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1 Introduction
1.1 Background
Romulus[CIK+22] is a family of tweakable block cipher-based authenticated encryption
(AE) schemes. It has been selected as one of the finalists in the NIST lightweight cryp-
tography standardization process. It consists of a nonce-based AE Romulus-N (the main
variant), a nonce misuse-resistant AE Romulus-M, a leakage-resilient AE Romulus-T, and
a hash function Romulus-H. Romulus achieves beyond-birthday-bound security, and it is
also computationally efficient in both software and hardware implementations. However,
its performance on power side-channel analysis is yet to be explored.

Power side-channel analysis enables attackers to collect the power consumption of a
cryptographic hardware device, which allows them to infer the secrets inside, e.g. private
keys. More precisely, simple power analysis (SPA) refers to interpreting raw power traces
visually to deduce the patterns of cryptographic operations. Differential power analysis
(DPA)[KJJ99] is an advanced technique based on statistical analysis, which helps attackers
to reveal the key through intermediate values of the cryptographic computations. Over
the decade, deep learning (DL) has been developed as a powerful tool for side-channel
attacks.

In this report, we will perform a side-channel leakage assessment against Romulus with
first-order boolean masking in software and hardware implementations. The collected
power traces are going through several tests such as Welch’s t-test and correlation power
analysis (CPA) to demonstrate the actual performance of the side-channel resilience of
Romulus.

1.2 Our Work and Results Overview
Our work in this report and the results of the side-channel leakage assessment on first-
order masked Romulus can be summarized as follows.

• We collected four trace sets from the given software and hardware implementations
of Romulus-N on an MCU and a side-channel attack evaluation board.

• We performed Welch’s t-test, χ2-test and DL-LA to evaluate the power leakage of
Romulus. We tried to recover the private keys of Romulus-N by CPA and template
attack.

• Welch’s t-test, χ2-test and DL-LA applied on the power traces from the given im-
plementations both show the potential power leakage from the input nonce.
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• CPA and template attack cannot recover the private key bytes under the given
implementations.

The overall experimental results show that there exists potential power leakage related
to the input nonce of Romulus, but the private key and its corresponding intermediate
values do not exhibit noticeable leakage for side-channel analysis.

The rest of this report is organized as follows. Section 2 introduces our assessment
strategy on Romulus. Section 3 gives the detailed experimental settings. Section 4 presents
the basic information about the collected power traces and the main test results are shown
in Section 5.

2 Assessment Strategy
Our assessment strategy on the given Romulus implementations can be boiled down into
the following three phases:

Phase 1: Specify the analysis targets. We choose Romulus-N as the evaluated
algorithm for Romulus since it is the basis of Romulus-M and Romulus-T and shares the
same building block (Skinny-128-384+) with Romulus-H. Therefore, its performance on
the side-channel analysis can be viewed as the general results of the Romulus family.

Next, we chose the output of AddRoundTweakey in the first round of Skinny-128-384+
as the intermediate value. The state matrix in the first round is XORed with the tweak
key (TK1, TK2, TK3) and we have TK2 = N and TK3 = K, where N, K denote the
nonce and the encryption key, respectively. Then the operation AddRoundTweakey now
can be written as (1).

state′ = state ⊕ TK1 ⊕ TK2 ⊕ TK3
= state ⊕ TK1 ⊕ N ⊕ K

(1)

The reason that we do not chose the output of SBox in Skinny-128-384+ as inter-
mediate values is that state′ needs to go through ShiftRows and MixColumns before it is
fed into the Sbox as shown in Figure 1. Then each byte of the Sbox output can relate to
multiple input bytes, which undermines the efficacy of CPA and other tests.

Therefore, though the non-linearity of Sbox can ease the side-channel analysis, we
select the output of AddRoundTweakey in the first round, the result of a linear operation
XOR, as the analysis targets due to Skinny-128-384+’s special construction.

Intermediate values

Figure 1: One encryption round of Skinny-128-384+ (from Romulus documentation)

Phase 2: Detect side-channel leakage. We then follow the paradigms of TVLA
(Test Vector Leakage Assessment) to determine whether there is noticeable power leakage
in the collected raw traces. Specifically, the main techniques used here are Welch’s t-test
and χ2 test. They can roughly locate where in the traces the power leakage occurred and
thus indicate which cryptographic operations in Romulus caused that leakage.

Phase 3: Reveal the secret key. Note that if there is power leakage detected in
Phase 2, we can apply CPA here to reveal the private key byte-by-byte. We will also use
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the template attack (TA), a traditional profiled side-channel analysis approach, and try
to explore more information about the key.

To apply the above assessment strategy, we need to collect enough power traces of
protected implementations of Romulus-N on specific hardware.

3 Experimental Setup
3.1 Overall Procedure
The procedure of out power trace collection experiments is presented in Figure 2.

