
Hardware API for Lightweight Cryptography?

Jens-Peter Kaps1, William Diehl2, Michael Tempelmeier3,
Ekawat Homsirikamol4, and Kris Gaj1

1 Cryptographic Engineering Research Group
George Mason University, Fairfax, Virginia 22030, USA

email: {jkaps, kgaj}@gmu.edu
2 Signatures Analysis Lab

Virginia Tech, Blacksburg, Virginia 24061, USA
email: wdiehl@vt.edu

3 Lehrstuhl für Sicherheit in der Informationstechnik
Technische Universität München, 80333 München, Germany

email: michael.tempelmeier@tum.de
4 Independent Researcher
email: ekawat@gmail.com

Abstract. In this paper, we define the Lightweight Cryptography (LWC)
Hardware Application Programming Interface (API) for the implemen-
tations of lightweight authenticated ciphers, hash functions, and cores
combining both functionalities. In particular, our API is intended to meet
the requirements of all candidates submitted to the NIST Lightweight
Cryptography standardization process. The major parts of our specifi-
cation include minimum compliance criteria, interface, communication
protocol, and timing characteristics supported by the LWC core. All
of these criteria have been defined with the goals of guaranteeing (a)
compatibility among implementations of the same algorithm by different
designers, and (b) fair benchmarking of hardware cores implementing an
authenticated cipher, a hash function, or both functionalities. Since 2016,
a similar API has been successfully used to implement and benchmark
all candidates qualified to Rounds 2 and 3 of the CAESAR competition
for authenticated ciphers.

1 Introduction

The main reasons for defining a common API for all hardware implementations
of candidates submitted to the NIST Lightweight Cryptography standardization
project [1] are:

– Fairness of benchmarking,

? This work is supported by the Department of Commerce (NIST) Grant no.
70NANB18H219

– Compatibility among implementations of the same algorithm by different
designers, and

– Ease of creating the supporting development package, aimed at simplifying
and speeding up the design process.

Among the major cryptographic competitions, the first attempt at defining a
hardware API took place during the SHA-3 contest [2, 3]. In the area of high-
speed implementations, all 14 Round 2 candidates, all 5 Round 3 candidates, and
the previous standard SHA-2 were implemented using the proposed interface and
communication protocol by the group from George Mason University (GMU) [2–
4]. This interface and protocol were then extended to the case of lightweight
applications and applied to the implementations of 13 Round 2 and 5 Round 3
SHA-3 candidates [5]. Alternative interfaces of hash function cores were proposed
in [6, 7]. No specific interface was endorsed by NIST as a requirement for all
implementations.

During the subsequent CAESAR contest (Competition for Authenticated
Encryption: Security, Applicability, and Robustness), conducted in the period
2013-2019, all major decisions were made by the CAESAR Committee, composed
of 18 renowned cryptographers, representing multiple institutions worldwide [8].

The first version of the proposed hardware API for CAESAR was reported
in [9]. This version was later substantially revised, endorsed by the CAESAR
Committee in May 2016, and published as a Cryptology ePrint Archive in June
2016 [10]. A relatively minor addendum was proposed in the same month, and
endorsed by the CAESAR Committee in November 2016 [11].

The commonly accepted CAESAR Hardware API provided the foundation
for the GMUDevelopment Package, which was released in May and June 2016 [12].
This package included in particular:

a. VHDL code of a generic PreProcessor, PostProcessor, and CMD FIFO, com-
mon for all Round 2 and Round 3 CAESAR Candidates (except Keyak), as
well as AES-GCM,

b. Universal testbench common for all API-compliant designs (AEAD_TB),
c. Python app used to automatically generate test vectors (aeadtvgen), and
d. Reference implementations of Dummy authenticated ciphers (dummyN).

This package was accompanied by the Implementer’s Guide to Hardware Imple-
mentations Compliant with the CAESAR Hardware API, v1.0, published at the
same time [13]. A few relatively minor weaknesses of this version of the package,
discovered when performing experimental testing using general-purpose proto-
typing boards, were reported in [14].

In December 2017, a substantially revised version of the Development Pack-
age (v.2.0) and the corresponding Implementer’s Guide were published by the
GMU Benchmarking Team [15,16]. The main revisions included

– Support for the development of lightweight implementations of authenticated
ciphers,

– Improved support for the development of high-speed implementations of au-
thenticated ciphers, and

2

– Improved support for experimental testing using FPGA boards, in applica-
tions with intermittent availability of input sources and output destinations.

It should be stressed that at no point was the use of the Development Package
required for compliance with the CAESAR Hardware API. To the contrary, [13]
clearly stated that the implementations of authenticated ciphers compliant with
the CAESAR Hardware API can also be developed without using any resources
belonging to the package [12], by just following the specification [10] directly.

In spite of being non-mandatory and the lack of the official endorsement by
the CAESAR Committee, the CAESAR Development Package played a major
role in increasing the number of implementations developed during Round 2
of the CAESAR contest. Out of 43 implementations reported before the end of
Round 2, 32 were fully compliant, and one partially compliant with the CAESAR
Hardware API. All fully compliant implementations used the GMU Development
Package. The fully and partially compliant implementations covered 28 out of
29 Round 2 submissions (all except Tiaoxin) [15,17].

In Round 3, the submission of the hardware description language code (VHDL
or Verilog) was made obligatory by the CAESAR Committee. As a result, the
total number of designs reached 27 for 15 Round 3 candidates. Out of these 27
designs, 23 were fully compliant and 1 partially compliant with the CAESAR
Hardware API [10].

Overall, publishing the CAESAR Hardware API, as well as its endorsement
by the organizers of the contest, had a major influence on the fairness and
the comprehensive nature of the hardware benchmarking during the CAESAR
competition.

Several optimized lightweight implementations compliant with this API, and
based on v.2.0 of the Development Package, were reported in [18]. In [19–22],
several other implementations were enhanced with countermeasures against Dif-
ferential Power Analysis. In order to facilitate this enhancement, an additional
Random Data Input (RDI) port was added to the CAESAR Hardware API.

In this paper, we use the CAESAR Hardware API [10] and its Addendum [11]
as a basis for the Lightweight Cryptography (LWC) Hardware API. The detailed
differences are summarized in Section 7. The rest of the document is organized
as follows. In Section 2, the minimum compliance criteria are defined. In Sec-
tions 3, 4, and 5, the proposed interface, communication protocol, and timing
characteristics of the LWC core, are described, respectively.

