
Automated Tool for Hardware EvaluatioN

ATHENa Tutorial
Version 0.6.5

1

Table of Contents

1 Tools Installation . 3
2 General Project Setup and Reports . 5
3 Application Setup . 5

3.1 single run . 6
3.2 placement search . 6
3.3 exhaustive search . 6
3.4 frequency search . 7
3.5 GMU Optimization 1 . 7
3.6 GMU Xilinx optimization 1. 10

4 Functional verification of codes in ATHENa . 10
4.1 Testbench Requirements . 10
4.2 Specifying Design Configuration . 11
4.3 Specifying Test Vector Locations . 11
4.4 Examples . 11

5 Synthesize and Implementation Features . 11
5.1 Generics . 11
5.2 Using ATHENa with Xilinx CORE Generator and Altera MegaWizard Plug-in Manager . . . 12

6 Example Run . 13
7 Workspace . 14
8 Constraint File . 14
9 Purely Combinational Circuit . 15
10 Project Termination, Report Generation and Cleaning Workspace . 15
11 Spooler . 15
12 Database report generator and result replication . 16
13 Troubleshooting ATHENa runs . 16
A design.config.txt Options . 17
B Xilinx FPGA DEVICES specific options . 20
C Altera FPGA DEVICES specific options . 21
D “option.<option> <optimization target>.txt” options . 22
E “placement search.txt” options . 23
F “exhaustive.<strategy name>.txt” options . 24
G “GMU Optimization 1” and “GMU Xilinx Optimization 1.txt” options . 25
H Guidelines for Choosing REQUESTED FREQ IMPROVEMENT STEPS . 26
I Important notes on new families . 26
J History of Changes since ATHENa 0.6 . 26

ATHENa 0.6.5 Tutorial

The ATHENa Team

ECE Department, George Mason University, Fairfax, VA 22030, U.S.A.
http://cryptography.gmu.edu/athena/

1 Tools Installation

ATHENa requires four types of programs to support the execution of its scripts: a Perl interpreter, Syn-
thesis Tool(s), Implementation Tool(s) and Simulation Tool(s). Generally, basic versions of synthesis and
implementation tools are provided freely by FPGA vendors. However, these free versions of tools are not
able to perform synthesis and implementation targeting all FPGA devices available on the market. In order
to generate results for a full range of FPGA devices, you may need to acquire appropriate licenses.

ATHENa supports the following operating systems:

– Windows: XP/VISTA/WINDOWS 7
– Linux: Ubuntu v10.1

The free versions of tools can be downloaded from the following web sites:

– Perl Interpreter
• For Windows : Use ActiveState v5.12 and above
• For Linux : Install Perl with the following libraries - Libipc-run3-perl and Libarchive-zip-perl

– Synthesis and Implementation Toolsets (for Windows and Linux)
• Xilinx - ISE
• Altera - Quartus II

– Simulation Tools (for Windows and Linux)
• Xilinx - ModelSIM
• Altera - ModelSim for Altera comes with Altera toolset

Synthesis and Implementation tools do not support all operating systems. For a list of supported operating
systems see:

– Xilinx
– Altera

New features of ATHENa added in version 0.6.5 include:

– Support for Linux,
– New application: GMU Optimization 1 (Section 3.5),
– Support for Generics Search (Section 5.1),
– Database report generator (see 12),
– Support for reducing the size of generated files (see Appendix A, under TRIM MODE),
– Support for Xilinx Spartan 6 and Virtex 6, and Altera Cyclone IV, Stratix IV, and Arria families,
– Support for Altera MegaWizard Plug-in Manager and Xilinx CORE Generator (Section 5.2)
– Support for Verilog.

Limitations of the current version of ATHENa (to be eliminated in the future versions) include:

– No support for third party synthesis tools (i.e., synthesis tools other than the tools provided by Xilinx
and Altera).

3

http://cryptography.gmu.edu/athena/
http://www.activestate.com/activeperl/
http://www.xilinx.com/tools/webpack.htm
https://www.altera.com/support/software/download/altera_design/quartus_we/dnl-quartus_we.jsp
http://www.xilinx.com/ise/mxe3/download.htm
http://www.xilinx.com/ise/ossupport/index.htm
http://www.altera.com/literature/po/ss_quartussevswe.pdf

– Support for batch mode simulation using ModelSim only (to be extended to other simulators in the
future). Additionally, functional simulation will be extended with post-synthesis and timing simulation
in the future versions of tools.

The root directory is the directory called ATHENa, where you have unpacked the ATHENa toolset.
Inside the root directory you will find several script files which are used to perform specific tasks in ATHENa.
Windows users need to run script name.bat (batch) files, where as Linux users execute script name.sh
(shell) scripts. Once the tools are installed, please make sure that all of them contain appropriate licenses
by running the main program of each tool by itself (i.e., outside of ATHENa) at least once. Then, You can
proceed to run ATHENa setup.bat/ATHENa setup.sh to set the version of tools for Xilinx and/or
Altera. Once finished, you must save and exit before any changes become effective. In the case that user
wants to modify the vendor installation license, start ATHENa setup.bat/ATHENa setup.sh. Then,
select the second choice Change selected tools license to enter license modification page. Once there, user can
switch between free or paid license type as needed. Finally, user will need to save before any changes are made.

Important note for Windows users before you proceed:

Oftentimes, you may want to resize the command line windows for better visibility of messages gener-
ated by ATHENa setup and ATHENa. You can perform this by right-clicking at the top of the command
line window. This is the area next to the minimize, full screen and exit buttons. Once there, you can select
”Properties” and go to the ”Layout tab”. Under Layout, select a larger buffer size and change window size
appropriately. Click ”OK” once done. This change will remain effective for new windows as well.

Running ATHENa setup.bat/ATHENa setup.sh generates ATHENa.bat /ATHENa.sh in your root
directory, and tool config.txt in the config folder located inside of your root directory. It also selects ap-
propriate device library to use, depending on your tool version and license type (i.e. ISE Webpack vs. ISE
Design Suite for Xilinx tools). Additionally, ATHENa setup allows you to select the maximum number of
logical processors to be used by ATHENa.

If ATHENa setup.bat is unable to execute, user can assume that there is a problem related to Perl
installation. This problem is normally caused by a missing module from Perl distribution. To resolve this
problem, execute the setup script in a command line environment (DOS). If a module is missing, an error
will be shown detailing the name of the missing module. The missing module can be obtained from cpan
with the installation procedures described in Module Installation.

ATHENa.bat/ATHENa.sh is a batch/script file that you use for starting ATHENa operation. tool config.txt
is a configuration file containing your tool settings. Please note that if a device library for a given version of
tools does not exist, you may select a different library as a substitute. Basic functionality of ATHENa can
be accomplished even if a device library version does not match exactly the version of tools installed on your
computer. However, ATHENa will support only FPGA devices specified in the current library file, even if
FPGA tools support an extended set of devices.