Figure 2: Overall procedure of power trace collection

We first need to download the firmware containing the C/ASM implementation of
Romulus-N into the device’s flash memory. Then we connect the device to the host
computer through a USB serial port so that we can execute the cipher and record its
intput and output. Meanwhile, we use a high-precision electromagnetic probe to capture
the electromagnetic power emitted from the device chip. The captured power is then
transmitted to the oscilloscope to generate and display the waveform of electronic signals.

With the help of the oscilloscope, we can acquire enough raw power traces of protected
Romulus-N in the host computer for later assessment.

3.2 Experimental Setting
We can follow the above procedure to build an automatic power trace collection platform
for Romulus. However, several practical problems need to be considered here.

3.2.1 Trigger location

Apart from the equipment mentioned in Figure 2, another probe attached to the oscillo-
scope can receive trigger signals to help us locate the timing when Romulus-N is executed.
Thus, we need to modify the original Romulus-N implementations so that they can control
the corresponding pins of the device to send trigger signals to the oscilloscope.

Software implementation. The C/ASM codes to control the pin and send the
trigger signals are inserted into the the following two locations.

• Prior and after the call to crypto_aead_encrypt_shared;
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• Prior and after the call to the first quadruple_round instruction of Skinny encryption
function in skinny128_core.s.

These code snippets to manipulate pins of the target device are shown in Figure 3.

(a) Codes around Romulus encryption function (b) Codes around Skinny encryption round in-
struction

Figure 3: Code snippets to set triggers in the software implementation

Note that the function that we insert trigger codes in Figure 3(b) into is skinny128_38
4_plus_enc, a copy from the original skinny128_384_plus. Then we let romulusn_proce
ss_msg call skinny128_384_plus_enc instead of skinny128_384_plus. In other words,
plaintext encryption would call different functions from the associated data. Thus, we can
isolate the target for side-channel analysis.

Hardware implementation. The verilog code snippets in Figure 4(a) shows the
trigger signals we assigned in the hardware implementation. Figure 4(b) gives the settings
of Romulus-N verilog module instantiations.

// trigger signal
assign gpio_startn = ~drdy;
assign gpio_endn = ~pdi_valid; 
assign gpio_exec = ~sdi_valid; 

// custom settings
assign pdi_valid = (state & (rom_addr == 0
| (rom_addr > 6 & rom_addr < 23)))? 1 : 0;
assign sdi_valid = (state & (rom_addr > 0
& rom_addr <= 6))? 1 : 0;

(a) assigned trigger signals

inst_rom inst_rom_0(
.addr(rom_addr), .din(blk_din),
.dout(rom_dout));
LWC_SCA LWC_SCA_0 (
// Outputs
.pdi_ready(pdi_ready), .sdi_ready(sdi
_ready), 
.rdi_ready(rdi_ready), ……
// Inputs
.pdi_valid(pdi_valid), .sdi_valid(sdi
_valid), ……);

(b) verilog module instantiation

Figure 4: Code snippets to set triggers in the hardware implementation

Through the indication of gpio_exec, we can adjust the oscilloscope to sample raw
power trace with any range.

3.2.2 Input and output of Romulus-N
During the experiments of power trace collection, the input of Romulus-N encryption
consists of three parts: a 16-byte nonce, 16-byte associated data and 16-byte plaintext.
The output consists of 16-byte ciphertext and a 16-byte authenticated tag. The 16-byte
encryption key is fixed throughout the collection. The specific information about the fixed
input is shown in Table 1.

According to the analysis in Section 2, changing either the input nonce or plaintext
will change the intermediate values. Here we choose to alter the nonce in each encryption.
Then the intermediate values will change under the same key, thereby generating different
but related power consumption patterns. This allows us to perform CPA and other tests.
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Table 1: Input details of Romulus-N

Platform Fixed Input Value

Software implementation
Private key 000102030405060708090A0B0C0D0E0F
Plaintext 000102030405060708090A0B0C0D0E0F

Associated data 000102030405060708090A0B0C0D0E0F

Hardware implementation
Private key 4535819F13209B89C4C604385A87F47E
Plaintext BFFE6A4BD1DFE787E9D9E8AC5AEFFC74

Associated data 2B71FF688E9188E145FB95AB12BF19C9

3.2.3 Experimental environments

The details of devices and analyzing suites used for Romulus are presented in Table 2.

Table 2: Details of experimental environments

Type Items Details

Hardware platform
Target MCU STM32F303RCT6

Target evaluation board Saseabo-giii
(with Xilinx Kintex-7 FPGA)

Measuring tools High Precision EM probe Langer RF-U 5-2
Oscilloscope Pico 3203D, LeCroy 610Zi

Sampling parameters Baud rate (USB Serial Port) 115200 bps
Sampling rate 125 MHz, 500 MHz

Random source standard C library rand(), srand() in stdlib.h

We assign GPIO_12 of STM32F303RCT6 (CN9 of Saseabo-gii) as the pin sending the
trigger signals. The given software and hardware implementations of Romulus-N will be
tested on STM32F303RCT6 and Saseabo-giii, respectively.

