
Analysis and Inner-Round Pipelined Implementation of
Selected Parallelizable CAESAR Competition Candidates

Sanjay Deshpande and Kris Gaj
Electrical and Computer Engineering Department

George Mason University
4400 University Drive, Fairfax, VA 22030, U.S.A.

{sdeshpan, kgaj}@gmu.edu

Abstract— In this paper, we have first characterized
candidates of the Competition for Authenticated
Encryption, Security, Applicability, and Robustness
(CAESAR) from the point of view of their suitability for
parallel processing of multiple blocks of associated data,
message, and ciphertext. Then, we have chosen seven
candidates from the Round 2 and Round 3 submissions,
namely SCREAM, AES-COPA, Minalpher, OCB, AES-
OTR, COLM, and Deoxys. We first obtained the initial
estimates of the maximum clock frequency, throughput,
area, and critical path for the high-speed Basic Iterative
Architecture of each of the above candidates. Then, we
implemented a two-stage inner-round pipelining for all the
aforementioned algorithms in order to improve the
frequency and throughput by reducing the critical path and
processing multiple blocks of data simultaneously. We
targeted the largest available FPGA in the student version
of Xilinx ISE, i.e., Xilinx Virtex 6 XC6VLX75T-3FF784.
Our results have demonstrated the improvement in the
clock frequency and throughput by a factor varying from
x1.28 for OCB to x1.84 for SCREAM, and the change in the
throughput to area ratio (with area expressed using LUTs)
by a factor varying from x0.93 for Minalpher to x1.72 for
SCREAM.

Keywords: cryptography, encryption, pipelining, FPGA.

I. INTRODUCTION
Authenticated Encryption (AE) or Authenticated Encryption

with Associated Data (AEAD) is a cryptographic algorithm that
simultaneously provides confidentiality, integrity, and
authentication of message. The authenticated ciphers take
message, associated data AD, a public message number Npub,
and an optional secret message number Nsec as an input and
generate resulting ciphertext C, tag T, and optional encrypted
Nsec. The tag is appended to the end of the ciphertext to assure
the integrity and authenticity of the transaction, as shown in Fig.
1. Decryption and tag verification are conducted in a similar
fashion. Tag’ is computed as above, and compared against the
concatenated Tag. If Tag = Tag’, then authentication and
integrity of the transaction are assured; otherwise the decrypted
ciphertext is not released. If authenticity and integrity are
verified, the outputs of the transaction are the AD, message, and
optional decrypted Nsec.

Figure 1. Input and Output of an Authenticated Cipher. Notation: Npub -
Public Message Number, Nsec - Secret Message Number, Enc Nsec -

Encrypted Secret Message Number, AD - Associated Data [16].

Cryptographic competitions have become a common way of
developing cryptographic standards. This process has worked
really well in case of Advanced Encryption Standard (AES),
developed in the period 1997-2001, and then SHA-3
competition (Secure Hash Algorithm 3), conducted in the period
2007-2012. In 2013, a new contest, called CAESAR -
Competition for Authenticated Encryption: Security,
Applicability, and Robustness - has been announced. Each
algorithm in the contest has been evaluated based on multiple
criteria, including security, software and hardware efficiency,
flexibility, simplicity, and any licensing encumbrances. The
contest started off with 57 candidates in Round 1, and then
reached Round 2 with 29 candidates, and Round 3 with 15
candidates remaining [7].

In this paper, we have analyzed all CAESAR Round 2 and
Round 3 candidates from the point of view of their capability for
parallel processing of blocks belonging to the same associated
data, message, and ciphertext. Eleven Round 2 and five Round
3 candidates have been shown to have such capabilities, as
summarized in Tables A1 and A2 in Appendix A. The further
downselection was based on the maximum clock frequency of
their high-speed Basic Iterative Architecture, reported in [5].
The ciphers with the lowest maximum clock frequency were
selected for pipelining.