Readers familiar with the CAESAR Hardware API [10, 11], may consider
going directly to Section 7, Differences Compared to the CAESAR Hardware
API, and reviewing other sections only if needed.

2 Minimum Compliance Criteria

The recommended minimum compliance criteria are listed below. Each crite-
rion is listed with a heading, then described in italics and followed by a short
explanation, including the justification and (optionally) a list of alternatives.

3

2.1 Encryption/Decryption

Rule: Authenticated encryption and decryption should be implemented within one
core, but only one of these two operations can be executed at a time (half-duplex).

Justification: This feature demonstrates an algorithm’s ability to use shared re-
sources for encryption and decryption.

Alternatives (not recommended):

a) separate cores for encryption and decryption (simplex)
b) authenticated encryption and decryption within one core, with both opera-

tions capable of running in parallel (full-duplex).

2.2 Hashing

Rule: If hashing is supported by a given algorithm, then designers should develop
two versions of the LWC core, capable of performing

a) encryption, decryption, and hashing
b) encryption and decryption only.

Justification: Option a) should be implemented to demonstrate the capability
of sharing resources between authenticated encryption and hashing. Option b)
should be implemented to enable comparison with algorithms that do not sup-
port hashing.

2.3 Variants

Rule: Only a variant indicated in the algorithm specification as the primary rec-
ommendation has to be implemented. Other variants, if implemented, should
be selectable at the time of synthesis. The implementation of multiple variants
should not affect benchmarking results for any of them.

Justification: Supporting multiple variants within the same core (with the capa-
bility of switching during runtime) may lead to substantial overheads compared
to any particular variant, complicating ranking of algorithms.

An alternative (not recommended):

– implementing multiple variants within the same LWC core, with the capa-
bility of switching among them during runtime.

4

2.4 Key scheduling

Rule: Key scheduling of authenticated ciphers should be fully implemented within
the LWC core.

Justification: This approach takes into account very different contributions of the
key scheduling unit to the entire cipher hardware implementation area, which
are specific for each algorithm.

An alternative (not recommended):

– generation of round keys outside of the cipher hardware implementation,
e.g., in software.

2.5 Incomplete blocks

Rule: The LWC core should properly handle incomplete blocks in associated data,
plaintext, hash message, and ciphertext.

Justification: Handling of incomplete blocks substantially increases the core area
for multiple candidates, due to the large area required for variable shifts.

An alternative (not recommended):

– handling only associated data, plaintext, hash message, and ciphertexts com-
posed of full blocks.

2.6 Padding

Rule: Padding should be implemented in hardware.

Justification: Padding cost, in terms of area, is algorithm dependent and not
negligible. In some algorithms, padding in software may need to be reversed in
hardware because the tag calculation uses an unpadded last block.

Alternatives (not recommended):

a) Padding in hardware, assuming that an unused portion of the last block is
filled with zeros.

b) Padding in software, followed, if needed, by modifications of the last blocks
in hardware.

5

2.7 Unused portions of the last block

Rule: Any unused portions of the last block released to the output should be cleared
(filled with zeros).

Justification: Any portions of the last block that do not belong to the proper out-
put, such as ciphertext or decrypted plaintext, can potentially leak the results of
intermediate calculations involving the key, and thus also facilitate cryptanalysis.

An alternative (not recommended):

– potentially leaking some key-related data using unused portions of the last
block or word released to the output.

2.8 Decrypted plaintext release

Rule: The decrypted plaintext blocks should be released immediately, without wait-
ing for the result of authentication.

Justification: We assume that the delayed release of decrypted data, dependent
on the result of authentication, will be handled by an external circuit, which is
FIFO-based and similar for each candidate.

An alternative (not recommended):

– storing a decrypted plaintext internally, until the result of the verification is
known.

Pros: More complete functionality.
Cons: Complicates the design and benchmarking. Makes the calculation of the
output latency and throughput dependent on the output buffer size and imple-
mentation details (e.g., support for simultaneous reading and writing).

2.9 Empty AD/plaintext/ciphertext/hash message

Rule: The core should support empty associated data, plaintext, hash message,
ciphertext, and any meaningful combination thereof, unless the zero length of any
of the aforementioned input parts or their combinations is explicitly excluded in
the algorithm specification.

Justification: Empty AD and empty plaintext could be used together with the
public message number, Npub, for user authentication. Empty AD, plaintext,
and hash message are supported by the specifications of the majority of authen-
ticated ciphers and hash functions, as well as their software implementations.

Alternatives (not recommended):

a) not allowing empty associated data

6

b) not allowing empty plaintext/ciphertext
c) not allowing empty hash message
d) not allowing empty input.

2.10 Supported maximum size of AD, plaintext, ciphertext, and
hash message

Rule: For the purpose of benchmarking, the LWC core should support at least the
following maximum sizes of associated data, plaintext, and hash messages:
For single-pass algorithms:
Sa) 216 − 1 : default; used for comparison with implementations of two-pass
algorithms
Sb) 232 − 1 : kept for compatibility with the CAESAR API; practical only for
single-pass algorithms
Sc) 250− 1 : minimum limit established by NIST for algorithms submitted to the
Lightweight Cryptography standardization process.
For two-pass algorithms:
Ta) 216 − 1 : default; used for comparison with implementations of single-pass
algorithms
Tb) 211 − 1 : kept for compatibility with the CAESAR API
Tc) 250−1 : minimum limit established by NIST for algorithms submitted to the
Lightweight Cryptography standardization process.

The core should also support the corresponding ciphertext sizes. However, the
size limit 216 − 1 should be treated as a default, and the implementers should do
their best to eliminate (or at least minimize to negligible) the influence of the
remaining size limits on the

1. maximum clock frequency
2. total number of clock cycles for short messages
3. throughput for long messages.

