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Abstract— In this paper, we have first characterized 
candidates of the Competition for Authenticated 
Encryption, Security, Applicability, and Robustness 
(CAESAR) from the point of view of their suitability for 
parallel processing of multiple blocks of associated data, 
message, and ciphertext. Then, we have chosen seven 
candidates from the Round 2 and Round 3 submissions, 
namely SCREAM, AES-COPA, Minalpher, OCB, AES-
OTR, COLM, and Deoxys. We first obtained the initial 
estimates of the maximum clock frequency, throughput, 
area, and critical path for the high-speed Basic Iterative 
Architecture of each of the above candidates. Then, we 
implemented a two-stage inner-round pipelining for all the 
aforementioned algorithms in order to improve the 
frequency and throughput by reducing the critical path and 
processing multiple blocks of data simultaneously. We 
targeted the largest available FPGA in the student version 
of Xilinx ISE, i.e., Xilinx Virtex 6 XC6VLX75T-3FF784. 
Our results have demonstrated the improvement in the 
clock frequency and throughput by a factor varying from 
x1.28 for OCB to x1.84 for SCREAM, and the change in the 
throughput to area ratio (with area expressed using LUTs) 
by a factor varying from x0.93 for Minalpher to x1.72 for 
SCREAM. 
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I. INTRODUCTION  
Authenticated Encryption (AE) or Authenticated Encryption 

with Associated Data (AEAD) is a cryptographic algorithm that 
simultaneously provides confidentiality, integrity, and 
authentication of message. The authenticated ciphers take 
message, associated data AD, a public message number Npub, 
and an optional secret message number Nsec as an input and 
generate resulting ciphertext C, tag T, and optional encrypted 
Nsec. The tag is appended to the end of the ciphertext to assure 
the integrity and authenticity of the transaction, as shown in Fig. 
1. Decryption and tag verification are conducted in a similar 
fashion. Tag’ is computed as above, and compared against the 
concatenated Tag. If Tag = Tag’, then authentication and 
integrity of the transaction are assured; otherwise the decrypted 
ciphertext is not released. If authenticity and integrity are 
verified, the outputs of the transaction are the AD, message, and 
optional decrypted Nsec.  

 

Figure 1. Input and Output of an Authenticated Cipher. Notation: Npub - 
Public Message Number, Nsec - Secret Message Number, Enc Nsec - 

Encrypted Secret Message Number, AD - Associated Data [16].  

Cryptographic competitions have become a common way of 
developing  cryptographic  standards.  This process has  worked 
really well in case of Advanced Encryption Standard (AES), 
developed in the period 1997-2001, and then SHA-3 
competition (Secure Hash Algorithm 3), conducted in the period 
2007-2012. In 2013, a new contest, called CAESAR - 
Competition for Authenticated Encryption: Security, 
Applicability, and Robustness - has been announced. Each 
algorithm in the contest has been evaluated based on multiple 
criteria, including security, software and hardware efficiency, 
flexibility, simplicity, and any licensing encumbrances. The 
contest started off with 57 candidates in Round 1, and then 
reached Round 2 with 29 candidates, and Round 3 with 15 
candidates remaining [7]. 

In this paper, we have analyzed all CAESAR Round 2 and 
Round 3 candidates from the point of view of their capability for 
parallel processing of blocks belonging to the same associated 
data, message, and ciphertext. Eleven Round 2 and five Round 
3 candidates have been shown to have such capabilities, as 
summarized in Tables A1 and A2 in Appendix A. The further 
downselection was based on the maximum clock frequency of 
their high-speed Basic Iterative Architecture, reported in [5]. 
The ciphers with the lowest maximum clock frequency were 
selected for pipelining. 