II. GENERAL METHODOLOGY
 Pipelining is one of the well-known techniques used to
increase the speed of any digital design. In this project, we have
implemented inner-round pipelining of seven different
authenticated ciphers. The inner-round pipelining provides
substantial increase in the speed of the cipher, with the small
increase in the circuit area [12, 13]. In this method, pipeline

registers are inserted inside of a round function of a cipher, and
then the combinational path is balanced accordingly.
 The basic iterative architecture, shown in Fig. 3 (left), is
implemented first, and its maximum clock frequency, area and
critical path are determined. Based on this information, we insert
a pipeline register to reduce the critical path. The location of the
pipeline register is chosen in such a way that the critical path
between two adjacent registers is reduced and balanced. In this
paper, we have implemented a two-stage inner-round pipelining,
as shown in Fig. 3 on the right.
 As shown in Fig. 2a and Fig. 3 on the left, in the basic
iterative architecture [12-15], a single block of data is processed
through N rounds in N clock cycles, and then the result is sent
to the output. In the two-stage inner-round pipelined
architecture, two blocks of data are read in two consecutive
clock cycles, and the output is released after 2N+1 clock cycles.
Additionally, two consecutive pairs of input blocks can be
processed every 2N clock cycles.

A. How does pipelining help?
In the basic iterative architecture, shown in Fig. 3 on the

left, the minimum clock period is given by the sum of the delay
due to the register REG1 (dreg), delay due to the multiplexer
(dMUX), delay due to the round (dR), which is completely

a.

b.

Figure 2. Timing Diagram: a. Basic Iterative Architecture and b. Inner-Round

Pipelined Architecture with two pipeline stages.

Figure 3. Generic Block Diagrams of the Basic Iterative Architecture (left)
and the Inner-Round Pipelined Architecture with two pipeline stages (right)

[12-14]

combinational logic, and the setup time (tsetup) of the register
REG1. Then, the formula for the minimum clock period and
maximum throughput of the basic iterative architecture is given
by equations (1) and (2):

Tclk = dreg + dMUX + dR + tsetup (1)

ThroughputBasic = block_size/(N×Tclk) (2)

The same formulas for the two-stage inner-round pipelined
architecture, shown in Fig. 3 on the right, are given by equations
(3) and (4):

Tclk’ = dreg + dMUX + dhalf-R + tsetup (3)

ThroughputPipelined = 2×block_size/(2×N×T’clk) =
 = block_size/(N×T’clk) (4)

where dhalf-R is a delay of a top half round, shown in Fig. 3 as
half-R. We assume that dhalf-R’ £ dhalf-R + dMUX.
From here,

ThroughputPipelined/ ThroughputBasic = Tclk/ T’clk (5)

In the ideal pipelined architecture, the combinational logic
of the round function is divided into perfect halves, so
dhalf-R=0.5×dR.
Additionally, for the majority of ciphers, dhalf-R is much greater
than dreg + dMUX + tsetup. From here,

ThroughputPipelined/ThroughputBasic = Tclk/ T’clk ≈ dR/dhalf-R = 2 (6)

At the same time, the equation (7) always holds:

ThroughputPipelined/ThroughputBasic < 2 (7)

However, increasing throughput by a factor of two is very
challenging to achieve. Let us take an example in which the
round is divided into two parts half-R and half-R’, with 60% and
40% of the round function delay, respectively, i.e.,

Tclk
’ = dreg + dMUX + 0.6×dR + tsetup ≈ 0.6×dR (8)

In this case:

ThroughputPipelined/ThroughputBasic ≈ 1.67 (9)
Thus, even a relatively small imbalance in the delays of both
half-rounds (half-R and half-R’) has a large detrimental effect
on the improvement in speed.

B. Why only two stages of pipelining?
The number of stages in our method was limited to two

because of the projected trade-off between the increased
complexity of the design and the limited throughput and
throughput/area ratio gain obtained by using more than two
pipeline stages. Additionally, the limitations imposed by the the
CAESAR Hardware API [17] and the GMU Development
Package [25, 26] were taken into account as well.

III. PREVIOUS WORK
The concept of inner-round, outer-round, and mixed

pipelining was formalized in [12-14], with application to secret-
key block ciphers, including Triple DES, and five final AES
candidates.

Outer-round pipelining, used commonly before, assumed
introducing pipeline registers only between full rounds of a
partially or fully unrolled cipher. Although this kind of
pipelining is very efficient in increasing circuit throughput, it
rarely allows for any improvement in the throughput/area ratio.