Justification: If these conditions are met, the timing performance results could be
assumed to be identical for all three cases associated with a given type of cipher
(and thus only one ranking would need to be generated and analyzed). Any exper-
imental verification of performance could be then conducted for just a single size
limit of 216 − 1 bytes (within reach of two-pass algorithms, assuming the storage
of all intermediate results on chip). At the same time, the resource utilization of
each LWC core would be reported using three different numbers, demonstrating
the dependence of the
a) total area in case of ASICs, and
b) amount of particular FPGA resources (e.g., LUTs, FFs, BRAMs, DSPs)
on the selected size limit.
The NIST Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process [1] define these maximum sizes as 250 − 1
for both individual AD/plaintext/ciphertext/hash message, as well the total amount
of data processed using a given key. Still, we believe that for the purpose of

7

a) operation as a part of most-commonly used applications, and b) hardware
benchmarking, the implementations can be limited to supporting smaller, more
realistic AD/plaintext/ciphertext/hash message sizes. In particular, in the ma-
jority of popular communication protocols, only sizes smaller than or equal to
1500 bytes (the maximum transmission unit (MTU) of Ethernet v2) have to be
supported. Additionally, for two-pass algorithms, it would be unrealistic to store
intermediate results of the size of 250 − 1 bytes on chip, or even on the same
board. Similarly, for single-pass algorithms, it would be infeasible to store this
amount of decrypted plaintext on chip until the result of authentication becomes
available. In both cases, factors beyond the definition of the API would influence
the actual maximum speed of the core. Therefore, we suggest the submission of
the three aforementioned variants of each core, selected at the synthesis time
using a single generic or constant. The differences between the implementations
with different maximum sizes are expected to concern only their area, rather than
the maximum clock frequency, latency, or throughput.

2.11 Fractions of bytes

Rule: The LWC core should support only inputs composed of full bytes.
Justification: The Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process [23] define an authenticated
encryption with associated data (AEAD) algorithm as a function with four byte-
string inputs and one byte-string output. Similarly, it defines a hash function as
a function with one byte-string input and one byte-string output. Thus, none of
the inputs or outputs can include any fractions of bytes. This constraint may not
apply to other authenticated ciphers or hash functions, developed in the past.
In particular, it does not apply to the members of the SHA-2 family of hash
functions, which accept inputs with an arbitrary number of input bits. In case
such functions are implemented in agreement with our LWC hardware API, only
inputs composed of full bytes should be supported. Allowing inputs of arbitrary
size in bits would substantially increase the area required for handling incom-
plete blocks.

An alternative (not recommended):

– the size of inputs expressed in bits.

2.12 Maximum number of independent streams of data processed
in parallel

Rule: The LWC core should process only one stream of data (i.e., a single in-
dependent input understood as composed of any subset of Npub, AD, plaintext,
hash message, ciphertext, and tag, supported by the encryption, decryption, or
hashing operation of a given algorithm) at a time (without an overlap). We refer
to such a core as a single-stream implementation. The single-stream implemen-
tation may still take advantage of parallel processing for blocks belonging to the

8

same input/stream.

Justification: In the multi-stream implementations:

– Area and power requirements are greater than in single-stream implementa-
tions.

– Throughput is limited only by the maximum circuit area.
– Multiple plaintexts/ciphertexts processed in parallel would require multiple

public data input (PDI) and data outputs (DO) ports. See Section 3 for the
detailed descriptions of these ports.

An alternative (not recommended):

– a multi-stream implementation that supports processing of multiple inde-
pendent inputs/streams in parallel.

2.13 External memory

Rule:
Single-pass algorithms: No
Two-pass algorithms: Yes (but only for results of the first pass)

Justification: For single-pass algorithms, no external memory should be used.
Two-pass algorithms can typically benefit from external memory, used to store
intermediate values utilized as inputs to the second pass. An alternative is to
provide an entire input for the second time to the data inputs of the LWC core.
However, doing that is typically less efficient in terms of throughput. Addition-
ally, providing the same input twice through the same port complicates the input
circuit, e.g., by requiring two costly DMA transfers, or placing external memory
and the associated control logic before the data input ports. The memory used
to store intermediate results in two-pass algorithms can also be shared with the
memory used to store outputs from authenticated decryption before the AD and
ciphertext are fully authenticated. Since the latter memory is required for both
single-pass and two-pass algorithms, and it is an external memory for single-pass
algorithms, it would be unfair to treat the intermediate-data memory in two-pass
algorithms as internal.

2.14 One clock domain

Rule: The core should have only one clock input and one internal clock signal.
The implementation should be able to operate at the maximum clock frequency
determined by the critical path located entirely inside of the LWC core.

Justification: Using a single clock domain simplifies static timing analysis, gen-
eration of post-place and route results, and optimization of FPGA tool options.
Additionally, the internal datapath width is typically the same or smaller than

9

the input and output port widths. As a result, there is no advantage from read-
ing inputs or writing outputs with higher clock frequency.

An alternative (not recommended):
– separate clocks for the input module, output module, and cipher.

2.15 Passing unchanged parts of the input to the output

Rule: Parts of the data inputs that are not changed by encryption or decryption
operations, respectively, should not be passed to the output. In particular, Npub
and AD should not be a part of the output from either encryption or decryption.
See Fig. 5.

Justification: This assumption removes the need for any bypass FIFO necessary
to pass any unchanged data to the output. Any formatting of output from en-
cryption / decryption, for the purpose of transmission through the network or
subsequent decryption / encryption, respectively, is assumed to be performed
outside of the LWC core.

An alternative (not recommended):
– Passing unchanged parts of the input to the output.

Pros: More complete functionality.
Cons: The design time and area overhead for adding standard functionality
that may be implemented in a coherent way outside of the authenticated cipher
hardware implementation.

2.16 Permitted widths of external data ports (in bits)

Rule: The permitted widths of the data buses for the Public Data Input (PDI),
Secret Data Input (SDI), and Data Output (DO) ports are as follows:
PDI and DO: w = 8, 16, or 32
SDI: sw = 8, 16, or 32.

See Section 3 and Fig. 1 for the exact meaning of PDI, SDI, DO.

Justification: 8-bit, 16-bit, and 32-bit processors are among the most popular
processors used in embedded systems, especially in resource-constrained envi-
ronments. An LWC core needs to be able to communicate with at least one of
these processors. Hardware architectures of lightweight ciphers and hash func-
tions often use the internal datapath width equal to 8, 16, or 32 bits. It is quite
natural (although not required) for an external data bus width to match the in-
ternal datapath width. The permitted widths of external data buses also match
those defined in the CAESAR Hardware API [10]. This feature makes all ex-
isting lightweight implementations of CAESAR Candidates compatible with the
proposed hardware API, which provides many helpful reference points for the
comparison of results, as well as many helpful open-source examples.

