
CERG 1/33Framework for Benchmarking of Hardware Implementations of LWC

A Comprehensive Framework for
Fair and Efficient Benchmarking of

Hardware Implementations of
Lightweight Cryptography

Jens-Peter Kaps,
Farnoud Farahmand,

Kris Gaj

George Mason University, USA

William Diehl

Virginia Tech, USA

Michael
Tempelmeier

Technische Universität
München, Germany

 Lehrstuhl für Sicherheit
 in der
 Informationstechnik

Ekawat Homsirikamol, Independent Researcher

CERG 2/33Framework for Benchmarking of Hardware Implementations of LWC

Acknowledgements

● This work is partially supported by the
Department of Commerce (NIST) Grant no.
70NANB18H219

CERG Framework for Benchmarking of Hardware Implementations of LWC 3/33

Overview

● Introduction
● Proposed Hardware API for Lightweight

Cryptography
● Development Package and Implementer’s Guide
● Conclusions

CERG Framework for Benchmarking of Hardware Implementations of LWC 4/33

Introduction

● LWC HW API Team
● Previous Work

CERG 5/33Framework for Benchmarking of Hardware Implementations of LWC

LWC HW API Team

Jens-Peter
Kaps

CERG

William
Diehl

SAL

Michael
Tempelmeier

EI SEC

“Ice”
Homsirikamol

Independent

Researcher

Kris
Gaj

CERG

Farnoud
Farahmand

CERG

CERG 6/33Framework for Benchmarking of Hardware Implementations of LWC

Previous Work

● SHA-3 Contest (2007-2012)
– 1st attempt at defining hardware API by CERG.

– High-speed implementations of all 14 Round 2
and 5 Round 3 candidates and SHA-2 using API.

– Lightweight implementations of 13 Round 2
and 5 Round 3 candidates using LW API.

– API not endorsed by NIST.

● CAESAR Contest (2013-2019)
– Hardware API proposed by CERG and endorsed by CAESAR

committee in May 2016.

– Development Package v1 released in Jun. 2016.

– Implementer’s Guide published at the same time.

– Development Package v2 (incl LWC support) released Dec. 2017.

CERG 7/33Framework for Benchmarking of Hardware Implementations of LWC

CAESAR (continued)

● Development Package
– Non mandatory, not endorsed by CAESAR committee.

– 32 out of 42 (76%) Round 2 implementations fully compliant with
CAESAR HW API. All compliant used Development Package.

– 23 out of 29 (79%) implementations of 15 Round 3 candidates
were fully compliant. All compliant used Development Package.

– Several LW implementations were also reported.

● CAESAR HW API and its endorsement had a major impact
on fairness and comprehensiveness of HW benchmarking.

● Random Data Input (RDI) was added to facilitate
benchmarking of implementations protected against Power
Analysis.

CERG Framework for Benchmarking of Hardware Implementations of LWC 8/33

Proposed Hardware API for LWC

● Minimum Compliance Criteria
● Interface
● Communications Protocol
● Support for Side-channel Resistant

Implementations

CERG 9/33Framework for Benchmarking of Hardware Implementations of LWC

Minimum Compliance Criteria (1)

● Authenticated encryption and decryption should be
implemented within one LWC core.
– If hashing is supported, an additional version for encryption,

decryption, and hashing in one LWC core.

● Only one operation (enc/dec/hash) executed at a time.
● Key scheduling should be implemented in LWC core.
● LWC core should handle incomplete blocks.

– Padding should be implemented in hardware.

● Decrypted plaintext blocks should be released
immediately, before tag check.
– Buffering handled by external HW or SW.

CERG 10/33Framework for Benchmarking of Hardware Implementations of LWC

Minimum Compliance Criteria (2)

● LWC core should support only inputs composed
of full bytes.

● Use of external memory only for two-pass
algorithms.

● The LWC core should have only one clock input
and internal clock signal.

● Inputs that are not changed should not be
passed to the output, e.g., Npub, AD.

● Permitted data bus width are 8, 16, and 32 bits.

CERG 11/33Framework for Benchmarking of Hardware Implementations of LWC

Minimum Compliance Criteria (3)

● LWC core should support following max sizes:

● The size limit 216-1 should be sufficient for the
majority of applications.

● Implementers should make sure that the
remaining size limits do not influence
– Maximum clock frequency,

– Throughput for long messages.

Single Pass Two Pass

216-1 Default 216-1 Default

232-1 CAESAR API 211-1 CAESAR API

250-1 NIST limit 250-1 NIST limit

CERG 12/33Framework for Benchmarking of Hardware Implementations of LWC

LWC Interface

CERG 13/33Framework for Benchmarking of Hardware Implementations of LWC

LWC Interface for Two-Pass
Algorithms

CERG 14/33Framework for Benchmarking of Hardware Implementations of LWC

Typical External Circuits – AXI4 IPs

CERG 15/33Framework for Benchmarking of Hardware Implementations of LWC

Typical External Circuits – FIFOs

CERG 16/33Framework for Benchmarking of Hardware Implementations of LWC

Input and Output of an LWC Core

● Npub – Public Message Number: Nonce

● AD – Associated Data

● Status: Success or Failure

AEAD
Encryption

Npub AD Plaintext

Key

Ciphertext Status

Npub AD Ciphertext Tag

AEAD
Decryption

Key

PlaintextTag Status

Hash

Hash Message

Hash Value Status

CERG 17/33Framework for Benchmarking of Hardware Implementations of LWC

Format of Secret Data Input

● All inputs start with an instruction.
● They are followed by segments.
● SDI has only one instruction and segment type.