II. GENERAL METHODOLOGY 
 Pipelining is one of the well-known techniques used to 
increase the speed of any digital design. In this project, we have 
implemented inner-round pipelining of seven different 
authenticated ciphers. The inner-round pipelining provides 
substantial increase in the speed of the cipher, with the small 
increase in the circuit area [12, 13]. In this method, pipeline 



registers are inserted inside of a round function of a cipher, and 
then the combinational path is balanced accordingly.  
 The basic iterative architecture, shown in Fig. 3 (left), is 
implemented first, and its maximum clock frequency, area and 
critical path are determined. Based on this information, we insert 
a pipeline register to reduce the critical path. The location of the 
pipeline register is chosen in such a way that the critical path 
between two adjacent registers is reduced and balanced. In this 
paper, we have implemented a two-stage inner-round pipelining, 
as shown in Fig. 3 on the right.       
 As shown in Fig. 2a and Fig. 3 on the left, in the basic 
iterative architecture [12-15], a single block of data is processed 
through N  rounds in  N clock cycles, and then the  result is sent 
to    the    output.    In   the   two-stage    inner-round   pipelined  
architecture, two blocks of data are read in two consecutive 
clock cycles, and the output is released after 2N+1 clock cycles. 
Additionally, two consecutive pairs of input blocks can be 
processed every 2N clock cycles. 

A. How does pipelining help? 
In the basic iterative architecture, shown in Fig. 3 on the 

left, the minimum clock period is given by the sum of the delay 
due to the register REG1 (dreg), delay due to the multiplexer 
(dMUX), delay due to the round (dR), which is completely  

 
a. 

 
b. 

 
Figure 2. Timing Diagram:  a. Basic Iterative Architecture and b. Inner-Round 

Pipelined Architecture with two pipeline stages. 

 
Figure 3. Generic Block Diagrams of the Basic Iterative Architecture (left) 
and the Inner-Round Pipelined Architecture with two pipeline stages (right) 

[12-14] 

combinational logic, and the setup time (tsetup) of the register 
REG1. Then, the formula for the minimum clock period and 
maximum throughput of the basic iterative architecture is given 
by equations (1) and (2): 

Tclk = dreg + dMUX + dR + tsetup                                        (1) 

ThroughputBasic = block_size/(N×Tclk)      (2) 

The same formulas for the two-stage inner-round pipelined 
architecture, shown in Fig. 3 on the right, are given by equations 
(3) and (4): 

Tclk’ = dreg + dMUX + dhalf-R + tsetup                       (3) 

ThroughputPipelined = 2×block_size/(2×N×T’clk) = 
 = block_size/(N×T’clk)         (4) 

where dhalf-R is a delay of a top half round, shown in Fig. 3 as 
half-R. We assume that dhalf-R’ £ dhalf-R + dMUX. 
From here,  

ThroughputPipelined/ ThroughputBasic = Tclk/ T’clk        (5) 

In the ideal pipelined architecture, the combinational logic 
of the round function is divided into perfect halves, so  
dhalf-R=0.5×dR. 
Additionally, for the majority of ciphers, dhalf-R is much greater 
than dreg + dMUX + tsetup. From here,  

ThroughputPipelined/ThroughputBasic = Tclk/ T’clk ≈ dR/dhalf-R = 2 (6) 

At the same time, the equation (7) always holds:  

ThroughputPipelined/ThroughputBasic < 2  (7) 

However, increasing throughput by a factor of two is very 
challenging to achieve. Let us take an example in which the 
round is divided into two parts half-R and half-R’, with 60% and 
40% of the round function delay, respectively, i.e.,  

Tclk
’ = dreg + dMUX + 0.6×dR + tsetup ≈ 0.6×dR       (8) 

In this case: 

ThroughputPipelined/ThroughputBasic ≈ 1.67 (9) 
Thus, even a relatively small imbalance in the delays of both 
half-rounds (half-R and half-R’) has a large detrimental effect 
on the improvement in speed. 

B. Why only two stages of pipelining? 
The number of stages in our method was limited to two 

because of the projected trade-off between the increased 
complexity of the design and the limited throughput and 
throughput/area ratio gain obtained by using more than two 
pipeline stages. Additionally, the limitations imposed by the the 
CAESAR Hardware API [17] and the GMU Development 
Package [25, 26] were taken into account as well. 

III. PREVIOUS WORK 
The concept of inner-round, outer-round, and mixed 

pipelining was formalized in [12-14], with application to secret-
key block ciphers, including Triple DES, and five final AES 
candidates. 