10

Public Data Input

Ports

PDI

Secret Data Input

Ports

SDI

clk rst

LWC

rstclk

pdi_valid

pdi_ready

w

Data Output

Ports

DO
w

do_ready

do_valid

sdi_valid

sdi_ready

sw
sdi_data

pdi_data do_data

do_last

Fig. 1: LWC interface for single-pass algorithms

3 Interface

The proposed interface of the LWC core is shown for

– single-pass algorithms in Fig. 1,
– two-pass algorithms in Fig. 2.

This interface includes three major data buses for:

– Public Data Inputs (PDI)
– Secret Data Inputs (SDI), and
– Data Outputs (DO),

as well as the corresponding handshaking control signals, named valid and ready.
The valid signal indicates that the data is ready at the source, and the ready
signal indicates that the destination is ready to receive it. The signal do_last is
an optional signal which simplifies the connection to an AXI4-Stream Slave (see
below).

In the case of two-pass algorithms, the TWO-PASS FIFO Data Input and
Output Ports are added.

The physical separation of Public Data Inputs (such as the plaintext, as-
sociated data, public message number, etc.) from Secret Data Inputs (such as
the key) is dictated by the resistance against any potential attacks aimed at
accepting public data, manipulated by an adversary, as a new key.

The handshaking signals are a subset of major signals used in the AXI4-
Stream interface [24]. As a result, LWC can communicate directly with the AXI4-
Stream Master through the Public Data Input, and with the AXI4-Stream Slave
through the Data Output, as shown in Fig. 3. At the same time, LWC is also
capable of communicating with much simpler external circuits, such as FIFOs,
as shown in Fig. 4.

11

Public Data Input

Ports

PDI

clk rst

do_last

Secret Data Input

Ports

SDI

sdi_ready

sw
sdi_data

sdi_valid

fdi_ready

fw
fdi_data

fdi_validData Input

Ports

TWO−PASS FIFO

fdo_ready

fw

Data Output

Ports

TWO−PASS FIFO

do_ready

Data Output

Ports

DO
w

do_data

LWC

rstclk

pdi_valid

pdi_ready

pdi_data

fdo_valid

fdo_data

do_valid

w

Fig. 2: LWC interface for two-pass algorithms

clk rst

s_axis_tdata

s_axis_tvalid

s_axis_tready

ww

sw
dout

empty

read

m_axis_tdata

m_axis_tvalid

m_axis_tready

Master

AXI4−Stream

clk rst

LWC

clk rst

pdi_valid

pdi_ready do_ready

do_valid

sdi_valid

sdi_ready

sdi_data

pdi_data do_data

AXI4−Stream

Slave

rstclk

SDI

FIFO

do_last do_last

Fig. 3: Typical external circuits: AXI4-Stream IPs

12

clk rst

sw

w

rstclk rd_clk
wr_clk =

w

dout

empty

read

dout

empty

read

rst clkwr_clk
rd_clk =

SDI

FIFO

FIFO

PDI

rd_clk =rstwr_clk
clk

LWC

rstclk

sdi_valid

sdi_ready

do_ready

do_valid

do_data

sdi_data

pdi_valid

pdi_ready

pdi_data

FIFO

DO
din

write

full

Fig. 4: Typical external circuits: FIFOs

In both cases, the Secret Data Input is connected to a FIFO, as the amount
of data loaded to the LWC core using this input port does not justify the use of
a separate AXI4-Stream Master, such as DMA.

An additional advantage of using FIFOs at all data ports is their potential
role as suitable boundaries between two clock domains, one used for communica-
tion and one for computation. This role is facilitated by the use of separate read
and write clocks, shown in Fig. 4 as rd_clk and wr_clk, accordingly. For better
compatibility with the AXI communication interface, all FIFOs mentioned in
our description are assumed to operate in the First-Word Fall-Through mode
(as opposed to the standard mode).

The reset input can be either synchronous or asynchronous, and either active-
high or active-low, depending on the conventions used in a given technology (e.g.,
FPGA vs. ASIC), as well as the personal preference of the designers.

The recommended interface of two-pass algorithms is shown in Fig. 2. Com-
pared to the interface of single-pass algorithms, shown in Fig. 1, additional ports
used for communication with the external Two-Pass FIFO have been added. The
width of the data buses of these ports is defined by a constant, denoted in Fig. 2
as fw. The value of this constant can be selected freely by the designers, depend-
ing on the specific feature of each two-pass algorithm and its implementation.

In modern FPGAs, the Two-Pass FIFO will be implemented using block
memories (such as BRAMs of Xilinx FPGAs and embedded memory blocks of
Intel FPGAs). A FIFO with a capacity of 216 bytes can be built using a relatively
small percentage of the total size of on-chip block memories. Thus, the two-pass
algorithms are not in any significant way disadvantaged compared to single-pass
algorithms.

Additionally, even for single-pass algorithms, a NIST compliant implementa-
tion of authenticated decryption is expected to store the deciphered plaintexts

13

KeyKey

AD PlaintextNpub

StatusCiphertext Tag

TagAD CiphertextNpub

Status

DecryptionEncryption

Plaintext

Fig. 5: Input and Output of an Authenticated Cipher. Notation: Npub - Public
Message Number, AD - Associated Data

until the authenticity of the plaintext is verified. Only then, the plaintext is al-
lowed to be released. Implementing this feature in hardware would require the
memory approximately equal in size to the two-pass FIFO.

Taking these considerations into account, the two-pass FIFO is treated as an
external circuit, located outside of the LWC core, and, as such, should not affect
either the resource utilization or the maximum clock frequency of the LWC core.

4 Communication Protocol

All parts of a typical input and a typical output of an authenticated cipher
are shown in Fig. 5, for encryption and decryption, respectively. Npub denotes
Public Message Number, such as a Nonce or Initialization Vector. All parts of
input to encryption, other than a key, are optional and can be omitted. If a given
part is omitted, it is assumed to be an empty string. Fig. 6 shows the typical
input and output format of a hash function.

The proposed format of the Secret Data Input is shown in Fig. 7. The entire
input starts with an instruction, which in the case of SDI is limited to Load
Key (LDKEY). The instruction is followed by segments. Each segment begins
with a separate header, describing its type and size. In the case of SDI, the
only segment type necessary to meet the minimum compliance criteria is: Key,
denoting a string of bits carrying an authenticated cipher key.