If you want to change tool versions or the maximum number of logical processors to be used by ATHENa,
you can run ATHENa setup.bat/ATHENa setup.sh again, navigate to Manual Setup and make
changes accordingly. Otherwise, ATHENa generally selects the appropriate settings for you. Note that
ATHENa may not be able to always find your FPGA tool installations. If that happens, you can manu-
ally specify the location of tools by going to the respective tool’s menu.

The number of logical processors (also known as virtual processors) available in your system is calcu-
lated based on the following equation:

Number of Logical Processors = Number of Cores ∗Hyper− Threading Factor

where, Hyper-Threading Factor is equal to 2 if Hyperthreading is enabled, and 1 otherwise.
Finally, ATHENa may select an incorrect tool’s installation type (e.g., Xilinx WebPACK instead Xilinx

Design Suite) during the first setup. Hence, the selected library file will be incorrect and it will cause the

4

http://www.cpan.org
http://www.cpan.org/modules/INSTALL.html

best match and/or all options to perform incorrectly. User can change the settings by restarting ATHENa setup,
and then choosing the following sequence of options from the menu: Manual Setup → Synthesize and Im-
plementation Tools Setup → <specific tool version> → Update listed version/library.

2 General Project Setup and Reports

In order to prepare your code for evaluation using ATHENa, edit the file design.config.txt located in
the config subdirectory of your root directory.

Inside the file, specify the desired workspace directory using the variable WORK DIR. This is a directory
used as a root for all intermediate and result file directories. Then, you need to specify the location of the
source folder using the variable SOURCE DIR. This is a folder containing your VHDL and/or Verilog
source files. Specify the remaining parameters according to the meaning of options as explained in Appendix
A.

Once the configuration file is correctly prepared, execute ATHENa.bat/ ATHENa.sh located in
your root folder to start. The results generated by the scripts will be shown in your command line win-
dow, as well as stored in text files located in the directory WORK DIR under the following subfolder
${application}/${date} ${projectname} ${instance no}.

${application} is the type of application as specified in design.config.txt. $date is the date at which the
project is run. ${projectname} is the name of the project as specified in design.config.txt. ${instance no}
is an instance number of the project. An instance number is used in order to distinguish folders created at
different time during the same day.

In each run of ATHENa, five report files are generated. These are option, resource utilization, timing,
execution time and summary reports. The option report contains information about the specific options
of tools used in a given run (default tool options are not listed). The resource utilization report contains
information about the use of FPGA resources. The timing report contains timing related results (such as
maximum clock frequency after synthesis and after implementation, latency, throughput, etc.). The execution
time report contains the execution time taken by each tool. Finally, the summary report combines information
from all four aforementioned reports. Additionally, the same information is collected in two CSV (comma-
separated values) files (one for Xilinx and one for Altera), which are more suitable for further electronic
processing.

In addition to the report files, two log files called athena progress.txt and athena log.txt are gen-
erated. athena progress.txt contains only major messages displayed on the screen during ATHENa run.
athena log.txt contains more detailed information about which specific FPGA tools were called, and with
which options. This file should be also inspected for possible error and warning messages, in case an ATHENa
run has not returned all expected results.

3 Application Setup

As of version 0.6, there are five supported ATHENa applications :

– single run

– placement search

– exhaustive search

– frequency search

– GMU Optimization 1

– GMU Xilinx optimization 1

The tool selects an appropriate application based on the application name provided in the APPLICA-
TION = $APPLICATION NAME field in your design.config.txt. With the exception of the single run

5

application, the tool will further look into a respective application configuration file contained in your config
folder, which contains application specific settings. For instance, if you have your application set to

APPLICATION = placement search

the tool will refer to application specific settings in placement search.txt.

3.1 single run

single run is the most basic ATHENa application. It performs a single run through synthesis and
implementation for all target FPGA devices specified in design.config.txt. Options of synthesis and im-
plementation used for all these target devices are provided in the file:

options.<OPTIONS> <OPTIMIZATION TARGET>.txt

located in the subdirectory config of the root directory. OPTIONS and OPTIMIZATION TARGET
are variables defined in design.config.txt. OPTIONS = default or user.OPTIMIZATION TARGET
= speed, area, or balanced.

See Appendix D for a list of groups of options that can be specified in the files
options.<OPTIONS> <OPTIMIZATION TARGET>.txt
Note that, by default, the tool will also use the OPTIONS and OPTIMIZATION TARGET provided

in the design.config.txt as a starting point for other applications as well. Hence, you may want to create an
option file for single run to suit your needs and use this as a basis for starting more complex applications.

3.2 placement search

placement search is an application that allows running implementation automatically for multiple
values of an option that determines a starting point of placement within a given FPGA device. These
options include: COST TABLE for Xilinx and SEED for Altera.

In placement search.txt, user can specify the range of the given option values using the following format:

<number>; or <start number>: <step> : <end number>;

The first format allows specifying a single value of an option. The second format specifies a sequence
of values starting from <start number>, and ending with <end number>, with the value incremented by
<step> in each subsequent run. The specification of a value or a range has to be terminated by a semi-colon.
A user can combine multiple specifications together, separated by semicolons. For instance,

XILINX COST TABLE VALUES = 6; 13 : 6 : 30; 55;

means the values of the cost table equal to 6, 55 and the range from 13 to 30 with the step of 6. Thus,
the implementation will be repeated for the following values of the cost table: 6, 13, 19, 25, and 55.

See Appendix E for a full list of variables of placement search.txt.

3.3 exhaustive search

exhaustive search extends placement search to allow a user to specify a range of option values for
several types of options (beyond options that can be specified in placement search).

In general, exhaustive search is used to find optimum synthesis and implementation options for a given
source code, target device, tools, tool versions, and optimization target (speed, area, or balanced).

The description of the exhaustive search strategy is given in the file: exhaustive.¡strategy name¿.txt,
where the string ¡strategy name¿ can be chosen arbitrarily in the exhaustive search.txt.

6

For each option, several possible values used in the exhaustive search are specified. All options are grouped
into Level 1 options and Level 2 options. Level 1 options are investigated first in order to determine a number
of best combinations given by the variable BEST LEVEL 1 OPTION SETS. For each set of options selected
as best at Level 1, an exhaustive search is performed for all options at Level 2.

To select which strategy to use, simply use the strategy name as a parameter to EXHAUSTIVE SEARCH STRATEGY
option.

See Appendix F for a list of options of exhaustive.<strategy name>.txt.