Outer-round pipelining, used commonly before, assumed 
introducing pipeline registers only between full rounds of a 
partially or fully unrolled cipher. Although this kind of 
pipelining is very efficient in increasing circuit throughput, it 
rarely allows for any improvement in the throughput/area ratio. 

On the other hand, inner-round pipelining, if possible and 
practical, may permit substantially increasing circuit frequency 
and throughput, at the cost of only minor increase in the circuit 
area. This feature is particularly true in case of FPGAs, in which 
area is measured in LUTs and Confgurable Logic Block (CLB) 
Slices (for Xilinx FPGAs) or ALUTs and Adaptive Logic 
Modules (ALMs) for Altera FPGAs. Since all LUTs/ALUTs are 
accompanied by the corresponding flip-flops (whether these 
flip-flops are used or not used), the pipeline registers, under 
some circumstences, may come virtually for free or at a 
relatively low cost associated with the more complex control 
logic. 

For the inner round pipelining, the throughput is directly 
proportional to the maximum clock frequency. The following 
factors may limit the maximum clock frequency in this 
architecture: 1. delay of a single round divided by the number of 
pipeline stages, k, 2. delay of the longest indivisible operation, 
3. delay of the control unit, 4. limit on the maximum latency, 5. 
limit on the maximum input/output bandwidth.  

In [13], the pipeline register placement was solely dependent 
upon the critical path between any two adjacent registers, which 
was aimed to include only one level of CLBs. There was not any 
specific number of pipeline stages that was decided to be used 
in advance, as that could lead to irregular design, with pipelined 
registers inserted into the cipher elementary operations. 

In Fig. 4, the improvement in clock frequency, and thus also 
the circuit throughput, is summarized for Triple DES and four 
final-round AES candidates. The ratio between the throughputs 
for  the  inner-round  pipelined architecture  and  basic  iterative  
architecture varied between 2.22 for Triple DES (3DES) up to 
8.81 for Serpent. The obtained speed-up is inversely 
proportional to the frequency of the basic iterative architecture. 

Additionally, Fig. 4 demonstrates that inner-round 
pipelining by itself allows accomplishing the highest or close to 
highest possible frequency, without the need of mixing it with 
outer-round pipelining (which leads to results shown in Fig. 4 
using the mixed architecture bars). 

 

 
Figure 4. Results of implementing 3DES and four final AES candidates in 

Xilinx Virtex FPGAs. Maximum clock frequency of each of the three 
implemented architectures: basic iterative architecture, with inner-round 
pipelining, and with full mixed inner- and outer-round pipelining [13].  

In [22], IDEA secret-key block cipher was implemented 
using inner-round pipelining, with 16 pipeline stages per round. 
This pipelining increased the maximum clock frequency 
relatively moderately, from 87.3 MHz for a non-pipelined 
combinational round, to 105.9 MHz for its deeply pipelined 
version. This relatively small improvement, by a factor of 1.21 
can be attributed to a relatively simple round of the IDEA block 
cipher. 

In [23], a high-speed hybrid implementation of the Grøstl 
hash function and the AES secret-key cipher was reported. The 
Grøstl P and Q transformations and the AES encryption round 
function E were sped up by  a. processing P, Q and E in parallel, 
b. Using sub-round (inner-round) pipelining. In the latter 
method, a full round combinational logic was split into three 
balanced pipeline stages, which gave an increase in the 
maximum clock frequency by a factor of 1.4. 
In [24], to support the high-speed Ethernet standard IEEE 
802.3ba, the authors decided to exploit the parallelization and 
pipelining in the current authenticated cipher standard, AES-
GCM, with the goal of achieving the 100 Gbps throughput rate. 
In this paper, AES with 14 outer-round pipeline  stages was 
adopted, and to balance the design the 128-bit Galois Field 
multiplier was pipelined using four inner-round pipeline stages. 
With the use of four AES cores and four GF(2128) multipliers 
and the final area optimization, the design achieved a frequency 
of 233 MHz, and the throughput in excess of 100 Gbit/s using 
Xilinx Virtex-5 FPGAs. 