The proposed format of the Public Data Input is shown in Fig. 8. The al-
lowed instruction types are: Activate Key (ACTKEY), Authenticated Encryp-
tion (ENC), Authenticated Decryption (DEC), and Hash. The Activate Key
instruction, typically directly precedes the Authenticated Encryption or Au-
thenticated Decryption instruction. Public Data Input (PDI) is divided into
segments. Segment types allowed during authenticated encryption include Pub-
lic Message Number (Npub), Secret Message Number (Nsec), Associated Data
(AD), Npub||AD, AD||Npub, Plaintext, and Length. Segment types allowed
during authenticated decryption include Public Message Number (Npub), En-
crypted Secret Message Number (Enc Nsec), Associated Data (AD), Npub||AD,

14

Hash Message

Hash

Hash Value Status

Fig. 6: Input and Output of a Hash Function.

seg_0_header

seg_0 = Key

instruction = LDKEY

Fig. 7: Format of Secret Data Input for loading the key

seg_1_header

seg_1 = AD_0

seg_0 = Npub

seg_2_header

seg_2 = AD_1

seg_0_header

instruction = ACTKEY

instruction = ENC

(b)

seg_0_header

seg_0 = Npub

seg_1_header

seg_2_header

seg_1 = AD

(a)

instruction = ENC

instruction = ACTKEY

seg_4_header

seg_3_header

seg_3 = Plaintext0

seg_4 = Plaintext1

seg_2 = Plaintext

Fig. 8: Format of Public Data Input in case of a) one segment for each data type,
b) multiple segments for AD and Plaintext

15

Status:

1110 − Success

1111 − Failure

4 4 w−8

Others − Reserved

Opcode:

0010 − Authenticated Encryption (ENC)

0011 − Authenticated Decryption (DEC)

0100 − Load Key (LDKEY)

0111 − Activate Key (ACTKEY)

1000 − Hash

MSB LSB

Status

Opcode
or UnusedReserved

Fig. 9: Instruction/Status Format

88

1 1 1 1

16

ReservedInfo

Type
Segment EOT

Partial

Last

EOI

4
MSB LSB

Segment Length

Fig. 10: Segment Header Format

AD||Npub, Ciphertext, Tag, and Length. Hashing allows only the segment types
Hash Message and Length.

If no data is to be sent to the LWC core for a segment, in case of AD,
Plaintext, Ciphertext, and Hash Message segments, the segment header still has
to be sent with the Segment Length field of the respective header set to 0.

The Associated Data, Plaintext, and Hash Message can be (but do not have
to be) divided into multiple segments (as shown in Fig. 8b). The maximum size
of each segment is assumed to be 216 − 1 bytes. The primary reason for dividing
AD, Plaintext, and Hash Message into multiple segments is that the full input
size may be unknown when the authenticated encryption or hashing starts. Npub
can only use one segment, as its size is typically quite small (in the range of 16
bytes).

The instruction/status format is shown in Fig. 9. The size of the instruc-
tion/status is always w bits. For instruction, the Opcode field determines which
operation should be executed next. For status, the Opcode field is replaced by
the Status field, which can be set to only two values, Success or Failure.

16

Table 1: Segment Type Encoding
Encoding Type Encoding Type

0000 Reserved 1000 Tag
0001 AD 1001 Hash Value
0010 Npub||AD 1010 Length
0011 AD||Npub 1011 Reserved
0100 Plaintext 1100 Key
0101 Ciphertext 1101 Npub
0110 Ciphertext||Tag 1110 Nsec
0111 Hash Message 1111 Enc Nsec

The segment header format is shown in Fig. 10. The segment header is always
32 bits long and consists of:

– 4-bit Segment Type indicates the type of data that the current segment
contains. The type encoding is defined in Table 1.

– 1-bit optional Partial bit indicates that the current segment contains an
incomplete block of plaintext or the corresponding ciphertext. The only au-
thenticated cipher we are aware of that requires this bit is the Round 2
CAESAR candidate AES-COPA.

– 1-bit EOI (End-Of-Input) indicates that the current segment is the last
segment of input other than the Length segment, Tag segment, or any empty
segment. EOI is set to ‘0’ for segments leaving the cipher, i.e., on Data
Output Ports.

– 1-bit EOT (End-Of-Type) indicates that the current segment is the last
segment of the current Segment Type.

– 1-bit Last indicates that the current segment is the last segment, i.e., no
more segments are associated with the given instruction.

– 8 reserved bits for future extensions.
– 16-bit Segment Length to specify the size of data in the given segment in

bytes.

The majority of the segment types listed in Table 1 are self-explanatory. The
meaning and usage of the remaining types are explained below:

Nsec stands for the Secret Message Number and Enc Nsec for Encrypted Se-
cret Message Number. These types are kept primarily for compatibility with the
CAESAR Hardware API [10]. Only a few candidates in the early rounds of the
CAESAR competition specified these numbers as parts of inputs to encryption
and decryption, respectively [8, 10].

The types Npub||AD, AD||Npub, Ciphertext||Tag, combine two consecutive
input fields into the same segment, without any separation between these fields.
These special segments may be used to simplify the implementations of ciphers
in which the size of the former of the two merged fields is not a multiple of the
word size. In particular, they may eliminate the need for implementing a variable
shift, which is typically quite area-consuming in hardware.

17

instruction = ACTKEY

seg_0_header

seg_0 = Npub

seg_1_header

seg_2_header

seg_1 = AD

(a)

instruction = ENC

(b)

seg_1_header

seg_1 = Tag

seg_0_header

seg_0 = Ciphertext

Status

seg_2 = Plaintext

Fig. 11: Format of Public Data Input (PDI) and Data Output (DO) for authen-
ticated encryption a) PDI, b) DO

We restrict the use of the Length Segment to "offline" algorithms, such as
AES-CCM, understood as algorithms that require the availability of the lengths
of the AD and plaintext (ciphertext) in advance, before the authenticated en-
cryption (decryption) starts. The Length segment must not be used in the imple-
mentations of "online" algorithms, such as AES-GCM, in which all lengths can
be calculated as the AD/plaintext/ciphertext arrives and is processed. For the
"offline" authenticated ciphers, which are permitted to use the Length Segment,
we make its format common for all algorithms, and define it as follows:

– Header (32 bits)
– AD length in bytes (32 bits)
– Plaintext/Ciphertext length in bytes (32 bits).