3.4 frequency search

frequency search is an optimization method that attempts to search for the best requested clock
frequency value for a given design. The parameters of the search algorithms can be described in fre-
quency search.txt within the ATHENa/config directory. The REQUESTED FREQ IMPROVEMENT
STEPS option is a list of frequency improvement step sizes used by the algorithm. Proper care needs to

be taken when choosing these values because the effectiveness of the search is closely tied to them. Some
guidelines are outlined in Appendix H on how to choose these values for your particular design. User can
specify improvement steps by the following format:

<improvement>% or <improvement 1>%, < improvement 2>%, ... < improvement X>%

The application steps through improvement steps from left to right. If the requested frequency is achieved,
the same improvement step is reused. If not, then the next improvement step is used for the subsequent runs.
The application will loop through all the specified improvements until no more improvement can be obtained.

This application is best suited for Xilinx FPGAs.

3.5 GMU Optimization 1

GMU Optimization 1 performs optimization specific to a vendor. For Xilinx, it combines frequency search
and placement search with 3 optimization targets (Area, Speed and Balanced) and effort level. For Al-
tera, only placement search and optimization target are combined as not much can be gained from fre-
quency search. The same syntax used by frequency search and placement search is applied here as well. For
Xilinx, GMU Optimization 1 works as follows. For each of the optimization target, an initial run of the
design tools is generated using the default options as defined in design.config.txt. The frequency achieved
in this initial run determines the starting point of the frequency search. After this initial frequency value is
generated, the next run is executed with a requested frequency equal to the last achieved value increased
by the percentage indicated by the first value in the REQUESTED FREQ IMPROVEMENT STEPS
list. The result from this run is used as the starting point for the next run and this process is continued
until either zero or negative improvement is generated by the toolset. Once the increases in requested fre-
quency no longer yield a positive effect on the achieved frequency, the highest achieved frequency is used
as the requested frequency and the tool PAR options are set to a high effort. If the default tool options
up to this point were equivalent to the high effort options this step is skipped. The previous incremental
improvement process is continued using the high effort options until a positive effect on achieved frequency
is no longer attainable. At this point the algorithm will change the placement options to try and generate
a positive change in achieved frequency. The placement options are determined by the value chosen for
XILINX COST TABLE VALUES. The initial incremental improvement process is used again until no
benefit from requested frequency increase is observed. At this point the highest achieved frequency is used
as the basis for incremental improvement now using the step value indicated as the next value in the RE-
QUESTED FREQ IMPROVEMENT STEPS list. This process continues until all values within the
list have been used. For Altera, placement search application is applied for each optimization target.

The pseudo code for the Xilinx part of GMU Optimization 1 is provided below.

Pseudo Code:

7

Freq - Requested Frequency for the current run
Fach - Frequency Achieved by the current run
Fstep - Frequency Step Increase
Fstep(0) - first frequency step listed for REQUESTED FREQ IMPROVEMENT STEPS
Fstep(i) - ith frequency step listed for REQUESTED FREQ IMPROVEMENT STEPS
Placement = ps value 1, ps value N set of possible cost table values
ord (Placement) = cardinality of placement set
Placement(j) jth element from placement set

Run() Run the system with the currently selected settings

Step 1:
Freq = Default*;
Settings = Default*;
Run(Freq,Default Effort);

Step 2:
While (Fach > Freq)

Freq = Fach + (Fach ∗ Fstep(0)/100);
Run(Freq,Default Effort);

Step 3:
Settings = High Effort;
Run(Freq, High Effort);
While (Fach > Freq)

Freq = Fach + (Fach ∗ Fstep(0)/100);
Run(Freq, High Effort);

Step 4:
Settings = High Effort;
Use Placement Search Options;

for j in 0 to ord (Placement)
Run(Freq, High Effort, Placement(j));

if (Fach > Freq)
exit;

end for

While (Fach > Freq)

Freq = Fach + (Fach ∗ Fstep(0)/100);
for j in 0 to ord (Placement)

Run(Freq, High Effort, Placement(j));
if (Fach > Freq)

exit;
end for

8

Step 5:
Settings = High Effort;
Use Placement Search Options;
For(i = 0; i ¡ number of REQUESTED F req IMPROVEMENT STEPS; i++)

Freq = Fach + (Fach ∗ Fstep(i)/100);
for j in 0 to ord (Placement)

Run(Freq, High Effort, Placement(j));
if (Fach > Freq)

exit;
end for

While (Fach > Freq)

Freq = Fach + (Fach ∗ Fstep(i)/100);
for j in 0 to ord (Placement)
Run(Freq, High Effort, Placement(j));

if (Fach > Freq)
exit;

end for

Default is either the default value, or the value specified by the user in design.config.txt.

The pseudo code for the Altera part of GMU Optimization 1 is provided below:

Fach - Frequency Achieved by the current run
Fhighest Highest Frequency achieved so far

Placement = ps value 1, ps value N set of possible cost table values
Placement(j) jth element from placement set

syn effort level = auto, fast
syn opt target = area, speed, balanced
fit effort level = auto, fast, standard
syn effort level(a) ath element from syn effort level set
syn opt target(b) bth element from syn opt target set
fit effort level(c) cth element from fit effort level set
ord (set) - functions which returns cardinality of the set

Run() Run the system with the currently selected settings

for b in 1 to ord(syn opt target)
settings=(syn effort level=auto, syn opt target(b), fit effort level=standard);

for j in 0 to ord (Placement)
Run(settings, Placement(j));

if (Fhighest < Fach)
Fhighest = Fach

end if;

9

end for;
end for;

3.6 GMU Xilinx optimization 1

GMU Xilinx optimization 1 only works for Xilinx and performs similar operation to the Xilinx part
in Section 3.5. However, instead of performing the frequency search and placement search for each of the
optimization targets, only one iteration is performed for the optimization target that provides the best result.
The best optimization target is selected based on the throughput to area ratio of the single run result on each
of the optimization target. Again, the same syntaxes used in previously described applications still applied
here.

4 Functional verification of codes in ATHENa

4.1 Testbench Requirements

In order to allow for an automated functional verification of an HDL project in ATHENa using batch
mode, an appropriate testbench must be prepared. ATHENa requires two specific features from the testbench
in order to perform correctly.

First requirement:
The testbench must generate an output file called “athena test result.txt”. This file should contain the
keyword “pass”. If it does not, then ATHENa will assume that the simulation has failed.

Note : Output file string should contain only the file name. For instance,

FILE output file : TEXT OPEN WRITE MODE is “athena test result.txt”;

is fine. But,

FILE output file : TEXT OPEN WRITE MODE is “c:/athena test result.txt”;

or

FILE output file : TEXT OPEN WRITE MODE is “some folder/athena test result.txt”;

will cause your simulation to fail in ATHENa.