In this paper, inner-round pipelining is applied for the first 
time to CAESAR candidates. Taking into account the 
complexity of the datapaths and controllers required to 
implement these algorithms, the number of pipeline stages has 
been fixed at two, limiting the maximum speed-up that could 
be achieved, but making the redesign of the controllers and 
search for the optimal positions of pipelined registers in the 
corresponding datapaths much more practical. 

IV. DEVELOPMENT METHOD 
 

 All seven pipelined implementations pursued in this study 
have been developed using as a starting point the open-source 
high-speed implementations of the respective CAESAR 
candidates, by E. Homsirikamol, W. Diehl [18, 27], F. 
Farahmand, and K. Minematsu, available at [21, 28]. These 
implementations were all based on the basic iterative 
architecture, and had their authorship and results reported in [5]. 
The implementation of the basic iterative architecture consists 
of the Datapath and Controller. The Datapath includes the  round 
function and support for all other arithmetic and logic operations 
required for authenticated encryption/decryption. The 
Controller is a finite state machine, responsible for generating 
control signals for the Datapath. 
 Our pipelined designs are fully compliant with the CAESAR 
Hardware API [17], and take advantage of the GMU CAESAR 
Development Package [25] and the related Implementer’s Guide 
[26]. 

The conversion from the basic iterative architecture to the 
two-stage pipelined architecture is shown schematically in Fig. 
5. The Pipelined Design step involves adding pipeline registers 
in the Datapath and modifying the  Controller accordingly. The  



 
Figure 5. Development Methodology. 

 
modified control unit must generate all control signals necessary 
for processing of two blocks of data simultaneously. Some 
additional Datapath modifications may involve bus width 
changes, adding round constant calculations for a second block 
of data, adding registers to buffer the data, etc. The Controller 
modifications involve adding extra states and support for 
additional control signals (e.g., the enable signal of the pipelined 
register, the select signals of multiplexers, etc.).  

After all necessary modifications, the pipelined 
implementation is functionally verified using the corresponding 
reference C code as a source of test vectors. The maximum clock 
frequency, throughput, and resource utilization are determined 
and compared with the values for the basic iterative architecture. 
In case the speed-up is insufficient, a different location of 
pipeline registers is attempted.  

 
Figure 6. Block diagram of the AES Datapath after the modifications required 

for two-stage inner-round pipelining. 

 
Figure 7. Algorithmic State Machine (ASM) chart of the AES Controller after 

the modifications required for two-stage inner-round pipelining. 

In Figs. 6 and 7, we provide an example of the conversion 
for a simply case of a secret-key block cipher AES. Round keys 
are assumed to be precomputed and stored in RAM. The parts 
of both figures surrounded with red dashed boxes are the 
extensions/modifications required for the conversion of the  
basic iterative architecture to the two-stage pipelined 
architecture. Two inputs, carried by the two halves of the input 
signal bdi(255:0) are provided to the AES unit in two 
consecutive clock cycles. The corresponding outputs are 
generated RNDS clock cycles later, concatenated, and sent to 
the output bdo.  

V. SUMMARY OF PIPELINED IMPLEMENTATIONS 
From Round 2 and Round 3 of the CAESAR competition, 

seven parallelizable candidates were chosen, for which the 
maximum clock frequency was the lowest in the basic iterative 
architecture design [5]. Basic parameters of selected candidates 
are summarized in Table 1. 

TABLE I. BASIC PARAMETERS OF ALL INVESTIGATED CANDIDATES 
 

Candidate  
Name 

Key Size 
(bits) 

Block Size 
(bits) 

Tag Size 
(bits) 

Rounds 

SCREAM 128 128 128 10 

AES-COPA 128 128 128 10 

COLM 128 128 128 10 

AES-OTR 128 128 128 10 

MINALPHER 256 256 128 17 

DEOXYS 128 128 128 14 

OCB 128 128 128 10 
 

A. SCREAM 
 The Round function of SCREAM [6] is built using the 
combination of S-boxes and L-boxes [1] [2], as shown in Fig. 8. 
As discussed in the development method, first, we get the initial 
estimates of maximum clock frequency and throughput. Then, 
by inserting a register in the round function, the critical path is 



minimized. The register is added at different locations and each 
location checked for the shortest critical path. The pipelined 
register has been introduced in the encryption and decryption 
paths, after S_box and Inv_L_box, respectively, as shown in Fig. 
8. Round function is then adjusted into a form, where the circuit 
can process two blocks of data in parallel. Then, respective 
changes are made in the controller to support processing of two 
blocks of data in parallel. Using this approach, the critical path 
delay was reduced from 10.8 ns to 5.8 ns. Thus, an 84% increase 
in maximum clock frequency was achieved. 