On the other hand, inner-round pipelining, if possible and
practical, may permit substantially increasing circuit frequency
and throughput, at the cost of only minor increase in the circuit
area. This feature is particularly true in case of FPGAs, in which
area is measured in LUTs and Confgurable Logic Block (CLB)
Slices (for Xilinx FPGAs) or ALUTs and Adaptive Logic
Modules (ALMs) for Altera FPGAs. Since all LUTs/ALUTs are
accompanied by the corresponding flip-flops (whether these
flip-flops are used or not used), the pipeline registers, under
some circumstences, may come virtually for free or at a
relatively low cost associated with the more complex control
logic.

For the inner round pipelining, the throughput is directly
proportional to the maximum clock frequency. The following
factors may limit the maximum clock frequency in this
architecture: 1. delay of a single round divided by the number of
pipeline stages, k, 2. delay of the longest indivisible operation,
3. delay of the control unit, 4. limit on the maximum latency, 5.
limit on the maximum input/output bandwidth.

In [13], the pipeline register placement was solely dependent
upon the critical path between any two adjacent registers, which
was aimed to include only one level of CLBs. There was not any
specific number of pipeline stages that was decided to be used
in advance, as that could lead to irregular design, with pipelined
registers inserted into the cipher elementary operations.

In Fig. 4, the improvement in clock frequency, and thus also
the circuit throughput, is summarized for Triple DES and four
final-round AES candidates. The ratio between the throughputs
for the inner-round pipelined architecture and basic iterative
architecture varied between 2.22 for Triple DES (3DES) up to
8.81 for Serpent. The obtained speed-up is inversely
proportional to the frequency of the basic iterative architecture.

Additionally, Fig. 4 demonstrates that inner-round
pipelining by itself allows accomplishing the highest or close to
highest possible frequency, without the need of mixing it with
outer-round pipelining (which leads to results shown in Fig. 4
using the mixed architecture bars).

Figure 4. Results of implementing 3DES and four final AES candidates in

Xilinx Virtex FPGAs. Maximum clock frequency of each of the three
implemented architectures: basic iterative architecture, with inner-round
pipelining, and with full mixed inner- and outer-round pipelining [13].

In [22], IDEA secret-key block cipher was implemented
using inner-round pipelining, with 16 pipeline stages per round.
This pipelining increased the maximum clock frequency
relatively moderately, from 87.3 MHz for a non-pipelined
combinational round, to 105.9 MHz for its deeply pipelined
version. This relatively small improvement, by a factor of 1.21
can be attributed to a relatively simple round of the IDEA block
cipher.

In [23], a high-speed hybrid implementation of the Grøstl
hash function and the AES secret-key cipher was reported. The
Grøstl P and Q transformations and the AES encryption round
function E were sped up by a. processing P, Q and E in parallel,
b. Using sub-round (inner-round) pipelining. In the latter
method, a full round combinational logic was split into three
balanced pipeline stages, which gave an increase in the
maximum clock frequency by a factor of 1.4.
In [24], to support the high-speed Ethernet standard IEEE
802.3ba, the authors decided to exploit the parallelization and
pipelining in the current authenticated cipher standard, AES-
GCM, with the goal of achieving the 100 Gbps throughput rate.
In this paper, AES with 14 outer-round pipeline stages was
adopted, and to balance the design the 128-bit Galois Field
multiplier was pipelined using four inner-round pipeline stages.
With the use of four AES cores and four GF(2128) multipliers
and the final area optimization, the design achieved a frequency
of 233 MHz, and the throughput in excess of 100 Gbit/s using
Xilinx Virtex-5 FPGAs.

In this paper, inner-round pipelining is applied for the first
time to CAESAR candidates. Taking into account the
complexity of the datapaths and controllers required to
implement these algorithms, the number of pipeline stages has
been fixed at two, limiting the maximum speed-up that could
be achieved, but making the redesign of the controllers and
search for the optimal positions of pipelined registers in the
corresponding datapaths much more practical.

