
Rules for Reduced Complexity Block Diagrams

Purpose: To define a methodology for constructing block diagrams of reduced complexity for the top-

level datapath in RTL design of authenticated ciphers.

Goals: Uniformity, simplicity, completeness, “shrinkability,” reduced time in construction and alteration.

Applicability: This methodology is applicable to the top level of an RTL block diagram for datapaths

(particularly in authenticated ciphers), where the block diagram is intended to be rendered in a format

suitable for academic, journalistic, or peer review publications and media. Examples include IEEE split-

page format, Lecture Notes on Computer Science (LNCS) format, conference / lecture presentations in

Microsoft Power Point, web-page or email embedded images. This format provides less information

than a fully-developed block diagram; therefore, it does not alter the rationale for fully developed block

diagrams.

This methodology is especially applicable to authenticated ciphers. Authenticated ciphers typically

contain complex control and switching mechanisms at the top level of the datapath. If rendered in full

detail, top level block diagrams rapidly become cluttered, unmanageable, and cease to provide useful

information to the reader.

This format is not applicable to ASM Charts, Interface Diagrams, lower-level block diagrams where detail

is desired and clutter is not a concern, and non-RTL (i.e., logic gate, tabular, or circuit) diagrams.

Rules:

1. Multiplexers should be labeled without SEL lines and without internal selectors such as “1”, “0”,

“001”, etc.

Example:

Rationale: Clutter reduction; assignment of selector values “0”, “1”, etc. is typically arbitrary and does

not convey substantial information to the reviewer.

2. Registers:

a. Basic control signals, such as “CLK”, “RST”, “CLR”, or “INIT” should not be labeled unless absolutely

necessary to understand functionality.

b. Label registers using a triangular "wedge" to show clock, and label the register at the bottom right (*)

of the register (i.e., not inside). No other labeling should be included inside the registers.

* The label can be placed at the bottom left, or in a convenient logical place, if it will not fit at the

bottom right of the box.

Rationale: Provide sufficient information while reducing clutter in and around the register.

Example:

X_IN

X_REG

3. Explicitly label all bus widths, however, generic statements such as "all bus widths 128 bits unless

indicated" are allowed and encouraged.

a. Use a bold line font for signals with bus widths greater than 1.

b. Use a thin line font for single bit signals.

Example:

8 8

8

Rationale: Clutter reduction.

5. Label lower level entities (such as "AES Enc") inside the box. The key external ports of the lower level

entity should be displayed within the box, when practical. However, if so doing will present a cluttered

appearance they can be omitted.

6. Use the following standard symbology as shown below (additional symbols are possible).

 XOR Gate
==

 Comparator
>>

Shifter
>>>

Rotator
+1

Incrementer

7. Do not use the generic wedge-shaped ALU symbol (i.e., the symbol often found in microprocessor

block diagrams), unless absolutely necessary.

Rationale: Generic ALU functions are rare in cryptographic implementations, and may confuse the

reader.

8. Avoid the use of logic gates, unless absolutely necessary to understand functionality.

Rationale: Logic gates should generally be avoided in RTL design; Clutter reduction.

9. Generally avoid labeling intermediate signals where it is possible for a reader to understand the flow

by just following along on the diagram.

10. Use either “flyovers” to indicate that wires do not touch, or “solder points” (i.e., dots) to show that

connections exist. Note that xfig does not support flyover wires.

Rationale: Ensure that the reader understands where connections exist.

11. Signal names which specify a formal external port defined in the interface should be bold font.

The following block diagram is an example of a top level block diagram drawn using these rules,

including flyovers:

TEM

aux
TEM

2

2
2

2

2

2
i_in

i_in_tag

j_in

j_in_tag

i

j

80*

M
i_in_m

2

Next_L

M_buf

Last_L

Last_L_tag

8
flag

Last_L
flag

L

K

key

bdo tag

128

W255..128

tag_valid

128
exp_tag

0

T

npub

104

bdi

Last_L

bdi_decrypt

dir

C

Cout

A_buf C_buf

Next_LC

N

K M

W

Minalpher Datapath
Bus size of bold wires is 256 bits unless indicated

Bus size of thin wires is single bit

i

==

The following block diagram is an example of a top level block diagram drawn using these rules,

including solder points:

TEM

aux
TEM

2

2
2

2

2

2
i_in

i_in_tag

j_in

j_in_tag

i

j

80*

M
i_in_m

2

Next_L

M_buf

Last_L

Last_L_tag

8
flag

Last_L
flag

L

K

key

bdo tag

128

W255..128

tag_valid

128
exp_tag

0

T

npub

104

bdi

Last_L

bdi_decrypt

dir

C

Cout

A_buf C_buf

Next_LC

N

K M

W

Minalpher Datapath
Bus size of bold wires is 256 bits unless indicated

Bus size of thin wires is single bit

i

==