 
Figure 8. SCREAM: Pipelined Round. 

 
Figure 9. AES-COPA: Pipelined Round. 

B. AES-COPA 
The Round function of AES-COPA [10] consists of the 

AES round as the basic building block, as shown in Fig. 9. The 
pipeline register was added at all the available locations in the 
round function and verified for the functional correctness and 
critical path delay. For example, in the Round from Fig. 9, the 
register was added after SubBytes and then the design was 
checked for the critical path delay. Afterward, the position of 
the register was moved after the Shiftrows and the same process 
was repeated until the smallest value of critical path delay was 
found. Using this approach, the critical path delay was reduced 
from 8.3 ns to 4.76 ns. Thus, an increase of 75% in maximum 
clock frequency and throughput was achieved. 

C. COLM 
COLM [20] is derived from two CAESAR candidates AES-

COPA and ELmD. The Round function of COLM consists of 
the same components as AES round, and the basic building 
blocks are shown in Fig. 10. Similar to other designs the 
pipelined register was added to COLM, but this did not really 
help in reducing the critical path delay. The figure just shows 
the logic inside the round function, approximately half of the 
critical path was located outside of the round function, so the 
pipelined register was added at the beginning of the round 
function to divide the critical path into two halves. Using this 
approach, the critical path delay was reduced from 8.92 ns to 
5.55 ns. Thus, a 60% improvement in maximum clock 
frequency and throughput was achieved after inner-round 
pipelining. 
 

 
Figure 10. COLM: Pipelined Round. 



 

Figure 11. AES-OTR Pipelined Round. 

D. AES-OTR 
The round function of AES-OTR [9] consists of the same 

components as AES, as shown in Fig. 11. Similar method of 
placing pipeline register at different locations and checking for 
the smallest critical path delay was applied. As a result, the 
critical path delay was reduced from 6.66 ns to 4.25 ns. Thus, a 
56% improvement in maximum clock frequency and 
throughput was achieved after inner-round pipelining. 

E. DEOXYS 

The Round function of Deoxys [19] consists of the same 
building   blocks as AES,  as   shown  in   Fig. 12.   Pipelined 
implementation for Deoxys was straightforward. Just following 
the methodology in Section IV gave good results. The critical 
path delay was reduced from 5.15 ns to 3.69 ns. Therefore, an 
increase by 39% in maximum clock frequency and throughput 
was achieved after inner-round pipelining. 

F. MINALPHER 
The Round function of Minalpher consists of Subnibbles, 

Shuffle Rows, Swap Matrix, Mix Column and Add Round 
Constant [3] [4], with all these operations described in [11]. The 
round function of Minalpher had many potential locations for 
the pipeline registers. 

Initially two 128 bit registers were added after Swap Matrix 
and the circuit tested to determine the critical path reduction. 
The reduction corresponding to this placement was very low, as 
the critical path kept shifting from the round function to the 
tweak calculator. The same was the case with almost all the 
locations.  The location of the pipeline register shown in Fig. 
13 gave the best results. The critical path delay was reduced 
from 5.95 ns to 4.50 ns. Thus, a 32% increase in maximum 
clock frequency and throughput was achieved after inner-round 
pipelining. 

 

 
Figure 12. DEOXYS: Pipelined Round. 

 

 
 

Figure 13. MINALPHER: Pipeline Round. 