IV. DEVELOPMENT METHOD

 All seven pipelined implementations pursued in this study
have been developed using as a starting point the open-source
high-speed implementations of the respective CAESAR
candidates, by E. Homsirikamol, W. Diehl [18, 27], F.
Farahmand, and K. Minematsu, available at [21, 28]. These
implementations were all based on the basic iterative
architecture, and had their authorship and results reported in [5].
The implementation of the basic iterative architecture consists
of the Datapath and Controller. The Datapath includes the round
function and support for all other arithmetic and logic operations
required for authenticated encryption/decryption. The
Controller is a finite state machine, responsible for generating
control signals for the Datapath.
 Our pipelined designs are fully compliant with the CAESAR
Hardware API [17], and take advantage of the GMU CAESAR
Development Package [25] and the related Implementer’s Guide
[26].

The conversion from the basic iterative architecture to the
two-stage pipelined architecture is shown schematically in Fig.
5. The Pipelined Design step involves adding pipeline registers
in the Datapath and modifying the Controller accordingly. The

Figure 5. Development Methodology.

modified control unit must generate all control signals necessary
for processing of two blocks of data simultaneously. Some
additional Datapath modifications may involve bus width
changes, adding round constant calculations for a second block
of data, adding registers to buffer the data, etc. The Controller
modifications involve adding extra states and support for
additional control signals (e.g., the enable signal of the pipelined
register, the select signals of multiplexers, etc.).

After all necessary modifications, the pipelined
implementation is functionally verified using the corresponding
reference C code as a source of test vectors. The maximum clock
frequency, throughput, and resource utilization are determined
and compared with the values for the basic iterative architecture.
In case the speed-up is insufficient, a different location of
pipeline registers is attempted.

Figure 6. Block diagram of the AES Datapath after the modifications required

for two-stage inner-round pipelining.

Figure 7. Algorithmic State Machine (ASM) chart of the AES Controller after

the modifications required for two-stage inner-round pipelining.

In Figs. 6 and 7, we provide an example of the conversion
for a simply case of a secret-key block cipher AES. Round keys
are assumed to be precomputed and stored in RAM. The parts
of both figures surrounded with red dashed boxes are the
extensions/modifications required for the conversion of the
basic iterative architecture to the two-stage pipelined
architecture. Two inputs, carried by the two halves of the input
signal bdi(255:0) are provided to the AES unit in two
consecutive clock cycles. The corresponding outputs are
generated RNDS clock cycles later, concatenated, and sent to
the output bdo.

V. SUMMARY OF PIPELINED IMPLEMENTATIONS
From Round 2 and Round 3 of the CAESAR competition,

seven parallelizable candidates were chosen, for which the
maximum clock frequency was the lowest in the basic iterative
architecture design [5]. Basic parameters of selected candidates
are summarized in Table 1.

TABLE I. BASIC PARAMETERS OF ALL INVESTIGATED CANDIDATES

Candidate
Name

Key Size
(bits)

Block Size
(bits)

Tag Size
(bits)

Rounds

SCREAM 128 128 128 10

AES-COPA 128 128 128 10

COLM 128 128 128 10

AES-OTR 128 128 128 10

MINALPHER 256 256 128 17

DEOXYS 128 128 128 14

OCB 128 128 128 10

A. SCREAM
 The Round function of SCREAM [6] is built using the
combination of S-boxes and L-boxes [1] [2], as shown in Fig. 8.
As discussed in the development method, first, we get the initial
estimates of maximum clock frequency and throughput. Then,
by inserting a register in the round function, the critical path is

minimized. The register is added at different locations and each
location checked for the shortest critical path. The pipelined
register has been introduced in the encryption and decryption
paths, after S_box and Inv_L_box, respectively, as shown in Fig.
8. Round function is then adjusted into a form, where the circuit
can process two blocks of data in parallel. Then, respective
changes are made in the controller to support processing of two
blocks of data in parallel. Using this approach, the critical path
delay was reduced from 10.8 ns to 5.8 ns. Thus, an 84% increase
in maximum clock frequency was achieved.

Figure 8. SCREAM: Pipelined Round.

Figure 9. AES-COPA: Pipelined Round.

B. AES-COPA
The Round function of AES-COPA [10] consists of the

AES round as the basic building block, as shown in Fig. 9. The
pipeline register was added at all the available locations in the
round function and verified for the functional correctness and
critical path delay. For example, in the Round from Fig. 9, the
register was added after SubBytes and then the design was
checked for the critical path delay. Afterward, the position of
the register was moved after the Shiftrows and the same process
was repeated until the smallest value of critical path delay was
found. Using this approach, the critical path delay was reduced
from 8.3 ns to 4.76 ns. Thus, an increase of 75% in maximum
clock frequency and throughput was achieved.

