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Overview

● Introduction
● Proposed Hardware API for Lightweight 

Cryptography
● Development Package and Implementer’s Guide
● Conclusions
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Introduction

● LWC HW API Team
● Previous Work
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Previous Work

● SHA-3 Contest (2007-2012)
– 1st attempt at defining hardware API by CERG.

– High-speed implementations of all 14 Round 2 
and 5 Round 3 candidates and SHA-2 using API.

– Lightweight implementations of 13 Round 2 
and 5 Round 3 candidates using LW API.

– API not endorsed by NIST.

● CAESAR Contest (2013-2019)
– Hardware API proposed by CERG and endorsed by CAESAR 

committee in May 2016.

– Development Package v1 released in Jun. 2016.

– Implementer’s Guide published at the same time.

– Development Package v2 (incl LWC support)  released Dec. 2017.
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CAESAR (continued)

● Development Package
– Non mandatory, not endorsed by CAESAR committee.

– 32 out of 42 (76%) Round 2 implementations fully compliant with 
CAESAR HW API. All compliant used Development Package.

– 23 out of 29 (79%) implementations of 15 Round 3 candidates 
were fully compliant. All compliant used Development Package.

– Several LW implementations were also reported.

● CAESAR HW API and its endorsement had a major impact 
on fairness and comprehensiveness of HW benchmarking.

● Random Data Input (RDI) was added to facilitate 
benchmarking of implementations protected against Power 
Analysis.
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Proposed Hardware API for LWC

● Minimum Compliance Criteria
● Interface
● Communications Protocol
● Support for Side-channel Resistant 

Implementations
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Minimum Compliance Criteria (1)

● Authenticated encryption and decryption should be 
implemented within one LWC core.
– If hashing is supported, an additional version for encryption, 

decryption, and hashing in one LWC core.

● Only one operation (enc/dec/hash) executed at a time.
● Key scheduling should be implemented in LWC core.
● LWC core should handle incomplete blocks.

– Padding should be implemented in hardware.

● Decrypted plaintext blocks should be released 
immediately, before tag check.
– Buffering handled by external HW or SW.
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Minimum Compliance Criteria (2)

● LWC core should support only inputs composed 
of full bytes.

● Use of external memory only for two-pass 
algorithms.

● The LWC core should have only one clock input 
and internal clock signal.

● Inputs that are not changed should not be 
passed to the output, e.g., Npub, AD.

● Permitted data bus width are 8, 16, and 32 bits.
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Minimum Compliance Criteria (3)

● LWC core should support following max sizes:

● The size limit 216-1 should be sufficient for the 
majority of applications.

● Implementers should make sure that the 
remaining size limits do not influence
– Maximum clock frequency,

– Throughput for long messages.

Single Pass Two Pass

216-1 Default 216-1 Default

232-1 CAESAR API 211-1 CAESAR API

250-1 NIST limit 250-1 NIST limit
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LWC Interface
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LWC Interface for Two-Pass 
Algorithms
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Typical External Circuits – AXI4 IPs
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Typical External Circuits – FIFOs



CERG 16/33Framework for Benchmarking of Hardware Implementations of LWC

Input and Output of an LWC Core

● Npub – Public Message Number: Nonce

● AD – Associated Data

● Status: Success or Failure

AEAD
Encryption

Npub AD Plaintext

Key

Ciphertext Status

Npub AD Ciphertext Tag

AEAD
Decryption

Key

PlaintextTag Status

Hash

Hash Message

Hash Value Status
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Format of Secret Data Input

● All inputs start with an instruction.
● They are followed by segments.
● SDI has only one instruction and segment type.
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Format of Public Data Input for AEAD

● Encryption
– (a) Public Data Input

– (b) Data Output

● Decryption
– (c) Public Data Input

– (d) Data Output



CERG 19/33Framework for Benchmarking of Hardware Implementations of LWC

Format of Public Data Input for Hash

● One Segment
– (a) Public Data Input

– (b) Data Output

● Multiple Segments
– Allowed for AD, 

Plaintext, Ciphertext, 
Hash Message

– (c) Public Data Input

– (d) Data Output
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Format of Instruction/Status Word 