CERG 18/33Framework for Benchmarking of Hardware Implementations of LWC

Format of Public Data Input for AEAD

● Encryption
– (a) Public Data Input

– (b) Data Output

● Decryption
– (c) Public Data Input

– (d) Data Output

CERG 19/33Framework for Benchmarking of Hardware Implementations of LWC

Format of Public Data Input for Hash

● One Segment
– (a) Public Data Input

– (b) Data Output

● Multiple Segments
– Allowed for AD,

Plaintext, Ciphertext,
Hash Message

– (c) Public Data Input

– (d) Data Output

CERG 20/33Framework for Benchmarking of Hardware Implementations of LWC

Format of Instruction/Status Word

● Word size w can be 8, 16, or 32

CERG 21/33Framework for Benchmarking of Hardware Implementations of LWC

Format of Segment Header

Encoding Type Encoding Type

0000 Reserved 1000 Tag

0001 AD 1001 Hash Value

0010 Npub||AD 1010 Length

0011 AD||Npub 1011 Reserved

0100 Plaintext 1100 Key

0101 Ciphertext 1101 Npub

0110 Ciphertext||Tag 1110 Nsec

0100 Hash Message 1111 Enc Nsec

Segment Type:

CERG 22/33Framework for Benchmarking of Hardware Implementations of LWC

Support for Side-channel Resistant
Implementations

● Added Random Data Input (RDI) bus
● No header or instruction words, no segments
● Sets rdi_ready, checks rdi_valid and reads rw bits of random data.

CERG Framework for Benchmarking of Hardware Implementations of LWC 23/33

Development Package and
Implementer’s Guide

● Block Diagram and Design Methodology
● Test Vector Generator and Universal Testbench
● Experimental Testing

CERG 24/33Framework for Benchmarking of Hardware Implementations of LWC

Block Diagram of LWC

CERG 25/33Framework for Benchmarking of Hardware Implementations of LWC

Development Package Source Code

● PreProcessor
– Parsing segment headers

– Loading keys

– Passing input blocks to
CryptoCore

– Keeping track of number of
data bytes left to process

● PostProcessor
– Clearing any portions of output

words not belonging to
ciphertext or plaintext

– Generating the header for
output data blocks

– Generating the status block with
results of authentication

● VHDL code of the PreProcessor, PostProcessor, and Header
FIFO is provided in Development Package

● Development Packages supports
bus widths of
– Input width w vs internal width ccw:

– sw = w (for w = 8, 16, 32)

External w Internal ccw

8 8

16 16

32 8, 16, 32

CERG 26/33Framework for Benchmarking of Hardware Implementations of LWC

Design Methodology

CERG 27/33Framework for Benchmarking of Hardware Implementations of LWC

Dummy CryptoCore

● Example design of a lightweight dummy authenticated cipher

● Example design of a lightweight dummy hash function

● Dummy CryptoCore supports cww=ccsw=8, 16, 32

CT i=PT i⊕i⊕Key⊕Npub
PT i=CT i⊕i⊕Key⊕Npub

for i=1…m−1

CT m=Trunc (PT m⊕i⊕Key⊕Npub , PT m)
PT m=Trunc(CT m⊕i⊕Key⊕Npub ,CT m)

Tag=Key⊕Npub⊕Len⊕

n−1

⊕
i=1

AD i⊕Pad(ADn)⊕

m−1

⊕
i=1

PT i⊕Pad(PTm)

Hash _ Value=
m−1

⊕
i=1

HASH _ MSG i⊕Pad (HASH _ MSGm)

CERG 28/33Framework for Benchmarking of Hardware Implementations of LWC

 Test Vector Generator and
Universal Testbench

● cryptotvgen is a Python app that lets users easily
generate test vectors for multiple test cases:
– Single AD/Plaintext/Ciphertext/Hash Message block

– Random inputs with custom selected sizes

– Empty AD/Plaintext/Ciphertext/Hash Message

– Various, randomly selected sizes of AD, Plaintext,
Ciphertext, and Hash Message.

● Universal Testbench LWC_TB
– supports any LWC core following the LWC HW API, and

– allows simulation of wait states on inputs.

CERG 29/33Framework for Benchmarking of Hardware Implementations of LWC

Experimental Testing

● UART based Framework

● PYNQ based Framework

● Side-Channel Analysis
Framework (FOBOS 2)

CERG Framework for Benchmarking of Hardware Implementations of LWC 30/33

Conclusions

CERG 31/33Framework for Benchmarking of Hardware Implementations of LWC

Conclusions

● Complete Hardware API for lightweight cryptography including
– Interface

– Communications Protocol

● Comments from lwc-forum were incorporated.
● LWC Hardware API, Development Package, and Implementer’s

Guide publicly available since October 14th, 2019.
– Validated with implementations, e.g., Gimli, COMET CHAM 128, SpoC,

Spook, GIFT-COFB

● Design with LWC Hardware API supported through:
– Detailed specification,

– Universal testbench and test vector generation,

– ProProcessor and PostProcessor in VHDL,

– Dummy cipher core,

– Availability of experimental testing platforms.

CERG 32/33Framework for Benchmarking of Hardware Implementations of LWC

Recommendation

● We would like to kindly ask NIST for the endorsement
of the proposed hardware benchmarking framework.

● We suggest that NIST should
– Enforce the submission of hardware description language

code compliant with the proposed API.

– Set the deadline for submissions to middle of Round 2.

● We would be happy to
– Provide technical support to any Round 2 submission team

regarding the Development Package and its
documentation.

– Take responsibility for benchmarking compliant
implementations using Xilinx and Intel FPGAs.

CERG Framework for Benchmarking of Hardware Implementations of LWC 33/33

Questions? Comments?
Suggestions?

All resources available at

https://cryptography.gmu.edu/athena

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