C. COLM
COLM [20] is derived from two CAESAR candidates AES-

COPA and ELmD. The Round function of COLM consists of
the same components as AES round, and the basic building
blocks are shown in Fig. 10. Similar to other designs the
pipelined register was added to COLM, but this did not really
help in reducing the critical path delay. The figure just shows
the logic inside the round function, approximately half of the
critical path was located outside of the round function, so the
pipelined register was added at the beginning of the round
function to divide the critical path into two halves. Using this
approach, the critical path delay was reduced from 8.92 ns to
5.55 ns. Thus, a 60% improvement in maximum clock
frequency and throughput was achieved after inner-round
pipelining.

Figure 10. COLM: Pipelined Round.

Figure 11. AES-OTR Pipelined Round.

D. AES-OTR
The round function of AES-OTR [9] consists of the same

components as AES, as shown in Fig. 11. Similar method of
placing pipeline register at different locations and checking for
the smallest critical path delay was applied. As a result, the
critical path delay was reduced from 6.66 ns to 4.25 ns. Thus, a
56% improvement in maximum clock frequency and
throughput was achieved after inner-round pipelining.

E. DEOXYS

The Round function of Deoxys [19] consists of the same
building blocks as AES, as shown in Fig. 12. Pipelined
implementation for Deoxys was straightforward. Just following
the methodology in Section IV gave good results. The critical
path delay was reduced from 5.15 ns to 3.69 ns. Therefore, an
increase by 39% in maximum clock frequency and throughput
was achieved after inner-round pipelining.

F. MINALPHER
The Round function of Minalpher consists of Subnibbles,

Shuffle Rows, Swap Matrix, Mix Column and Add Round
Constant [3] [4], with all these operations described in [11]. The
round function of Minalpher had many potential locations for
the pipeline registers.

Initially two 128 bit registers were added after Swap Matrix
and the circuit tested to determine the critical path reduction.
The reduction corresponding to this placement was very low, as
the critical path kept shifting from the round function to the
tweak calculator. The same was the case with almost all the
locations. The location of the pipeline register shown in Fig.
13 gave the best results. The critical path delay was reduced
from 5.95 ns to 4.50 ns. Thus, a 32% increase in maximum
clock frequency and throughput was achieved after inner-round
pipelining.

Figure 12. DEOXYS: Pipelined Round.

Figure 13. MINALPHER: Pipeline Round.

G. OCB
The Round function of OCB [8] consists of AES as a basic
building block. The forward round of OCB was a similar case
to COLM, namely, half of the critical path was outside of the
round function. Thus, after adding the pipeline register at
different locations, there was not much reduction in the critical
path delay. Instead, the critical path kept shifting to the key
scheduling block of the inverse round. So, a register at the end

Figure 14. OCB: Pipelined Round.

of inverse round was added. The register placement, shown in
Fig. 14, gave the optimum performance. The critical path delay
was reduced from 5.81 ns to 4.52 ns. Thus, a 28% improvement
in maximum clock frequency and throughput was achieved
after inner-round pipelining.

VI. PERFORMANCE EVALUATION
Performance of each candidate was evaluated based on the

improvement in the maximum clock frequency and throughput,
as well as penalty in terms of the circuit area. All of the
following results were generated using the largest FPGA
available in the student version of Xilinx ISE v14.7, namely,
Xilinx Virtex 6 XC6VLX75T-3FF784.

In Table II, we summarize the numbers of clock cycles per
block and the throughput formulas for all investigated
candidates. The corresponding information for the basic
iterative architecture was obtained from [5] and [21]. The
number of clock cycles per block for our pipelined architectures
was derived by analysis of our designs, and verified using
functional simulation.

Based on Table III and Fig. 15, it can be observed that the
lower the value of the maximum clock frequency in the basic
iterative architecture the higher the frequency gain in the
pipelined architecture. The same relation applies also to the
throughput as well.