Several examples, illustrating the correct values of the flags EOI, EOT, and Last,
for multiple realistic scenarios are shown in Table 2. The bottom part of this
table concerns algorithms with ciphertext expansion, i.e., algorithms in which the
ciphertext size is greater than the corresponding plaintext size. In case of such
algorithms, for the ease of processing, any plaintext/ciphertext of the size greater
than or equal to the block size must be divided into two segments PT[0], PT[1]
for encryption, and CT[0], CT[1] for decryption. The former of these segments
must have the size equal to a multiple of block size (MBS), the latter segment
must have the size smaller than the block size (including zero) for encryption and
the block size (BS) for decryption. This special formatting is to ensure that the
segment length for the last segment of a particular type can be changed without
the need to buffer data for the whole segment. Segments PT[0] and CT[0] can
be further divided into smaller segments, each of the size equal to a multiple of
the block size (MBS).

Figures 11, 12, and 13 present typical format of input (PDI) and output
(DO) of authenticated encryption, decryption, and hash operation, respectively.
At the PDI ports, an input typically starts with the key activation instruction
(ACTKEY), followed by an operational instruction (ENC or DEC). Header and
data segments for different types of data subsequently follow. For encryption

18

Table 2: Examples of correct values of input flags for encryption and decryption
operations in different scenarios. BS = block size. MBS = an integer multiple of
the block size, PT = plaintext, CT = ciphertext.

T
yp

es
S
iz

e
E
O

I
E
O

T
L
as

t
T

yp
es

S
iz

e
E
O

I
E
O

T
L
as

t
T

yp
es

S
iz

e
E
O

I
E
O

T
L
as

t
T

yp
es

S
iz

e
E
O

I
E
O

T
L
as

t
T

yp
ic

al
E
xa

m
p
le

A
:
A

D
=

0,
P

la
in

te
xt

=
0

E
xa

m
p
le

B
:
A

D
=

0,
P

la
in

te
xt

>
0

E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
N
pu

b
>
0

1
1

0
N
pu

b
>
0

1
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
A
D

0
0

1
0

A
D

0
0

1
0

A
D

0
0

1
0

A
D

0
0

1
0

P
T

0
0

1
1

C
T

0
0

1
0

P
T

>
0

1
1

1
C
T

>
0

1
1

0
T
A
G

>
0

0
1

1
T
A
G

>
0

0
1

1
E
xa

m
p
le

C
:
A

D
>

0,
P

la
in

te
xt

=
0

E
xa

m
p
le

D
:
A

D
>

0,
P

la
in

te
xt

>
0

E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
A
D

>
0

1
1

0
A
D

>
0

1
1

0
A
D

>
0

0
1

0
A
D

>
0

0
1

0
P
T

0
0

1
1

C
T

0
0

1
0

P
T

>
0

1
1

1
C
T

>
0

1
1

0
T
A
G

>
0

0
1

1
T
A
G

>
0

0
1

1
C

ip
h
er

te
xt

E
xp

an
si

on
(A

D
>

0)
E
xa

m
p
le

E
:
P

la
in

te
xt

=
0

E
xa

m
p
le

F
:
P

la
in

te
xt

<
B

S
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
A
D

>
0

1
1

0
A
D

>
0

0
1

0
A
D

>
0

0
1

0
A
D

>
0

0
1

0
P
T

0
0

1
1

C
T

B
S

1
1

0
P
T

<
B
S

1
1

1
C
T

B
S

1
1

0
T
A
G

>
0

0
1

1
T
A
G

>
0

0
1

1
E
xa

m
p
le

G
:
(P

la
in

te
xt

%
B

S
)

=
0

E
xa

m
p
le

H
:
(P

la
in

te
xt

%
B

S
)

>
0

E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
0

0
1

0
N
pu

b
>
0

0
1

0
A
D

>
0

0
1

0
A
D

>
0

0
1

0
A
D

0
0

1
0

A
D

>
0

0
1

0
P
T
[0
]
M
B
S

1
0

0
C
T
[0
]
M
B
S

0
0

0
P
T
[0
]
M
B
S

0
0

0
C
T
[0
]
M
B
S

0
0

0
P
T
[1
]

0
0

1
1

C
T
[1
]

B
S

1
1

0
P
T
[1
]
<
B
S

1
1

1
C
T
[1
]

B
S

1
1

0
T
A
G

16
0

1
1

T
A
G

16
0

1
1

19

seg_3_header

seg_3 = Tag

seg_1_header

seg_1 = AD

seg_2_header

seg_2 = Ciphertext

(a)

seg_0_header

seg_0 = Npub

instruction = ACTKEY

seg_0_header

Status

(b)

instruction = DEC

seg_0 = Plaintext

Fig. 12: Format of Public Data Input (PDI) and Data Output (DO) for authen-
ticated decryption a) PDI, b) DO

(a)

seg_0_header

Status

(b)

seg_0_header

seg_0 = Hash Message

instruction = Hash

seg_0 = Hash Value

Fig. 13: Format of Public Data Input (PDI) and Data Output (DO) for hashing
a) PDI, b) DO

and decryption operation, the order typically is Npub, AD, Data (Plaintext or
Ciphertext) and Tag (for decryption only). The order of segment types that can
be processed by a given core is a feature of the specific implementation and needs
to be clearly documented.

5 Timing Characteristics

Figures 14 and 15 illustrate the timing characteristics of the ports PDI and
DO, respectively. Input ports are shown in blue and the output ports in red.
The contents of data buses are read and acknowledged when *_valid and its
corresponding *_ready are both asserted. Data is assumed to be present at
the output of the source module when *_valid is asserted. The corresponding
signals *_valid and *_ready can be asserted in arbitrary order, i.e., *_valid
first, or *_ready first, or both at the same time. The implementation should
hold do_data at a constant value (either 0 or the previous valid output data)
when do_valid=’0’.

The optional do_last output indicates that the current output word (w bits),
appearing at the do_data bus, is the last word of the final output, i.e. the status

20

word, shown in Fig. 9. The output do_last should be asserted only if the output
do_valid is asserted, too.