4 Description of Collected Raw Traces
We collected four sets of power traces, (S-1), (S-2), (H-1) and (H-2). (S-1) and (S-2) are
sampled from the given software Romulus-N implementations under different trigger set-
tings introduced in Section 3.2.1, and (H-1), (H-2) are from the hardware implementation.
Their basic information is presented in Table 3.

Table 3: Basic information of the collected power traces of Romulus-N

Source Software Implementation Hardware Implementation
Trace set ID S-1 S-2 H-1 H-2

Skinny rounds contained 40 4 40 3
No. of traces 100000 100000 100000 1000000

No. of points per trace 20000 1800 100000 5000
Precision −215 ∼ 215 −215 ∼ 215 −27 ∼ 27 −27 ∼ 27

Sampling time 3h 2h 1h 10h

The sample graphs of trace set (S-1) and (H-1) are presented in Figure 5. As seen
from Figure 5(b), we can easily distinguish 40 rounds in Skinny encryption from (H-1).
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(a) (S-1) (b) (H-1)

Figure 5: Sample graph of trace set (S-1) and (H-1)

Though it is hard to acquire useful information from (S-1) visually, (S-2) could show
the first four rounds of encryption as shown in Figure 6(a).

(a) (S-2) (b) (H-2)

Figure 6: Sample graph of trace set (S-2) and (H-2)

We can see that (S-2) and (H-2) both show the clear power consumption tracks of
Romulus-N. Then we can perform different tests mentioned in Section 2 on them to
evaluate the power leakage of the given implementations.

5 Main Results
Since (S-2) and (H-2) has better sampling quality and smaller dimensions, all the tests
below will be performed on them.

5.1 Welch’s t-test
Welch’s t-test is a statistical hypothesis test used to compare the means of two groups,
especially when the two groups have unequal sample sizes and variances. In terms of
side-channel analysis, we can divide the power traces into two groups according to the
difference in intermediate values.

More precisely, when the private key is fixed, we can divide the power traces of
Romulus-N by the following two cases.

• Case(A): The last bit of the first byte of the input nonce is 0 or 1.

• Case(B): The last bit of the first byte of the intermediate value is 0 or 1.
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(a) (S-2) (b) (H-2)

Figure 7: Welch’s t-test results of (S-2) and (H-2) (divided by Case (A))

(a) (S-2) (b) (H-2)

Figure 8: Welch’s t-test results of (S-2) and (H-2) (divided by Case (B))

The test results are shown in Figure 7 and 8. We can see that the results of (S-2)
fail to achieve the confidence level of Welch’s t-test, but there is significant power leakage
detected from (H-2) in Figure 7(b) when the traces are divided by nonce. Moreover, the
overall range causing leakage matches the position where TK is involved in the first two
encryption rounds. However, such leakage is missing in Figure 8(b).

5.2 χ2-test
χ2-test is a statistical hypothesis test to determine whether there is a significant difference
between the expected and observed frequencies. It can also test the null hypothesis of
independence of a pair of random variables. Therefore, like t-test, we need to divide these
power traces by the following two cases and observe their statistical differences.

• Case (A): The last bit of the first byte of the input nonce is 0 or 1.

• Case (B): The last bit of the first byte of the intermediate value is 0 or 1.

Figure 9(b) shows that χ2-test can also detect significant power leakage from (H-2),
and the time steps causing leakage are approximately the same as Figure 7(b). It suggests
that there exist potential power side-channel issues for the given hardware implementation
of Romulus-N. However, when the traces are divided by the intermediate values, χ2 − test
cannot find statistically significant differences of two trace groups.
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(a) (S-2) (b) (H-2)

Figure 9: χ2-test results of (S-2) and (H-2) (divided by Case (A))

(a) (S-2) (b) (H-2)

Figure 10: χ2-test results of (S-2) and (H-2) (divided by Case (B))

5.3 DL-LA
DL-LA (Deep Learning Leakage Assessment) [MWM21] is based on the concept of super-
vised learning and uses neural networks to build a binary classifier on power side-channel
measurements. The power traces are first separated into the training and validation set.
Then we need to divide them as in Section 5.1 and 5.2 for labeling. The "labels" of each
power trace would stand for which group the trace belongs to.