The increase in the area from basic iterative architecture to
the pipelined architecture is shown in Table IV. This increase
is calculated based on both the number of LUTs and Slices. The
increase in the number of LUTs ranged from 9% for SCREAM
to 47% for AES-OTR. The increase in the number of Slices was
significantly larger. It varied from 49% for Minalpher to 100%
for AES-COPA.

TABLE II. NUMBER OF CLOCK CYCLES PER BLOCK AND THROUGHPUT

FORMULA FOR EACH CANDIDATE

Candidate

Number of clock cycles
per block

Throughput
Formula

(Mbits/sec) Basic Arch Pipelined
Arch

SCREAM 11 22 11.63* fclk
AES-COPA 11 22 11.63* fclk

COLM 11 22 11.63* fclk
AES-OTR 12 24 10.66* fclk
DEOXYS 15 30 8.53* fclk

MINALPHER 19 38 13.47* fclk
OCB 12 24 10.66* fclk

TABLE III. MAXIMUM CLOCK FREQUENCY AND THROUGHPUT COMPARISON

BETWEEN BASIC AND PIPELINED ARCHITECTURE

Candidate

Maximum Clock
Frequency (MHz)

Throughput
(Mbits/sec)

Basic
Arch

Pipelined
Arch

Basic
Arch

Pipelined
Arch

SCREAM 92 170 1071 1977
AES-COPA 120 210 1396 2442

COLM 112 180 1303 2093
AES-OTR 150 235 1600 2507
DEOXYS 194 271 1655 2311

MINALPHER 168 222 2264 2991
OCB 172 221 1835 2357

Figure 15. Throughput: Basic Architecture vs. Pipelined Architecture.

From Table V and Fig. 16, it can be observed that the
increase in the Throughput to Area ratio from the basic iterative
architecture to the inner-round pipelined architecture was the
highest for SCREAM. In Minalpher the ratio was reduced, as
there was only 32% increase in maximum clock frequency and
44% increase in area. An improvement was observed for all
other candidates.

TABLE IV. AREA COMPARISON BETWEEN BASIC AND PIPELINED
ARCHITECTURE

Candidate

Area (LUTs) Area (Slices)
Basic
Arch

Pipelined
Arch

Basic
Arch

Pipelined
Arch

SCREAM 3644 3968 1546 2442
AES-COPA 4902 6484 2216 4431

COLM 6754 8337 2447 3962
AES-OTR 5058 7443 2219 3637
DEOXYS 2825 3943 1107 1805

MINALPHER 7836 11285 3974 5915
OCB 3312 3673 1742 2905

TABLE V. THROUGHPUT TO AREA RATIO COMPARISON BETWEEN BASIC AND

PIPELINED ARCHITECTURE

Candidate

Throughput/
Area

(Mbits/(sec*LUTs))

Throughput/
Area

(Mbits/(sec*Slices))
Basic
Arch

Pipelined
Arch

Basic
Arch

Pipelined
Arch

SCREAM 0.29 0.50 0.69 0.81
AES-COPA 0.28 0.38 0.63 0.55

COLM 0.19 0.25 0.53 0.53
AES-OTR 0.32 0.34 0.72 0.69
DEOXYS 0.59 0.60 1.50 1.28

MINALPHER 0.29 0.27 0.57 0.51
OCB 0.55 0.64 1.05 0.81

Figure 16. Throughput to Area Ratio: Basic Architecture vs. Pipelined

Architecture, assuming that area is expressed using LUTs.

VII. CONCLUSIONS
 The improvement in the maximum clock frequency and
throughput depends on the algorithm and its critical path. Based
on the results presented in Section VI, the performance gain is
inversely proportional to the frequency and throughput in the
basic iterative architecture. Our results have demonstrated the
improvement in the clock frequency and throughput by a factor
varying from x1.28 for OCB to x1.84 for SCREAM, and the

improvement in the throughput to area ratio (with area
expressed using LUTs) by a factor varying from x0.93 for
Minalpher to x1.72 for SCREAM. Improvement in
Throughput/#LUTs was observed in six candidates, all except
Minalpher. In terms of the relative performance of pipelined
implementations, the top four candidates were SCREAM, AES-
COPA, COLM and AES-OTR, all with the frequency and
throughput gains exceeding 50%.

ACKNOWLEDGMENT
This work has been partially supported by NSF Grant
#1314540.