Fig. 14: Example timing diagram for PDI

Fig. 15: Example timing diagram for DO

Value

n+6

n+2
n+1

n+7

n+4
n+3

n

D[6]
D[5]

D[2]
D[1]

D[7]

D[4]
D[3]

D[0]

Addr

n+5

(a) Memory

0

D[1] D[2] D[3]word 0
D[4] D[5] D[6] D[7]word 1

31

D[0]

(b) 32-bit word representation

Fig. 16: Data representation

6 Side-channel Resistant Implementations

The NIST LWC Standardization Process does not mandate, but does encourage,
algorithms and implementations that support effective and efficient side-channel
countermeasures [1]. This includes implementations secure against power anal-
ysis side-channel attacks (SCA), such as Simple Power Analysis (SPA) and Dif-
ferential Power Analysis (DPA).

21

clk rst

Random Data Input

Ports

RDI

Secret Data Input

Ports

SDI

Public Data Input

Ports

PDI

LWC

rstclk

pdi_valid

pdi_ready

w

Data Output

Ports

DO
w

do_ready

do_valid

pdi_data do_data

do_last

rdi_valid

rdi_ready

rw
rdi_data

sdi_valid

sdi_ready

sw
sdi_data

Fig. 17: LWC interface for the single-pass algorithms with random data input

One common requirement for nearly all algorithmic power analysis counter-
measures, e.g., Boolean Masking and Threshold Implementations (TI), is the
consumption of randomness during cipher operations. An example is the ne-
cessity of meeting the TI uniformity property, which often requires so-called
refreshing randomness [25,26].

To facilitate side-channel resistant implementations that require refreshing
randomness, we propose an additional Random Data Input (RDI) bus, comprised
of the signals rdi_data of user selectable width rw, rdi_ready and rdi_valid
(see Fig. 17). No protocol support is provided for this optional interface. The
protected LWC core simply asserts a rdi_ready signal, checks rdi_valid and
then reads rw bits of random data.

The LWC API makes no assumptions on which kind of SCA protection is
being implemented. However, if data has to be separated into shares, this task
should be performed in software. All shares should be sent to the LWC cipher
through the regular inputs, i.e., all public data should still arrive via PDI, and
depart via DO. For an n-share implementation, the Plaintext segments should
then contain shares 1 through n, w bits each, followed by the next w bits of
each share, and so on. In the same fashion, separated data should leave the core.
Figure 18 shows how an m ·w/8-byte Plaintext, split into n shares, should arrive
at PDI.

Justification: Share separation in software facilitates verification of countermea-
sures in hardware using leakage detection techniques (e.g., t-test or χ2-test), for
which false-positive results could occur if share separation were performed in
hardware. Arrival of share-separated data in w-bit shares allows the designer

22

w−bit

Share n

Share 2

Share 1

Share n

Share 1

Share 2

Share n

Share 1

Share 2

S
h
a
re

s
 o

f

w
o
rd

 0

S
h
a
re

s
 o

f

w
o
rd

 m
−

1

S
h
a
re

s
 o

f

w
o
rd

 1

Fig. 18: Plaintext/Ciphertext of m · w/8 bytes split into n shares

the choice of immediately processing individual shares, or internally buffering
sequential shares as part of a larger calculation.

The implementation designer should write a script that takes as input the test
vectors of an unprotected implementation and outputs the share separated data.
Furthermore, an additional script should be able to combine share separated
outputs back so that they can be compared to the test vectors for the output on
an unprotected implementation.

7 Differences Compared to the CAESAR Hardware API

Major differences between the proposed Lightweight Cryptography Hardware
API and the CAESAR Hardware API, defined in [10,11], are as follows:

In terms of the Minimum Compliance Criteria:

1. One additional configuration, encryption/decryption/hashing, has been added
on top of the previously supported configuration: encryption/decryption.

2. The maximum sizes of AD/plaintext/ciphertext supported in the CAESAR
Hardware API were a) 232 − 1 for single-pass ciphers, and 211 − 1 for two-
pass ciphers. In the LWC API, we add one additional maximum size 216−1,
which should be supported by implementations of both kinds of ciphers, and
which can be used for fair comparison among implementations of algorithms
belonging to these two distinct cipher groups. The same maximum sizes are
also used to limit the length of hash messages.

23

In terms of the Interface:
1. An additional optional output, do_last, has been added to the Data Output

Ports.

In terms of the Communication Protocol:
1. In the Instruction/Status, shown in Fig. 9, an additional opcode value,

1000 - hash, has been added, and the size of the Instruction/Status has been
changed from 16 bits to w bits, in order to match the PDI data bus width.
Even though this minor revision marks a change compared to the formal
specification of the CAESAR API [10], it does not change the way this fea-
ture was implemented in the Development Package for Hardware Implemen-
tations Compliant with the CAESAR Hardware API [12], as well as in the
majority of lightweight implementations of CAESAR candidates reported to
date.

2. In the Segment Header word, two additional Segment Type values, 0111 -
Hash Message and 1001 - Hash Value, have been added.

In terms of Support for Side-Channel Resistant Implementations:

No support for side-channel resistant hardware implementations was provided in
the CAESAR Hardware API. This specification addresses this issue in Section 6,
by defining
1. An extended interface, shown in Fig. 17,
2. The requirement for the generation and merging of shares outside of the

LWC core, and
3. The mechanism for passing the input shares to the core and the output

shares from the core, as shown in Fig. 18.

8 Conclusions

We have defined the full specification of the hardware API for lightweight cryp-
tography, suitable for hardware benchmarking of candidates competing in the
NIST Lightweight Standardization Process and their comparison with a pre-
vious generation of authenticated encryption algorithms, including CAESAR
candidates and standards such as AES-GCM and AES-CCM.

Our proposal meets one of the fundamental properties of every properly
defined API: If a given algorithm is implemented independently by two different
groups using the same API, one should be able to encrypt a plaintext using the
first implementation, and decrypt it using the second implementation. To be
exact, our assumption is that either
1. Both implementations use the same values of the data port widths w and
sw, or

2. Simple reformatting (word width conversion) of the input to decryption is
performed outside of the cipher core (in software or hardware).

A similar API, described in [10,11], has been successfully used to implement
and benchmark all Round 2 and Round 3 CAESAR candidates [15].