(a) accuracy of the CNN model (b) overall accumulated gradients of (S-2)

Figure 11: Assessment results of DL-LA on (S-2) (divided by Case (A))

After the classifier model is built with the labeled training set, it can be applied to
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the validation set to predict which group each trace belongs to. DL-LA also introduces
sensitivity analysis to calculate the accumulated gradients, thereby showing where in each
trace cause the bias of different groups. Here we chose the traditional CNN (Convolutional
Neural Network) model and the assessment results of (S-2) are shown in Figure 11 and
12.

(a) accuracy of the CNN model (b) overall accumulated gradients of (S-2)

Figure 12: Assessment results of DL-LA on (S-2) (divided by Case (B))

We can see that the CNN classifier can achieve over 98% accuracy in both cases,
which shows that the divided two groups indeed have a distinctive statistical difference.
Figure 11(b) and 12(b) show the distribution of overall gradients during the training of
the CNN model. They can only roughly indicate the positions that cause the leakage.
Thus, like Welch’s t-test and χ2-test, DL-LA can also detect power leakage from the given
Romulus-N implementations.

5.4 CPA
CPA is an efficient side-channel analysis technique to reveal the private keys using power
leakage of a cryptographic device. It usually involves modelling the simulated power con-
sumption under a fixed key. For each subkey byte, it computes all 28 possible intermediate
values and then uses the hamming weight model to simulate the corresponding power con-
sumption. The correct guess will exhibit the greatest level of correlation between the
simulation and real power trace, which indicates the correct subkey byte.

For trace set (S-2), we perform CPA on all 16 key bytes of Romulus-N. The CPA guess
results for each byte is presented in Table 4.

Table 4: CPA guess result of key bytes in (S-2)

Target byte index 0 1 2 3 4 5 6 7
Target byte value 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

Guess rank 2 8 7 0 98 225 89 235
Actual best guess 0xDF 0x21 0xDF 0x03 0x4B 0x69 0xBF 0x3D
Target byte index 8 9 10 11 12 13 14 15
Target byte value 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

Guess rank 191 20 90 183 90 162 88 178
Actual best guess 0x6F 0x0F 0xDF 0x81 0xF4 0xC4 0x53 0x4A

Note that first four bytes have a relatively higher rank and their correlation results
are shown in Figure 13. We can also see that the key byte 0x03 can be guessed correctly
using CPA. The rest of the bytes can be regarded as secure in the protected Romulus-N
implementation.
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(a) byte index = 0 (b) byte index = 1

(c) byte index = 2 (d) byte index = 3

Figure 13: CPA correlation result of (S-2)

For (H-2), we have the following key guess results in Table 5.

Table 5: CPA guess result of key bytes in (H-2)

Target byte index 0 1 2 3 4 5 6 7
Target byte value 0x45 0x35 0x81 0x9F 0x13 0x20 0x9B 0x89

Guess rank 136 165 57 110 105 15 36 22
Actual best guess 0x72 0xF9 0xB7 0x3F 0xC9 0xE0 0xEC 0x36
Target byte index 8 9 10 11 12 13 14 15
Target byte value 0xC4 0xC6 0x04 0x38 0x5A 0x87 0xF4 0x7E

Guess rank 7 231 58 195 186 252 122 144
Actual best guess 0xCC 0x8F 0x03 0xD8 0x1B 0x61 0x47 0x5C

The correlation results of bytes 0x20, 0x9B, 0x89 and 0xC4 that have higher guess
ranks are shown in Figure 14. According to Table 5 and Figure 14, We can see that
the fixslicing masking scheme[BDCU17] applied in the Romulus-N implementations can
prevent an attacker from recovering the correct key bytes using CPA. Thus, the power leak-
age presented in Section 5.1 and 5.2 could be brought by nonce rather than intermediate
values.

5.5 TA
Template attack (TA) is an advanced type of side-channel attack, which needs attackers to
create a power consumption template of the target device (Profiling Phase) and applies
this template to recover the secret key efficiently (Attacking/Predicting Phase).

To create a template, the attacker could first perform correlation analysis on the
intermediate values to acquire some points of interest (POI). Then he/she can build a
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(a) byte index = 5 (b) byte index = 6

(c) byte index = 7 (d) byte index = 8

Figure 14: CPA correlation result of (H-2)

targeted template using enough power traces. Therefore, according to the results in Table
4, we can apply TA to the key byte 0x30 and 0xC4 (the highest guess rank in each trace
set).

Table 6: TA prediction results of (S-2) and (H-2)

Target bytes 0x30 0xC4
Accuracy 27.33% 26.99%

Predicted value 0x02 0x51

Note that we do not consider other key bytes in TA, otherwise the built template
cannot generate correct statistical features about the right intermediate values. As shown
in Table 6, the accuracies of TA can only achieve 27.33% and 26.99% on the two bytes,
respectively, which is close to random guessing. Therefore, the given boolean-masking
implementations can protect the inside private key of Romulus-N against TA.
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