REFERENCES
[1] M. Liskov, R. L. Rivest, and D. Wagner, Tweakable block ciphers,

Journal of Cryptology, vol. 24, no. 3, 2011, pp. 588-613.
[2] S. Even and Y. Mansour, A Construction of a Cipher from a Single

Pseudorandom Permutation, Journal of Cryptology, vol. 10, no. 3, Jun.
1997, pp. 151-162.

[3] K. Kurosawa, Power of a public random permutation and its application
to authenticated-encryption. IACR Cryptology ePrint Archive, 2002:127.

[4] K. Kurosawa. Power of a public random permutation and its application
to authenticated encryption. IEEE Transactions on Information Theory,
vol. 56, no. 10, 2010, pp. 5366-5374.

[5] Cryptographic Engineering Research Group (CERG). (2017) Database of
FPGA Results for Authenticated Ciphers. [Online]. Available:
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

[6] V. Grosso, G. Leurent, F. Standaert, K. Varici, F. Durvaux, L. Gaspar,
and S. Kerckhof. SCREAM and iSCREAM. Submission to CAESAR,
March 2014, see [7].

[7] “CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness,” available at
http://competitions.cr.yp.to/caesar.html

[8] T. Krovetz and P. Rogaway. The OCB Authenticated-Encryption
Algorithm. Submission to CAESAR, May 2014, see [7].

[9] K. Minematsu. AES-OTR v3.1. Submission to CAESAR, Sep. 2016, see
[7].

[10] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tischhauser, and
K. Yasuda. AES-COPA v.2. Submission to CAESAR, see [7].

[11] Y. Sasaki, Y. Todo, K. Aoki, Y. Naito, T. Sugawara, Y. Murakami, M.
Matsui, S. Hirose. Minalpher v1.1. Submission to CAESAR, Aug. 2015,
see [7].

[12] K. Gaj and P. Chodowiec, "Comparison of the Hardware Performance of
the AES Candidates Using Reconfigurable Hardware," Proc. 3rd
Advanced Encryption Standard Conference, New York, Apr. 2000, pp.
40-54.

[13] P. Chodowiec, P. Khuon, and K. Gaj, "Fast Implementations of Secret-
Key Block Ciphers Using Mixed Inner- and Outer-Round Pipelining,"
ACM/SIGDA Ninth International Symposium on Field Programmable
Gate Arrays, Monterey, CA, Feb. 2001, pp. 94-102.

[14] K. Gaj and P. Chodowiec, "Fast Implementation and Fair Comparison of
the Final Candidates for Advanced Encryption Standard using Field
Programmable Gate Arrays," LNCS 2020, Progress in Cryptology - CT-
RSA 2001, Ed. D. Naccache, RSA Conference 2001 - Cryptographers'
Track, San Francisco, Apr. 2001, pp. 84-99.

[15] E. Homsirikamol, M. Rogawski, and K. Gaj, "Throughput vs. Area Trade-
offs in High-Speed Architectures of Five Round 3 SHA-3 Candidates
Implemented Using Xilinx and Altera FPGAs," in LNCS 6917,
Cryptographic Hardware and Embedded Systems - CHES 2011, Nara,
Japan, Sep. 28-Oct. 1, pp. 491-506.

[16] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M.U. Sharif,
and K. Gaj, "A Universal Hardware API for Authenticated Ciphers," 2015
International Conference on Reconfigurable Computing and FPGAs,
ReConFig 2015, Mayan Riviera, Mexico, Dec. 7-9, 2015.

[17] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, P. Yalla, J.P.
Kaps, K. Gaj, “CAESAR Hardware API,” Cryptology ePrint Archive,
Report 2016/626, Internet: http://eprint.iacr.org/2016/626.pdf [June. 30,
2017].

[18] W. Diehl and K. Gaj, "RTL Implementations and FPGA Benchmarking
of Three Authenticated Ciphers Competing in CAESAR Round Two,"
19th Euromicro Conference on Digital System Design - DSD 2016,
Limassol, Cyprus, Aug. 31-Sep. 2, 2016.

[19] J. Jean, I. Nikolic, T. Pyrin, Y. Seurin. Deoxys v1.41. Submission to
CAESAR, Oct. 2016, see [7].

