 No stall
1 Input & Output stall test
2 Input only stall test
3 Output only stall test

termittent data transmission is very common. At the very least, the user
should ensure that the design under verification is successfully validated
when TEST_MODE is set to 1.



8 Generation and Publication of
Results

Generation of results is possible for AEAD and CipherCore. We strongly
recommend generating results primarily for AEAD. This recommendation
is based on the fact that CipherCore has an incomplete functionality and a
full-block-width interface.

In terms of optimization of tool options, for Virtex 7 and Zynq, we
recommend generating results using Minerva [11, 12]. For Virtex 6 and
below, we recommend using Xilinx ISE and ATHENa [13]. For Altera
FPGAs, we suggest using Altera Quartus II and ATHENa.

In the case that the number of ports exceed the number of ports available
in the target part, we recommend using a simple wrapper, with five ports:
clk, rst, sin, sout, piso_mux_sel, provided as a part of the Development
Package [1].

Finally, our database of results for authenticated ciphers is available
at [14].
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A The Development Package
Description

The contents of our Development Package is shown in Table A.1.
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Table A.1: Directory structure of the development package
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B aeadtvgen help

usage: aeadtvgen [--gen_random N] [--gen_custom_mode MODE]
[--gen_custom Array] [--gen_test_routine BEGIN END MODE]
[--gen_single DECRYPT KEY NPUB NSEC AD PT] [-h] [--dbg]
[--verify_lib] [-V] [-v]
[--io PUBLIC_PORTS_WIDTH SECRET_PORT_WIDTH] [--key_size BITS]
[--npub_size BITS] [--nsec_size BITS] [--tag_size BITS]
[--block_size BITS] [--block_size_ad BITS] [--ciph_exp]
[--ciph_exp_noext] [--add_partial]
[--reverse_ciph REVERSE_CIPH]
[--msg_format SEGMENT_TYPE [SEGMENT_TYPE ...]] [--offline]
[--min_ad BYTES] [--max_ad BYTES] [--min_d BYTES]
[--max_d BYTES] [--max_block_per_sgmt COUNT]
[--max_io_per_line COUNT] [--pdi_file FILENAME]
[--sdi_file FILENAME] [--do_file FILENAME]
[--dest PATH_TO_DEST] [--human_readable] [--cc_hls]
[--cc_pad_enable] [--cc_pad_ad PAD_AD_MODE]
[--cc_pad_d PAD_D_MODE] [--cc_pad_style PAD_STYLE]
lib_path lib_name

Test vectors generator for CAESAR (Competition for
Authenticated Encryption: Security, Applicability, and Robustness)
candidates. The script REQUIREs that the C library for the
intended algorithm is compiled first.

:::::Required Parameters::::
Library specifier::

lib_path Path to CAESAR shared library, i.e.
c:/GMU_HW_API_v2/software/lib.

lib_name Shared library’s name, i.e. aes128gcmv1
Note: The library should be generated prior to the start
of the program.

:::::Test Generation Parameters::::
Test vectors generation modes (use at least one from the list below)::
Common notation and convetions:
AD - Associated Data
DATA - Plaintext/Message or Ciphertext
PT - Plaintext/Message
CT - Ciphertext
(*)_LEN - Length of data (*) type, i.e. AD_LEN.
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Operation - 0: encryption, 1: decryption
H* - a string composed of multiple repetitions of the hexadecimal

digit H (the number of repetitions is determined by the size
of a given argument)
All lengths are expressed in bytes.

For Boolean arguments, 0 can be used instead of False,
and 1 can be used instead of True.

--gen_random N Randomly generates multiple test vectors with
varying AD_LEN, PT_LEN, and operation (default: 0)

--gen_custom_mode MODE
The mode of test vector generation used by the --gen_custom

option.

Meaning of MODE values:
0 = All random data
1 = Fixed test values.

Key=0xFF*, Npub=0x55*, Nsec=0xDD*,
AD=0xA0*, PT=0xC0*

2 = Same as option 1, except an input is now a running
value

(each subsequent byte is a previous byte incremented
by 1).

(default: 0)
--gen_custom Array Randomly generate multiple test vectors, with each test

vector
specified using the following fields:

NEW_KEY (Boolean), DECRYPT (Boolean), AD_LEN, PT_LEN
":" is used as a separator between two consecutive test

vectors.