24

Acknowledgements

The authors would like to thank the remaining co-authors of the CAESAR Hard-
ware API, Ahmed Ferozpuri, Farnoud Farahmand, and Panasayya Yalla, for
fruitful discussions and testing ideas presented in this specification through effi-
cient hardware implementations of multiple CAESAR candidates.

References

1. NIST, “Lightweight Cryptography: Project Overview,”
https://csrc.nist.gov/projects/lightweight-cryptography, 2019.

2. K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and Comprehensive Methodology
for Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates
Using FPGAs,” in Cryptographic Hardware and Embedded Systems, CHES 2010,
ser. LNCS, vol. 6225, Santa Barbara, CA, Aug. 2010, pp. 264–278.

3. E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing Hardware Performance
of Fourteen Round Two SHA-3 Candidates Using FPGAs,” Cryptology ePrint
Archive 2010/445, 2010.

4. K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif, “Comprehen-
sive Evaluation of High-Speed and Medium-Speed Implementations of Five SHA-3
Finalists Using Xilinx and Altera FPGAs,” Cryptology ePrint Archive 2012/368,
2012.

5. J.-P. Kaps, K. K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung, and J. Pham,
“Lightweight Implementations of SHA-3 Candidates on FPGAs,” in 12th Interna-
tional Conference on Cryptology in India, Indocrypt 2011, ser. LNCS, vol. 7107,
Chennai, India, Dec. 2011, pp. 270–289.

6. B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W. P. Mar-
nane, “FPGA Implementations of the Round Two SHA-3 Candidates,” in 2010 In-
ternational Conference on Field Programmable Logic and Applications, FPL 2010,
Milan, Italy, Aug. 2010, pp. 400–407.

7. M. Knezevic, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, Ü. Kocabas, J. Fan,
T. Katashita, T. Sugawara, K. Sakiyama, I. Verbauwhede, K. Ohta, N. Homma,
and T. Aoki, “Fair and Consistent Hardware Evaluation of Fourteen Round Two
SHA-3 Candidates,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 5, pp. 827–840, May 2012.

8. “CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness - web page,” https://competitions.cr.yp.to/caesar.html, 2019.

9. E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif, and K. Gaj,
“A universal hardware API for authenticated ciphers,” in 2015 International Con-
ference on ReConFigurable Computing and FPGAs, ReConFig 2015, Riviera Maya,
Mexico, Dec. 2015.

10. E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, P. Yalla, J.-P. Kaps, and
K. Gaj, “CAESAR Hardware API,” Cryptology ePrint Archive 2016/626, 2016.

11. ——, “Addendum to the CAESAR Hardware API v1.0,” George Mason University,
Fairfax, VA, GMU Report, Jun. 2016.

12. E. Homsirikamol, P. Yalla, and F. Farahmand, “Development Package for Hardware
Implementations Compliant with the CAESAR Hardware API,” 2016.

13. E. Homsirikamol, P. Yalla, F. Farahmand, W. Diehl, A. Ferozpuri, J.-P. Kaps, and
K. Gaj, “Implementer’s Guide to Hardware Implementations Compliant with the
CAESAR Hardware API,” GMU, Fairfax, VA, GMU Report, 2016.

25

14. M. Tempelmeier, F. De Santis, G. Sigl, and J.-P. Kaps, “The CAESAR-API in the
real world — Towards a fair evaluation of hardware CAESAR candidates,” in 2018
IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2018, Washington, DC, Apr. 2018, pp. 73–80.

15. Cryptographic Engineering Research Group (CERG) at George Ma-
son University, “Hardware Benchmarking of CAESAR Candidates,”
https://cryptography.gmu.edu/athena/index.php?id=CAESAR, 2019.

16. P. Yalla and J.-P. Kaps, “Evaluation of the CAESAR hardware API for lightweight
implementations,” in 2017 International Conference on ReConFigurable Comput-
ing and FPGAs, ReConFig 2017, Cancun, Mexico, Dec. 2017.

17. K. Gaj, E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. X. Lyons, and
P. Yalla, “Toward Fair and Comprehensive Benchmarking of CAESAR Candidates
in Hardware: Standard API, High-Speed Implementations in VHDL/Verilog, and
Benchmarking Using FPGAs,” in Directions in Authenticated Ciphers Workshop,
DIAC 2016, Nagoya, Japan, Sep. 2016.

18. F. Farahmand, W. Diehl, A. Abdulgadir, J.-P. Kaps, and K. Gaj, “Improved
Lightweight Implementations of CAESAR Authenticated Ciphers,” in 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom Computing
Machines, FCCM 2018, Boulder, CO, Apr. 2018, pp. 29–36.

19. W. Diehl, A. Abdulgadir, F. Farahmand, J.-P. Kaps, and K. Gaj, “Comparison
of cost of protection against differential power analysis of selected authenticated
ciphers,” in 2018 IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2018, Washington, DC, Apr. 2018, pp. 147–152.

20. ——, “Comparison of Cost of Protection against Differential Power Analysis of
Selected Authenticated Ciphers,” Cryptography, vol. 2, no. 3, p. 26, Sep. 2018.

21. W. Diehl, F. Farahmand, A. Abdulgadir, J.-P. Kaps, and K. Gaj, “Face-off between
the CAESAR Lightweight Finalists: ACORN vs. Ascon,” in 2018 International
Conference on Field Programmable Technology, FPT 2018, Naha, Okinawa, Japan,
Dec. 2018.

22. ——, “Face-off between the CAESAR Lightweight Finalists: ACORN vs. Ascon,”
Cryptology ePrint Archive 2019/184, 2019.

23. NIST, “DRAFT Submission Requirements and Evaluation Cri-
teria for the Lightweight Cryptography Standardization Pro-
cess,” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/Draft-LWC-Submission-Requirements-April2018.pdf,
2019.

24. ARM, “AMBA: The Standard for On-Chip Communication,”
https://www.arm.com/products/silicon-ip-system/embedded-system-
design/amba-specifications, 2019.

25. E. Trichina, “Combinational Logic Design for AES SubByte Transformation on
Masked Data,” Cryptology ePrint Archive 2003/236, Nov. 2003.

26. S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementations Against
Side-Channel Attacks and Glitches,” in Information and Communications Security,
ICICS 2006, ser. LNCS, vol. 4307. Springer Berlin Heidelberg, 2006, pp. 529–545.

26

	Hardware API for Lightweight Cryptography