[20] E. Andreeva, A. Bogdanov, N. Datta, A. Luykx, B. Mennink, M. Nandi,
E. Tischhauser, K. Yasuda. COLM v1. Submission to CAESAR, Sep.
2016, see [7].

[21] GMU Source Code of Round 2 & Round 3 CAESAR Candidates, AES-
GCM, AES, AES-HLS, and Keccak Permutation F, available at
https://cryptography.gmu.edu/athena/index.php?id=CAESAR_source_c
odes

[22] A. Hamalainen, M. Tommiska, J. Skytta, "6.78 Gigabits per Scecond
Implementation of the IDEA Cryptographic Algorithm," 12th Conference
on Field-Programmable Logic and Applications, FPL 2002, Montpellier,
France, Sep. 2002, pp. 760-769.

[23] K. Guo and H. M. Heys, “A Pipelined Implementation of the Grøstl Hash
Algorithm and the Advanced Encryption Standard,” 26th Annual IEEE
Canadian Conference on Electrical and Computer Engineering, CCECE
2013, Regina, SK, 2013, pp. 1-4.

[24] L. Henzen and W. Fichtner, "FPGA Parallel-Pipelined AES-GCM Core
for 100G Ethernet Applications," 36th European Solid State Circuits
Conference, ESSCIRC 2010, Sevilla, Spain, pp. 202-205.

[25] E. Homsirikamol, P. Yalla, F. Farahmand, J.-P. Kaps, and K. Gaj,
"Development Package for Hardware Implementations Compliant with
the CAESAR Hardware API," available at
https://cryptography.gmu.edu/athena/index.php?id=CAESAR

[26] E. Homsirikamol, P. Yalla, F. Farahmand, J.-P. Kaps, and K. Gaj
"Implementer’s Guide to Hardware Implementations Compliant with the
CAESAR Hardware API", available at
https://cryptography.gmu.edu/athena/index.php?id=CAESAR

[27] W. Diehl and K. Gaj, RTL Implementations and FPGA Benchmarking of
Selected CAESAR Round Two Authenticated Ciphers, Microprocessors
and Microsystems, vol. 52, July 2017, pp. 202-218.

[28] VHDL/Verilog Code of Round 2 CAESAR Candidates: Summary I,
available at
https://cryptography.gmu.edu/athena/CAESAR_HW_Summary_1.html

Appendix A

TABLE A1. CAPABILITY FOR PARALLEL PROCESSING OF
THE ASSOCIATED DATA, MESSAGE, AND CIPHERTEXT
BLOCKS FOR ROUND 3 CAESAR CANDIDATES,
DETERMINED BASED ON THEIR RESPECTIVE
SPECIFICATIONS

Candidate Associated
Data

Message Ciphertext

ACORN X X X
AEGIS X X X

AES-OTR
(Parallel

ADP)

✓

✓

✓

AES-OTR
(Serial
ADP)

X ✓

✓

AEZ ✓ ✓ ✓
Ascon X X X
CLOC X X ✓
SILC X X ✓

COLM ✓ ✓ ✓
Deoxys ✓ ✓ ✓
JAMBU X X X

Ketje X X X
Keyak X X X

MORUS X X X
NORX X X X
OCB ✓ ✓ ✓

Tiaoxin X X X

TABLE A2. CAPABILITY FOR PARALLEL PROCESSING OF
THE ASSOCIATED DATA, MESSAGE, AND CIPHERTEXT
BLOCKS FOR THE CAESAR CANDIDATES WHICH WERE
ELIMINATED AFTER ROUND 2, DETERMINED BASED ON
THEIR RESPECTIVE SPECIFICATIONS

Candidate Associated
Data

Message Ciphertext

HS1-SIV ✓ ✓ ✓
ICEPOLE X X X

Joltik ✓ ✓ ✓
Minalpher ✓ ✓ ✓

OMD ✓ X X
PAEQ ✓ ✓ ✓
POET ✓ ✓ ✓

PRIMATEs
APE

X X X

PRIMATEs
HANUMAN

X X X

PRIMATEs
GIBBON

X X X

SCREAM ✓ ✓ ✓
SHELL X ✓ ✓

STRIBOB X X X
TriviA-ck X X X