Second Requirement:
A user must provide a simulation stop point for ATHENa. This can be done in two ways. First, the user can
specify the maximum time up to which a simulation will run in the design configuration file. If there is no
time specified, user must write a testbench in such a way that the end point is reached. The end point is
reached only when there are no further changes in any signals inside the circuit. This means that all signals
are stable from that point onwards; these signals include all inputs, outputs and clock signals. Normally,
stopping the clock when there is no more input vectors is adequate in creating the required end point.

4.2 Specifying Design Configuration

All parameters inside “Verification Settings” of your design configuration are required. Only MAX TIME FUNCTIONAL VERIFICATION
is optional.

10

4.3 Specifying Test Vector Locations

If in your testbench, you specify your test vector location as a fixed path, you do need to include test
vector files inside VERIFICATION LIST FILE. Otherwise, you must include the test vectors as a part of
this list. Please note that a test vector file cannot have .vhdl, .vhd or .v extension if you are specifying it as
a part of the list.

4.4 Examples

For examples on how to write the testbench according to the ATHENa’s requirement, please refer to the
arraymult or sha256 rs projects inside of the examples folder. The corresponding design configuration files
are also included in the respective project folders to allow immediate testing.

5 Synthesize and Implementation Features

5.1 Generics

ATHENa accepts generics in the design configuration file via two types of keywords:

GLOBAL_GENERICS_BEGIN

...

GLOBAL_GENERICS_END

and

GENERICS_BEGIN

...

GENERICS_END

The global generic keyword must be specified outside the FPGA VENDOR clause. On the other hand,
the basic generic keyword must be specified within the FPGA FAMILY clause, where the keyword is applied
to the selected family only. If the same generic name is specified in both location, the local generic values
will overwrite the global generic values.

Inside the keyword, generic name and its corresponding value(s) can be specified as follows: name =
value1, value2, value3, ..., valueX if specific combination of generics is required, user can specify a generic
combo as shown below: (name1, name2, ..., nameX) = (name1 value, name2 value, ..., nameX value), ...

If more than one generic name or combo are specified, ATHENa will automatically go through all possible
combinations of the specified values and combos. Note that different format of generic specified in global and
local generic keywords may cause ATHENa not to function properly. For instance, the following method of
generic description should be avoided:

GLOBAL_GENERICS_BEGIN

(unrolled, h) = (4, 256), (8,256)

GLOBAL_GENERICS_END

GENERICS_BEGIN

h = 512

GENERICS_END

Furthermore, a generic of type integer should be specified by its actual value and not by the constant
value (in case you have it specified elsewhere), as the synthesis tool may not be able to recognize HDL
constants properly. Finally, user should make sure that the tool is able to capture the generic parameter
passed by ATHENa before letting it run autonomously. This can be done by looking at the synthesis report
file and make sure that there are no errors/warnings generated.

11

5.2 Using ATHENa with Xilinx CORE Generator and Altera MegaWizard Plug-in Manager

Both Xilinx and Altera allow designers to use the libraries of Intellectual Property (IP) Cores. The use of
components from these libraries is supported by special interactive programs, typically referred to as wizards.
These programs allow users to choose a generic library component that best matches the required function,
and then parameterize this component by answering a series of questions appearing on subsequent screens.
Based on the provided input, the program generates a set of files that can be used to simulate, synthesize,
and implement a higher-level circuit that instantiates a given IP core.

Xilinx: A wizard available with Xilinx tools is called CORE Generator, and can be started by choos-
ing it from the Start → AllPrograms menu of Windows, under Xilinx ISE < version >→ ISE →
Accessories → CORE Generator. After creating a new project, choosing an appropriate function and a
target FPGA device, and setting all necessary parameters, the program generates several output files. The
most important out of these files are:

<Component name>.ngc:
Binary Xilinx implementation netlist file containing the information required to implement a given IP Core
in a specified Xilinx FPGA. This is the only file required for the synthesis and implementation of the given
core. The name of this file should be placed in the source list file of ATHENa, just before the name of a file
instantiating a given IP core.

<Component name>.vhd :
VHDL wrapper file provided to support functional simulation only. This file contains instantiation of the
simulation model for the core. The simulation model is customized through multiple parameters of the core,
which are passed as generic values during instantiation. This file is required only in the verification mode of
ATHENa, and it should be added to the verification list file, if ATHENa is used for functional verification
in batch mode.

<Component name>.vho:
A template file containing code that can be used as a model for instantiating a given CORE Generator
module in a VHDL design. This file is not used by ATHENa.

<Component name> readme.txt :
Text file listing all output files, and explaining how they should be used. This file is not used by ATHENa.

Altera: A wizard available with Altera tools is called MegaWizard Plug-in Manager, and can be started by
choosing it from the Start→ AllPrograms menu of Windows, under Altera→Quartus II <version>→Quartus
II<version> MegaWizard Plug-in Manager.

After creating a new project (called custom megafunction variation), choosing an appropriate function and
a target FPGA family, and setting all necessary parameters, the program generates several output files. The
most important out of these files are (assuming that VHDL was selected as an output file type):

<Component name>.vhd :
VHDL wrapper file containing an instantiation of a given IP core, with values of generics specified using the
MegaWizard Plug-in Manager. This is the only file required for the synthesis, implementation, and simula-
tion of the given core. The name of this file should be placed in the source list file of ATHENa and in the
verification source list file of ATHENa, just before the name of a file instantiating a given IP core.

<Component name> inst.vhd :
An instantiation template file containing code that can be used as a model for instantiating a given IP core

12

in a VHDL design. This file is not used by ATHENa.

<Component name>.cmp:
A component declaration file containing code that can be used as a model for declaring a given IP component
in a VHDL design. This file is not used by ATHENa.

<Component name> waveforms.html :
An HTML files containing sample timing waveforms demonstrating proper operation of a given IP core.

6 Example Run

We have included example projects in our ATHENa package. These projects are located inside of the
folder examples of the root directory. The default project is currently sha256 rs, which is our implementation
of the current hash function standard SHA-256, using architecture with rescheduling proposed by Chaves et
al. at CHES 2006. In execute this project, simply run ATHENa.bat/ ATHENa.sh. The result files will be
generated in a default work directory called ATHENa workspace, located in the root directory. For the
remaining examples, please copy the respective design.config.txt file, located in the same directory as the
source codes of the given example, namely examples/<project name> to the folder config. Overwrite
the previous contents of the file config/design.config.txt. Once completed, you can navigate to the root
directory of ATHENa and run ATHENa.bat/ATHENa.sh to start running ATHENa for the given project.
The most important options of design.config.txt for the sha256 rs example are listed below. Please feel free
to modify any of these options in order to investigate different FPGA families and different optimization
strategies.