G. OCB 
The Round function of OCB [8] consists of AES as a basic 
building block. The forward round of OCB was a similar case 
to COLM, namely, half of the critical path was outside of the 
round function. Thus, after adding the pipeline register at 
different locations, there was not much reduction in the critical 
path delay. Instead, the critical path kept shifting to the key 
scheduling block of the inverse round. So, a register at the end  



 

 
 

Figure 14. OCB: Pipelined Round. 

of inverse round was added.  The register placement, shown in 
Fig. 14, gave the optimum performance. The critical path delay 
was reduced from 5.81 ns to 4.52 ns. Thus, a 28% improvement 
in maximum clock frequency and throughput was achieved 
after inner-round pipelining. 

VI. PERFORMANCE EVALUATION 
Performance of each candidate was evaluated based on the 

improvement in the maximum clock frequency and throughput, 
as well as penalty in terms of the circuit area. All of the 
following results were generated using the largest FPGA 
available in the student version of Xilinx ISE v14.7, namely, 
Xilinx Virtex 6 XC6VLX75T-3FF784.  

In Table II, we summarize the numbers of clock cycles per 
block and the throughput formulas for all investigated 
candidates. The corresponding information for the basic 
iterative architecture was obtained from [5] and [21]. The 
number of clock cycles per block for our pipelined architectures 
was derived by analysis of our designs, and verified using 
functional simulation. 

Based on Table III and Fig. 15, it can be observed that the 
lower the value of the maximum clock frequency in the basic 
iterative architecture the higher the frequency gain in the 
pipelined architecture. The same relation applies also to the 
throughput as well. 

The increase in the area from basic iterative architecture to 
the pipelined architecture is shown in Table IV. This increase 
is calculated based on both the number of LUTs and Slices. The 
increase in the number of LUTs ranged from 9% for SCREAM 
to 47% for AES-OTR. The increase in the number of Slices was 
significantly larger. It varied from 49% for Minalpher to 100% 
for AES-COPA. 

 
TABLE II. NUMBER OF CLOCK CYCLES PER BLOCK AND THROUGHPUT 

FORMULA FOR EACH CANDIDATE 

 
Candidate 

Number of clock cycles 
per block 

Throughput  
Formula 

(Mbits/sec) Basic Arch Pipelined 
Arch 

SCREAM 11 22 11.63* fclk 
AES-COPA 11 22 11.63* fclk 

COLM 11 22 11.63* fclk 
AES-OTR 12 24 10.66* fclk 
DEOXYS 15 30 8.53* fclk 

MINALPHER 19 38 13.47* fclk 
OCB 12 24 10.66* fclk 

 
TABLE III. MAXIMUM CLOCK FREQUENCY AND THROUGHPUT COMPARISON 

BETWEEN BASIC AND PIPELINED ARCHITECTURE 

 
Candidate 

Maximum Clock 
Frequency (MHz) 

Throughput 
(Mbits/sec) 

Basic 
Arch 

Pipelined 
Arch 

Basic 
Arch 

Pipelined 
Arch 

SCREAM 92 170 1071 1977 
AES-COPA 120 210 1396 2442 

COLM 112 180 1303 2093 
AES-OTR 150 235 1600 2507 
DEOXYS 194 271 1655 2311 

MINALPHER 168 222 2264 2991 
OCB 172 221 1835 2357 

 

 
Figure 15. Throughput: Basic Architecture vs. Pipelined Architecture. 

 

From Table V and Fig. 16, it can be observed that the 
increase in the Throughput to Area ratio from the basic iterative 
architecture to the inner-round pipelined architecture was the 
highest for SCREAM. In Minalpher the ratio was reduced, as 
there was only 32% increase in maximum clock frequency and 
44% increase in area. An improvement was observed for all 
other candidates. 