● Word size w can be 8, 16, or 32
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Format of Segment Header

Encoding Type Encoding Type

0000 Reserved 1000 Tag

0001 AD 1001 Hash Value

0010 Npub||AD 1010 Length

0011 AD||Npub 1011 Reserved

0100 Plaintext 1100 Key

0101 Ciphertext 1101 Npub

0110 Ciphertext||Tag 1110 Nsec

0100 Hash Message 1111 Enc Nsec

Segment Type:
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Support for Side-channel Resistant 
Implementations

● Added Random Data Input (RDI) bus
● No header or instruction words, no segments
● Sets rdi_ready, checks rdi_valid and reads rw bits of random data.
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Development Package and 
Implementer’s Guide

● Block Diagram and Design Methodology
● Test Vector Generator and Universal Testbench 
● Experimental Testing
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Block Diagram of LWC
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Development Package Source Code

● PreProcessor
– Parsing segment headers

– Loading keys

– Passing input blocks to 
CryptoCore

– Keeping track of number of 
data bytes left to process

● PostProcessor
– Clearing any portions of output 

words not belonging to 
ciphertext or plaintext

– Generating the header for 
output data blocks

– Generating the status block with 
results of authentication

● VHDL code of the PreProcessor, PostProcessor, and Header 
FIFO is provided in Development Package

● Development Packages supports 
bus widths of
– Input width w vs internal width ccw:

– sw = w (for w = 8, 16, 32)

External w Internal ccw

8 8

16 16

32 8, 16, 32
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Design Methodology
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Dummy CryptoCore

● Example design of a lightweight dummy authenticated cipher

● Example design of a lightweight dummy hash function

● Dummy CryptoCore supports cww=ccsw=8, 16, 32

CT i=PT i⊕i⊕Key⊕Npub
PT i=CT i⊕i⊕Key⊕Npub

for i=1…m−1

CT m=Trunc (PT m⊕i⊕Key⊕Npub , PT m)
PT m=Trunc(CT m⊕i⊕Key⊕Npub ,CT m)

Tag=Key⊕Npub⊕Len⊕

n−1

⊕
i=1

AD i⊕Pad(ADn)⊕

m−1

⊕
i=1

PT i⊕Pad(PTm)

Hash _ Value=
m−1

⊕
i=1

HASH _ MSG i⊕Pad (HASH _ MSGm)
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 Test Vector Generator and 
Universal Testbench

● cryptotvgen is a Python app that lets users easily 
generate test vectors for multiple test cases:
– Single AD/Plaintext/Ciphertext/Hash Message block

– Random inputs with custom selected sizes

– Empty AD/Plaintext/Ciphertext/Hash Message 

– Various, randomly selected sizes of AD, Plaintext, 
Ciphertext, and Hash Message.

● Universal Testbench LWC_TB 
– supports any LWC core following the LWC HW API, and

– allows simulation of wait states on inputs.
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Experimental Testing

● UART based Framework

● PYNQ based Framework

● Side-Channel Analysis 
Framework (FOBOS 2)
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Conclusions
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Conclusions

● Complete Hardware API for lightweight cryptography including
– Interface

– Communications Protocol

● Comments from lwc-forum were incorporated.
● LWC Hardware API, Development Package, and Implementer’s 

Guide publicly available since October 14th, 2019.
– Validated with implementations, e.g., Gimli, COMET CHAM 128, SpoC, 

Spook, GIFT-COFB

● Design with LWC Hardware API supported through:
– Detailed specification,

– Universal testbench and test vector generation,

– ProProcessor and PostProcessor in VHDL,

– Dummy cipher core,

– Availability of experimental testing platforms.
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Recommendation

● We would like to kindly ask NIST for the endorsement 
of the proposed hardware benchmarking framework.

● We suggest that NIST should
– Enforce the submission of hardware description language 

code compliant with the proposed API.

– Set the deadline for submissions to middle of Round 2.

● We would be happy to
– Provide technical support to any Round 2 submission team 

regarding the Development Package and its 
documentation.

– Take responsibility for benchmarking compliant 
implementations using Xilinx and Intel FPGAs.
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Questions? Comments? 
Suggestions?

All resources available at

https://cryptography.gmu.edu/athena
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