SHA2-256 (architecture with rescheduling)

WORK_DIR = <ATHENA_workspace>

SOURCE_DIR = examples\sha256_rs

SOURCE_LIST_FILE = source_list.txt

PROJECT_NAME = sha256

TOP_LEVEL_ENTITY = sha256

TOP_LEVEL_ARCH = rs_arch

CLOCK_NET = clk

LATENCY = TCLK*65

THROUGHPUT = 512/(TCLK*65)

OPTIMIZATION_TARGET = speed

OPTIONS = default

APPLICATION = single_run

FPGA_VENDOR = xilinx

FPGA_FAMILY = spartan3

FPGA_DEVICES = all

SYN_CONSTRAINT_FILE = default

IMP_CONSTRAINT_FILE = default

REQ_SYN_FREQ = 120

REQ_IMP_FREQ = 100

END FAMILY

END VENDOR

13

FPGA_VENDOR = altera

FPGA_FAMILY = Cyclone III

FPGA_DEVICES = best_match

SYN_CONSTRAINT_FILE = default

IMP_CONSTRAINT_FILE = default

REQ_IMP_FREQ = 120

MAX_LE_UTILIZATION = 0.8

MAX_MEMORY_UTILIZATION = 0.8

MAX_DSP_UTILIZATION = 1

MAX_MULT_UTILIZATION = 1

MAX_PIN_UTILIZATION = 0.8

END FAMILY

END VENDOR

7 Workspace

Workspace is the place where ATHENa creates an instance of your project, including result directory.
An instance of your project is created under the path described in Part 2:

$workspace/$application/${date} ${projectname} ${instance no}

An ATHENa benchmarking project may contain many runs for each device. Hence, to view original infor-
mation as created by vendors tool before ATHENa processes this information, the user needs to navigate to
the following path of the project folder:

${vendor}/${family}/${device}${run no}

${vendor}, ${family} and ${device} are the name of the vendor, family and device used in a given run,
respectively. ${run no} is the run number, starting from 1. This folder numbering is used to distinguish
between subsequent runs using different options.

8 Constraint File

At this point, constraint files are supported for Xilinx only. The constraint file must be located in-
side of the respective project source directory. The user can specify the name of the constraint file in the
design.config.txt under SYN CONSTRAINT FILE and IMP CONSTRAINT FILE for synthesis and im-
plementation, respectively.

9 Purely Combinational Circuit

If a design is purely combinational, user will need to make sure that CLOCK NET is set to empty i.e.
“CLOCK NET = ”. This will ensure that ATHENa will not incorrectly treat any port as a clock signal and
does not incorrectly request any clock frequency. Also, since timing is not a requirement, user should set
application to single run with no frequency request as well.

10 Project Termination, Report Generation and Cleaning Workspace

In case a user wants to terminate an ATHENa run, the user can stop the run by pressing CTRL+C in
the console window. If the user wants to stop the ATHENa spooler, he/she has to press CTRL+C multiple
times until spooler stops all the remaining design configuration files that are in the queue. If the project is

14

terminated prematurely, the user will not be able to find report files as the report script has not been run
yet. To generate the files, user can run the report generator.bat/report generator.sh script to create
the report files. Note that user will need to know which application and project the user wants to generate
the report files for.

Also, be aware that a project folder corresponding to the task that the user started is normally created
inside of the specified workspace even if the project is terminated mid-way. These undesired project folders
can take up space on your hard drive. To clean up the unwanted directories, the user can either delete
them manually or by running the clean workspace.bat/clean workspace.sh script located inside your
root directory. Please be aware that clean workspace.bat/ clean workspace.sh file will also remove
directories corresponding to any uncompleted projects and projects that do not produce any results. Hence,
please be careful when you are running the script as you may accidentally delete some directories that you
would like to use for debugging.

11 Spooler

A simple script, called ATHENa spooler.bat/ATHENa spooler.sh, is provided when a user wants
to run several projects consecutively. The script automatically replaces the design.config.txt in the config
folder by a file from the spool directory, ATHENa/config/spool. Files inside of this directory should have
the *.txt extension. They can have arbitrary names, but they need to follow internally the same format as
design.config.txt.

Once the spooler script starts, it chooses the next configuration file in alphabetical order, and moves
this file into the ATHENa/config/spool/processing directory. When a project is finished, the respective
configuration file is moved from the processing directory into the ATHENa/config/spool/completed
directory. In case the program is halted mid-way due to an arbitrary reason (blue screen, power outage,
insufficient memory, etc.), simply copy the configuration file corresponding to an unfinished run from the
processing directory to the main spool directory, and restart the spooler script again.

Note that any files added to the spool directory when the spooler is running will be automatically selected
(in the alphabetical order) when the previous project is finished.

It is also possible to run several spoolers simultaneously. This is similar to running several ATHENa
projects at the same time. A user should set an appropriate number of logical processors before using this
method as ATHENa cannot manage processor distribution across different projects.

12 Database report generator and result replication

ATHENa provides an easy way to generate a zip file containing queried/selected results to be uploaded
to the ATHENa database. This zip file contains CSV file(s) of the results. Each zip file contains a unique id
which have a corresponding zip file based on vendor associated with it. This file contains necessary files to
replicate the same result, assuming the same source codes and tools are used.

Results selection can be done by starting the db report generator.bat/ db report generator.sh
script. The script will automatically bring you to the workspace as specified by the design.config.txt so that
the user can navigate to the project of interest.

Once user entered the project settings, there are several options that user can choose. In a simple form,
user can simply select one of the five criterions to generate the zip file to upload to ATHENa database. This
can be done by performing the following steps:

– Modify design.config.txt to point to the correct workspace
– Start db report generator.bat/.sh
– Select application
– Select project of choice
– Select desired criterion(s) (enter number(s) between 1 and 5)
– Generate zip file to upload for database (enter g)

15

https://cryptography.gmu.edu/athenadb/table_view

– Navigate to the specified folder to obtain the zip file and upload to ATHENa database

However, user can perform a more sophisticated querying method. This can be done by toggle through
the query modes (enter ’q’). Table 1 describes the meaning of each query mode :

Table 1. Query modes definition

Query Mode Definition

Best overall Query the best result based on the specified crite-
rion(s) for each family

Best per generic Query the best result based on the specified crite-
rion(s) for each device and generic inside a family

Best per device Query the best result based on the specified crite-
rion(s) for each device inside a family

None Generate zip file with all the selected results

If query mode selection is not enough, user can select data to be queried by entering ’m’. This will
bring user to a new menu with the Selection Mode being Navigate. User can then traverse the data to
select/deselect as required. To change the Selection Mode to Modify, simply press ’m’ again.