 
 



TABLE IV. AREA COMPARISON BETWEEN BASIC AND PIPELINED 
ARCHITECTURE 

 
Candidate 

Area (LUTs) Area (Slices) 
Basic 
Arch 

Pipelined 
Arch 

Basic 
Arch 

Pipelined 
Arch 

SCREAM 3644 3968 1546 2442 
AES-COPA 4902 6484 2216 4431 

COLM 6754 8337 2447 3962 
AES-OTR 5058 7443 2219 3637 
DEOXYS 2825 3943 1107 1805 

MINALPHER 7836 11285 3974 5915 
OCB 3312 3673 1742 2905 

 
 
TABLE V. THROUGHPUT TO AREA RATIO COMPARISON BETWEEN BASIC AND 

PIPELINED ARCHITECTURE 

 
Candidate 

Throughput/ 
Area 

(Mbits/(sec*LUTs)) 

Throughput/ 
Area 

(Mbits/(sec*Slices)) 
Basic  
Arch 

Pipelined 
Arch 

Basic 
Arch 

Pipelined 
Arch 

SCREAM 0.29 0.50 0.69 0.81 
AES-COPA 0.28 0.38 0.63 0.55 

COLM 0.19 0.25 0.53 0.53 
AES-OTR 0.32 0.34 0.72 0.69 
DEOXYS 0.59 0.60 1.50 1.28 

MINALPHER 0.29 0.27 0.57 0.51 
OCB 0.55 0.64 1.05 0.81 

 

 
Figure 16. Throughput to Area Ratio: Basic Architecture vs. Pipelined 

Architecture, assuming that area is expressed using LUTs. 

VII.  CONCLUSIONS 
 The improvement in the maximum clock frequency and 
throughput depends on the algorithm and its critical path. Based 
on the results presented in Section VI, the performance gain is 
inversely proportional to the frequency and throughput in the 
basic iterative architecture. Our results have demonstrated the 
improvement in the clock frequency and throughput by a factor 
varying from x1.28 for OCB to x1.84 for SCREAM, and the 

improvement in the throughput to area ratio (with area 
expressed using LUTs) by a factor varying from x0.93 for 
Minalpher to x1.72 for SCREAM. Improvement in 
Throughput/#LUTs was observed in six candidates, all except 
Minalpher. In terms of the relative performance of pipelined 
implementations, the top four candidates were SCREAM, AES-
COPA, COLM and AES-OTR, all with the frequency and 
throughput gains exceeding 50%.  
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Appendix A 
 
TABLE A1. CAPABILITY FOR PARALLEL PROCESSING OF 
THE ASSOCIATED DATA, MESSAGE, AND CIPHERTEXT 
BLOCKS FOR ROUND 3 CAESAR CANDIDATES, 
DETERMINED BASED ON THEIR RESPECTIVE 
SPECIFICATIONS 
 

Candidate Associated 
Data 

Message Ciphertext 

ACORN X X X 
AEGIS X X X 

AES-OTR 
(Parallel 

ADP) 

✓ 
 

✓ 
 

✓ 
 

AES-OTR 
(Serial 
ADP) 

X ✓ 
 

✓ 
 

AEZ ✓ ✓ ✓ 
Ascon X X X 
CLOC X X ✓ 
SILC X X ✓ 

COLM ✓ ✓ ✓ 
Deoxys ✓ ✓ ✓ 
JAMBU X X X 

Ketje X X X 
Keyak X X X 

MORUS X X X 
NORX X X X 
OCB ✓ ✓ ✓ 

Tiaoxin X X X 
 
TABLE A2. CAPABILITY FOR PARALLEL PROCESSING OF 
THE ASSOCIATED DATA, MESSAGE, AND CIPHERTEXT 
BLOCKS FOR THE CAESAR CANDIDATES WHICH WERE 
ELIMINATED AFTER ROUND 2, DETERMINED BASED ON 
THEIR RESPECTIVE SPECIFICATIONS 
 

Candidate Associated  
Data 

Message Ciphertext 

HS1-SIV ✓ ✓ ✓ 
ICEPOLE X X X 

Joltik ✓ ✓ ✓ 
Minalpher ✓ ✓ ✓ 

OMD ✓ X X 
PAEQ ✓ ✓ ✓ 
POET ✓ ✓ ✓ 

PRIMATEs  
APE 

X X X 

PRIMATEs  
HANUMAN 

X X X 

PRIMATEs  
GIBBON 

X X X 

SCREAM ✓ ✓ ✓ 
SHELL X ✓ ✓ 

STRIBOB X X X 
TriviA-ck X X X 

 
 

 