Example:
--gen_custom True,False,0,20:0,1,100,500

Generates 2 test vectors. The first vector will
create a new key and perform an encryption with a dataset

that has
AD_LEN and PT_LEN of 0 and 20 bytes, respectively.
The second vector does _not_ generate a new key and perform
decryption with a dataset that has AD_LEN and PT_LEN of 100
and 500 bytes, respectively. (default: None)

--gen_test_routine BEGIN END MODE
This mode generates test vectors for the common sizes of AD

and PT
that the hardware designer should, at a minimum, verify.
The test vectors are specified using the following array:

[NEW_KEY (boolean),
DECRYPT (boolean),
AD_LEN,
PT_LEN]:

The following parameters are used:
[[True , False, 0, 0 ],
[False, True, 0, 0 ],
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[True , False, 1, 0 ],
[False, True, 1, 0 ],
[True , False, 0, 1 ],
[False, True, 0, 1 ],
[True , False, 1, 1 ],
[False, True, 1, 1 ],
[True , False, bsa, bsd ],
[False, True, bsa, bsd ],
[True , False, bsa-1, bsd-1],
[False, True, bsa-1, bsd-1],
[True , False, bsa+1, bsd+1],
[False, True, bsa+1, bsd+1],
[True , False, bsa*2, bsd*2],
[False, True, bsa*2, bsd*2],
[True , False, bsa*3, bsd*3],
[False, True, bsa*3, bsd*3],
[True , False, bsa*4, bsd*4],
[False, True, bsa*4, bsd*4]]

where,
bsa is the associated data block size (block_size_ad),

and
bsd is the data block size (block_size).

BEGIN (min=1,max=20) determines the starting test number.
END (min=1,max=20) determines the ending test numer.
MODE determines the test vector generation mode, where

0 = All random data
1 = Fixed test values.

Key=0xF*, Npub=0x5*, Nsec=0xD*,
Ad=0xA0*, PT=0xC0*

2 = Same as option 1, except each input is now a running
value

(each subsequent byte is a previous byte incremented
by 1).

Example:

--gen_test_routine 1 20 0

Generates tests 1 to 20 with MODE=0.

--gen_test_routine 5 5 1

Generates test 5 with MODE=1.
(default: None)

--gen_single DECRYPT KEY NPUB NSEC AD PT
Generate a single test vector based on the provided values

of all
inputs expressed in the hexadecimal notation.
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Example:
--gen_single 0 5555 0123456 789ABCD 010204 08090A

Note:
KEY, NPUB and NSEC must have its size equal to the expected

value.
Exception: NSEC is ignored --nsec_size is set to 0.
(default: None)

:::::Optional Parameters:::::
Debugging options::

-h, --help Show this help message and exit.
--dbg Run the C code with the DBG preprocessor flag. (default:

False)
--verify_lib This operation will verify the generated test vectors

via the decryption operation.

Note: This option provides an additional check against
possible

mismatch of results between encryption and decryption
in the reference software.

(default: False)
-V, --version show program’s version number and exit
-v, --verbose Verbose for script debugging purposes. (default: False)

:
Algorithm and implementation specific options::

--io PUBLIC_PORTS_WIDTH SECRET_PORT_WIDTH
Size of PDI/DO and SDI port in bits. (default: (32, 32))

--key_size BITS Size of key in bits (default: 128)
--npub_size BITS Size of public message number in bits (default: 128)
--nsec_size BITS Size of secret message number in bits (default: 0)
--tag_size BITS Size of authentication tag in bits (default: 128)
--block_size BITS Algorithm’s data block size (default: 128)
--block_size_ad BITS Algorithm’s associated data block size.

This parameter is assumed to be equal to block_size
if unspecified. (default: None)

--ciph_exp Ciphertext expansion algorithm. When this option is set, the
last

block will have its own segment. This is required for a
correct

operation of the accompanied PostProcessor.

Currently, we assume that PAD_AD and PAD_D are both set to 4
when this mode is used.
(default: False)

--ciph_exp_noext [requires --ciph_exp]

Additional option for the ciphertext expansion mode. This
option

indicates that the algorithm does not expand the ciphertext
(i.e.,
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does not make the ciphertext size greater than the message
size)

if the message size is a multiple of a block size.
(default: False)

--add_partial [requires --ciph_exp]

For use with --ciph_exp flag. When this option is set, a
PARTIAL

bit will be set to 1 in the header of a data segment
if the size of this segment is not a multiple of a block

size.