Database report generator also comes with several options to view the results. Table 2 summarizes the
viewing options:

Table 2. Database Report Generator Viewing Options

Query Mode Command Definition

View data in query v Display querying data (deselected data is not shown)
View all available data va Displays all available data (deselected data is shown

with surrounding parenthesis)
View best results vb Displays best results based on the selected query

mode with the assumption that all criterions are se-
lected

View best queried results vq Displays best results based on the selected query
mode with the selected criterion(s)

13 Troubleshooting ATHENa runs

At this point, ATHENa is not yet sophisticated enough to pinpoint errors related to the operation
of synthesis and implementation tools. Potential problems can vary from missing a file in a source list,
misspelling a source file name, not being able to compile a file, not being able to map a design, etc. Luckily,
these problems are not so hard to troubleshoot (except for the first few times) as some general methods
of analyzing the synthesis and/or implementation reports still apply. Specifically, a user needs to analyze
selected warnings and error messages included in these reports.

The report files can be found in any run folder located inside of your project directory. The generic
path is $workspace/$application/$project/$vendor/ $family $generic/$device/$runnumber. For
example, if the first step of your project is to implement a design using Xilinx Virtex 5 with xc5vlx50ff1153-3
device, with the single run application, your folder path will be

$workspace/single run/$project/xilinx/virtex5 1/xc5vlx50ff1153-3/$runnumber.

16

The $workspace denotes the path to your workspace as specified in the design configuration file. The
$project denotes the name of your project, which is normally preceded by a date and appended with the
project number for that day. For instance, if your project is named test, you should see your project labeled
as $date test $projectnumber. Family’s name also contain a generic number appended to the path. If you
do not have any generic specified, then this number is one. Otherwise, there will be multiple folders equal
to the number of your generic combinations. The generic used for that particular family is specified in the
generic.txt file within that folder, which is the same level as the device folder. Finally, $runnumber denotes
the run number for a given device. Normally if a problem occurs, the corresponding run number is generally
the first one, which is run 1.

Once you have located the correct folder, simply look inside the report files. The latest generated synthesis
and/or implementation report typically contains an error reported by ATHENa. For Xilinx and Altera, these
files are saved as *.log, *.twr and *.rpt, respectively.

Note that if ATHENa spots a possible problem in the design configuration file, the tool may stop the
program prematurely. Hence, no $vendor will be found in the project folder. This kind of error can be found
by looking at athena log.txt.

A design.config.txt Options

Table 3: design.config.txt Options

Option Explanation
WORK DIR Directory of your workspace. ATHENa workspace is selected as

your default workspace if this option is not specified.
SOURCE DIR Directory of your source files for the project.
SOURCE LIST FILE Contains the list of files to be compiled starting from the lowest

level to the highest level of file hierarchy. Each file name should
be separated by new line.

PROJECT NAME Project’s name. The name of the project is directly associated
with the generated project name in your specified workspace. For
Altera, project’s name must be the same as your top level entity’s
name.

FUNCATIONAL
VERIFICATION MODE

Turning functional verification on or off.

VERIFICATION DIR Directory containing HDL source files and test vectors of the test-
bench.

VERIFICATION
LIST FILE

A list of testbench files in the order suitable for compilation from
the lowest level (top line) to the highest level (bottom line). Each
file name should be separated by new line. The *.vhd, *.v and
*.vhdl extensions cannot be used to specify text (non-VHDL) test
vector files.

TB TOP LEVEL
ENTITY

Top level entity of the testbench.

TB TOP LEVEL ARCH Top level architecture of the testbench.
MAX TIME FUNC-
TIONAL VERIFICATION

Maximum simulation time for functional verification. Acceptable
units are ps, ns, us, and ms. If unspecified, verification will run
until end point is reached.

VERIFICATION ONLY This option specifies the tool to perform functional verification
only, without performing synthesis or implementation.

TOP LEVEL ENTITY Name of top level entity.
Continued on Next Page. . .

17

Table – Continued
Option Explanation

TOP LEVEL ARCH Name of the architecture of your top level entity.
CLOCK NET Name of the global clock in your design.
LATENCY The equation for calculating circuit’s latency. This should be in

terms of TCLK, where TCLK is the minimum clock period of the
circuit.

THROUGHPUT The equation for calculating circuit’s throughput. This should be
in terms of TCLK, where TCLK is the minimum clock period of
the circuit.

OPTIMIZATION TAR-
GET

Synthesis and implementation strategy. Optimization for area,
speed, or balanced.

OPTIONS Option mode (default or user). In the default mode,
default options of tools, as specified in the file op-
tions.default ¡OPTIMIZATION TARGET¿ will be used.
If you want to use non-default options of tools, please
change this variable to user, and modify the file op-
tions.user ¡OPTIMIZATION TARGET¿.

APPLICATION Name of an application. See Part 3 - Application Setup for more
details.

FPGA VENDOR END
VENDOR

Target FPGA vendor, i.e. Xilinx or Altera.

FPGA FAMILY END
FAMILY

Target FPGA family of a specified vendor, i.e. Spartan3.

FPGA DEVICES ... END
DEVICES

List of target FPGA devices based on a specified family and ven-
dor. Device names must be separated by comma. Two special
modes of operation exist for this option, best match and all. For
best match, the script will search for the smallest device that
passes all criteria as specify by the user. For all, the script will go
through all the available devices of the specified family. See Table
2 for details of available parameters. Note : The special modes
will search through the FPGA devices specified in the library file
located in the device lib folder.

TRIM MODE Data trimming mode. This mode is used to reduce the size of
your workspace directory. The following values are supported :
off , zip, tiny zip and delete. zip mode compresses all uncritical
ATHENa files and all the files created by synthesis and implemen-
tation tools with the exception of report files, which will be used
by ATHENa for result extraction. tiny zip performs the same op-
eration as zip mode with the exception that all the subfolders in
the working run directory are deleted. If intermediate result files
are not required, delete mode can permanently remove these files.
This option should be set to tiny zip or delete depending on your
preference if you are operating on a computer with limited disk
space. By default, the TRIM MODE is set to off .

Continued on Next Page. . .

18

Table – Continued
Option Explanation

DB QUERY MODE This mode is used for data base report generation. The following
values are supported : off , overall, generic, device. off mode
turns off the database query mode. overall mode queries the re-
sults within the same device family. generic mode queries all re-
sults with the same family and generic. device mode queries all
results with the same family, generic and device

DB CRITERIA Selection criterion for database query. This option will be ignored
if DB QUERY MODE is set to off. Area used for query are Slice
and ALUT for Xilinx and Altera, respectively. The following val-
ues are supported : throughput, throughputarea, area, latency,
latencyarea. throughput option queries the database for highest
throughput. throughputarea option queries the database for high-
est throughput over area ratio area option queries the database
for smallest area latency option queries the database for short-
est latency Latencyarea option queries the database for smallest
latency times area

GLOBAL GENERICS
BEGIN ...

GLOBAL GENERICS
END

Key phrases used to specify generics for all of the implemented
devices.