Note: This option is required for algorithms such as
AES_COPA

(default: False)
--reverse_ciph REVERSE_CIPH

Note: Not yet supported. Coming soon ~~~

[requires --ciph_exp]

Reversed ciphertext. When this option is set, the input
ciphertext

is provided in a reversed order (including the possible
length

segment).
Note: Only used by PRIMATEs-APE.’)
(default: False)

:
Formatting options::

--msg_format SEGMENT_TYPE [SEGMENT_TYPE ...]
Specify the order of segment types in the input to

encryption and
decryption. Tag is always omitted in the input to encryption

, and
included in the input to decryption. In the expected output

from
encryption tag is always added last. In the expected output

from
decryption only nsec and data are used (if specified).
Len is always automatically added as a first segment in the
input for encryption and decryption for the offline

algorithms.
Len is not allowed as an input to encryption or decryption

for
the online algorithms.

Example 1:
--msg_format npub tag data ad

The above example generates
for an input to encryption: npub, data (plaintext), ad
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for an expected output from encryption: data (ciphertext),
tag

for an input to decryption: tag, data (ciphertext), ad
for an expected output from decryption: data (plaintext)

Example 2:
--msg_format npub_ad data_tag

The above example generates
for an input to encryption: npub_ad, data (plaintext)
for an expected output from encryption: data_tag (

ciphertext_tag)
for an input to decryption: npub_ad, data_tag (

ciphertext_tag)
for an expected output from decryption: data (plaintext)

Valid Segment types (case-insensitive):
npub -> public message number
nsec -> secret message number
ad -> associated data
ad_npub -> associated data || npub
npub_ad -> npub || associated data
data -> data (pt/ct)
data_tag -> data (pt/ct) || tag
tag -> authentication tag

Note: no support for multiple segments of the same type,
separated by segments of another type e.g., header and

trailer,
treated as two segments of the type AD, separated by the

message segments

(default: (’npub’, ’ad’, ’data’, ’tag’))
--offline Indicate that the cipher is offline, i.e., the length of AD

and
DATA must be known before the encryption/decryption starts.

If this
option is used, the length segment will be automatically

added as
a first segment in the input to encryption and decryption.
Otherwise, the length segment will not be generated for

either
encryption or decryption.
(default: False)

--min_ad BYTES Minimum randomly generated AD length (default: 0)
--max_ad BYTES Maximum randomly generated AD length (default: 1000)
--min_d BYTES Minimum randomly generated data length (default: 0)
--max_d BYTES Maximum randomly generated data length (default: 1000)
--max_block_per_sgmt COUNT

Maximum data block per segment (based on --block_size)
parameter (default: 9999)

--max_io_per_line COUNT
Maximum data length in multiples of I/O width in a data line

of test
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file. This option helps readability when a test vector is
large.

Example:
If a user wants to limit a vector representation of data in

a file
to a block size where a block size is 64-bit and I/O = 32-

bit,
the value should be set to 2 (32*2 = 64 bits).

--io 32 --block_size 64
DAT = 000102030405060708090A0B0C0D0E0F

--io 32 --block_size 64 --max_io_per_line 2

DAT = 0001020304050607
DAT = 08090A0B0C0D0E0F
(default: 9999)

--pdi_file FILENAME Public data input filename (default: pdi.txt)
--sdi_file FILENAME Secret data input filename (default: sdi.txt)
--do_file FILENAME Data output filename (default: do.txt)
--dest PATH_TO_DEST Destination folder where the files should be written to. (

default: .)
--human_readable Create a human readable file (tests_vectors.txt) for each

test vector in the format similar to NIST test vectors
used in SHA-3, i.e.:

# Message 1
Key = HEXSTR
Npub = HEXSTR
Nsec_PT = HEXSTR # if --nsec_size > 0
AD = HEXSTR
PT = HEXSTR
Nsec_CT = HEXSTR # if --nsec_size > 0
CT = HEXSTR
TAG = HEXSTR
(default: False)

:
[Experimental] CipherCore options::

--cc_hls Generates test vectors for CipherCore in C (used by HLS)
(default: False)

--cc_pad_enable Enable padding operation (default: False)
--cc_pad_ad PAD_AD_MODE

Associated data padding mode (default: 0)
--cc_pad_d PAD_D_MODE

Data input padding mode (default: 0)
--cc_pad_style PAD_STYLE

Padding style (default: 1)
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