GENERICS BEGIN ...
GENERICS END

Key phrases used to specify local generics specific to a given family
of FPGAs. This section must reside within FPGA FAMILY END
FAMILY section describing devices and parameters specific for a
given family.

B Xilinx FPGA DEVICES specific options

Family independent options 4

Table 4.

Options Explanation
MAX SLICE
UTILIZATION

Maximum CLB slice utilization ratio.

MAX BRAM
UTILIZATION

Maximum BRAM utilization ratio. If this variable is set to 0, then
no BRAMs will be used in the implementation.

MAX PIN
UTILIZATION

Maximum pin utilization ratio.

SYN CONSTRAINT
FILE

Path to a synthesis constraint file (*.xcf). If a constraint file is not
used, specify default.

IMP CONSTRAINT
FILE

Path to an implementation constraint file (*.ucf). If a constraint
file is not used, specify default.

REQ SYN FREQ Requested synthesis clock frequency in MHz.
REQ IMP FREQ Requested implementation clock frequency in MHz.

Family specifics options 5 Families : Spartan 3, Virtex 2 and Virtex 2 Pro (and equivalent)
[encoded as spartan3, virtex2, virtex2p]

19

Table 5.

Options Explanation
MAX MULT
UTILIZATION

Maximum multiplier utilization ratio. If this variable is set to 0,
then no multipliers will be used in the implementation.

Families : Spartan 6, Virtex 4, Virtex 5, Virtex 6 (and equivalent)
[encoded as spartan6, virtex4, virtex5, virtex6]
6

Table 6.

Options Explanation
MAX DSP
UTILIZATION

Maximum DSP utilization ratio. If this variable is set to 0, then
no DSP units will be used in the implementation.

Note : These options are located inside FPGA DEVICES ... END DEVICES clause. Options MAX <RESOURCE> UTILIZATION
have effect only in the best match and all option modes.

20

C Altera FPGA DEVICES specific options

Family independent options 7
Note : If MAX MEMORY UTILIZATION is set to 0, ATHENa will specify the settings for MAX RAM BLOCKS ¡types¿

to 0, where types are M4k, M512 and MRAM. This can cause the design not to pass synthesis or implemen-
tation stage.

Table 7.

Options Explanation
MAX MEMORY
UTILIZATION

Maximum memory utilization ratio. If this variable is set to 0,
then no memory blocks will be used in the implementation.

MAX PIN
UTILIZATION

Maximum pin utilization ratio.

REQ IMP FREQ Requested implementation clock frequency.

Family specifics options Family : Cyclone Families and Stratix Family 8

Table 8.

Options Explanation
MAX LE UTILIZATION Maximum Logic Element (LE) utilization ratio.
MAX MULT
UTILIZATION

Maximum multiplier utilization ratio. If this variable is set to 0,
then no multipliers will be used in the implementation.

Family : Stratix II, Stratix III, Stratix IV, and Arria Families 9

Table 9.

Options Explanation
MAX LOGIC
UTILIZATION

Maximum Logic Utilization ratio, as calculated by the tools.

MAX DSP
UTILIZATION

Maximum DSP utilization ratio. If this variable is set to 0, then
no DSP units will be used in the implementation.

Note : These options are located inside FPGA DEVICES ... END DEVICES clause. Options MAX <RESOURCE> UTILIZATION
have effect only in the best match and all option modes.

21

D “option.<option> <optimization target>.txt” options

Table 10.

Options Explanation
XILINX SYNTHESIS
TOOL

Xilinx synthesis tool <only Xilinx XST is currently supported>

ALTERA SYNTHESIS
TOOL

Altera synthesis tool <only quartus map is currently supported>

ACTEL SYNTHESIS
TOOL

<currently unsupported>

XILINX SYNPLIFY OPT
... END OPT

<currently unsupported>

XILINX XST OPT ...
END OPT

Options for Xilinx XST (synthesis)

ALTERA QUARTUS
MAP OPT ... END OPT

Options for Altera Mapping Tool (synthesis)

ALTERA QUARTUS
FIT OPT ... END OPT

Options for Altera Fitting Tool (implementation)

ACTEL SYNPLIFY
OPT ... END OPT

¡currently unsupported¿

XILINX NGDBUILD
OPT ... END OPT

Options for Xilinx NGDBUILD

XILINX MAP OPT ...
END OPT

Options for Xilinx MAP

XILINX PAR OPT ...
END OPT

Options for Xilinx PAR

XILINX TRACE OPT ...
END OPT

Options for Xilinx TRACE

22

E “placement search.txt” options

Table 11.

Options Explanation
XILINX COST
TABLE VALUES

Xilinx cost table. Possible range is from 1 to 100

ALTERA SEED
VALUES

Altera seed. Possible range is from 1 to 232-1

23

F “exhaustive.<strategy name>.txt” options

Table 12.

Options Explanation
General Options

TARGET CLK FREQ Requested synthesis and implementation frequency. If Altera is
used, only implementation frequency is used.

RUN ALL OPTIONS The tool will loop through all specified options if YES is selected.
Otherwise, it will stop whenever the target clock frequency is
reached.

BEST LEVEL
1 OPTION SETS

Number of best combinations of options from Level 1 that will be
used for runs at Level 2.

Level 1 Options
XILINX SYNTHESIS
TOOL

<currently unsupported>

XILINX SYNPLIFY OPT<currently unsupported>
XILINX XST OPT Xilinx XST options
XILINX MAP OPT Xilinx MAP options
XILINX PAR OPT Xilinx PAR options

Level 2 Options
XILINX COST
TABLE VALUES

Xilinx parameter determining the starting placement point.

24

G “GMU Optimization 1” and “GMU Xilinx Optimization 1.txt” options

Table 13.

Options Explanation
General Options

TARGET CLK FREQ Target implementation frequency.
RUN ALL OPTIONS The tool will loop through all specified options if YES is selected.

Otherwise, it will stop whenever the target clock frequency is
reached.

BEST LEVEL 1 OPTION SETSNumber of best combinations of options from Level 1 that will be
used for runs at Level 2.

Level 1 Options
ALTERA SYNTHESIS
TOOL

¡currently unsupported¿

ALTERA SYNPLIFY
OPT

¡currently unsupported¿

ALTERA QUARTUS
MAP OPT

Altera mapping tool options

ALTERA QUARTUS
FIT OPT

Altera fitting tool options

Level 2 Options
ALTERA SEED
VALUES

Altera parameter determining the starting point for placement.

25

H Guidelines for Choosing REQUESTED FREQ IMPROVEMENT STEPS

There are some general guidelines to be followed when selecting values for the REQUESTED FREQ IMPROVEMENT STEPS
list. These guidelines are based on general experimentation and may not be completely effective for any given
design, but provide good results for a variety of designs. Some experimentation with these values may be
necessary to yield the best results.

The first guideline is that the first value should be a relatively large step, at least 15%. This allows
the algorithm to quickly squeeze gains from the system with a few runs. After this successively smaller
values allow the algorithm to zero in on an efficient value with fewer runs. Whether this method is effective
at minimizing the achieved clock period depends on the relationship between the requested frequency and
achieved frequency, which is inherent to a specific design. The more complex this relationship, the more
difficult it is to determine the most effective values.

For example if this relationship equates to a function with a single local maximum as in series 1 below,
this algorithm works very effectively. If the relationship has multiple local maxima, as in series 2 below, then
this method could yield good results but may not be adequate.

I Important notes on new families

Xilinx : Spartan 6, and Virtex 6
Spartan 6 and Virtex 6 utilize a new set of tool options. Hence, options used by old devices may be

obsolete for these new devices, and new options may not be accepted for the old ones. This feature can
cause your ATHENa run to end with failure. At this point, ATHENa does not automatically turn off all the
new/old options based on the family used, so it may be prudent for a user to run implementations on old
and new families as separate projects. RAMB16E1 and RAMB8BWER are considered as a single Block RAM.

Altera: Arria Families, Stratix IV, and Cyclone IV
Timequest timing analyzer is used for these new families. Because of the complex nature of this tool, the

timing report generated by ATHENa may be inaccurate. At this point ATHENa selects only the first timing
result it finds in the timing report. This timing model is the slowest (85)s model available. Hence, the result
may not reflect the result that can be obtained in the actual operating conditions of the device.

J History of Changes since ATHENa 0.6

2010/12/05: ATHENa 0.6.1

– ATHENa setup.bat revised in the following way: User is asked during ATHENa setup whether he/she
uses a free version of Xilinx tools (Webpack) or a commercial/educational version (Design Suite). If the
trial version of commercial tools is used, the proper answer should be Design Suite, during the trial
period, and Webpack after the end of the trial period (when the extended license expired).

– Added support for using ATHENa together with Altera MegaWizard Plug-in Manager and Xilinx CORE
Generator. For details, please see Section 5.2 of this tutorial.

– Added two new examples: coregenerator example and megawizard example, demonstrating the new ca-
pabilities of ATHENa described above. See the example folder of ATHENa.

– ATHENa device libraries for Xilinx and Altera have been revised in order to remove bugs and inaccuracies
reported by users of version 0.6.

– The best match feature of ATHENa has been fixed in order to remove incorrect behavior reported for
Virtex 5, Virtex 6, and Spartan 6.

– Support for Verilog source files has been added and documented in the tutorial.
– The sha256 rs example has been updated by adding missing data in/data out files in the folder exam-

ples/sha256 rs/tb.

26

– Corrected the problem in the db report generator.bat associated with missing fields describing the im-
plementation clock period and the implementation clock frequency in the output .csv file.

2011/2/21 : ATHENa 0.6.2

– Fixed a bug in GMU Optimization 1 for Altera
– Fixed a bug for Altera’s memory settings. This means that the following settings are applied when

MEM UTILIZATION RATIO is set to 0:
• set global assignment -name MAX RAM BLOCKS M4K 0
• set global assignment -name MAX RAM BLOCKS M512 0
• set global assignment -name MAX RAM BLOCKS MRAM 0
• set global assignment -name AUTO ROM RECOGNITION OFF
• set global assignment -name AUTO RAM RECOGNITION OFF
• set global assignment -name AUTO SHIFT REGISTER RECOGNITION OFF

– Fixed a bug for Altera’s DSP settings. This means that the following settings are applied when DSP UTILIZATION RATIO
or MULT UTILIZATION RATIO is set to 0:
• set global assignment -name AUTO DSP RECOGNITION OFF

– Added FF extraction for Xiilnx and Altera
– Overhauled db report generator.bat/.sh functionality to make it fully compatible with the website
– Reduce severity level when missing clock net to allow purely combinational circuit mode
– Fixed a bug in TRIM MODE where subfolders were not included in the compression.
– Added additional option, tiny zip, in TRIM MODE to allow a compression mode that ignores the sub-

folders of working directory.
– Added library for Xilinx ISE 12.4
– Addressing issue if a circuit is purely combinational

2012/1/25 : ATHENa 0.6.3

– Added Library for Xilinx 13.1, 13.2, 13.3 and Altera Quartus II 11.0, 11.1
– Fixed a bug in GMU Optimization 1
• Bug: Clock net name mismatch due to case sensitivity issues.

– Fixed a bug in BRAM resource extraction for Xilinx
• Bug: Incorrect BRAM resource extraction in Spartan 3A devices.

– Added automated database report extraction feature from the design config.

2012/12/06 : ATHENa 0.6.4

– Added Library for Xilinx 14.1, 14.2, 14.3 and Altera Quartus II 12.0, 12.1
– Fixed a bug in sha256 rs example code
• Bug: Incorrect passing of generic value at line 204 of rs datapath.vhd.

2012/10/07 : ATHENa 0.6.5

– Added Library for Xilinx 14.4, 14.5, 14.6, 14.7 and Altera Quartus II 13.0, 13.1, 14.0
– Fixed a bug that device lib file was not used to check the availability of the device.
• Bug: It was checking via partgen which was slow and increase run time unnecessarily.

– Extend report extraction for Altera Stratix V.
• ALM is now the primary unit of report for Stratix V FPGA with ALUT value omitted. This is to

reflect on how Altera changed their report format.

27

	Tools Installation
	General Project Setup and Reports
	Application Setup
	single_run
	placement_search
	exhaustive_search
	frequency_search
	GMU_Optimization_1
	GMU_Xilinx_optimization_1

	Functional verification of codes in ATHENa
	Testbench Requirements
	Specifying Design Configuration
	Specifying Test Vector Locations
	Examples

	Synthesize and Implementation Features
	Generics
	Using ATHENa with Xilinx CORE Generator and Altera MegaWizard Plug-in Manager

	Example Run
	Workspace
	Constraint File
	Purely Combinational Circuit
	Project Termination, Report Generation and Cleaning Workspace
	Spooler
	Database report generator and result replication
	Troubleshooting ATHENa runs
	design.config.txt Options
	Xilinx FPGA_DEVICES specific options
	Altera FPGA_DEVICES specific options
	``option.<option>_<optimization_target>.txt'' options
	``placement_search.txt'' options
	``exhaustive.<strategy_name>.txt'' options
	``GMU_Optimization_1'' and ``GMU_Xilinx_Optimization_1.txt'' options
	Guidelines for Choosing REQUESTED_FREQ_IMPROVEMENT_STEPS
	Important notes on new families
	History of Changes since ATHENa 0.6

