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Introduction & 
Motivation



Cryptographic Standard Contests
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Goal:     A portfolio of new-generation authenticated ciphers
• offering advantages over AES-GCM
• suitable for wide-spread adoption

Period:  March 2014 - December 2017 (tentative)

Organizer:  An informal committee of leading cryptographic 
experts 

Number of candidates:  

57 ➞ 29 ➞ 15 ➞ ?    ➞ ?
R1 R2 R3 finalists portfolio

CAESAR Competition
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2016.06.30: Round 2 VHDL/Verilog Code

2016.08.15: Announcement of 15 Round 3 candidates

2016.09.15: Round 3 tweaks

2016.09.25-27: DIAC 2016 - Directions in Authenticated Ciphers

2016.10.15: Round 3 software

2017.04.15 (tentative): Round 3 VHDL/Verilog code

CAESAR Recent and Upcoming Milestones
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Use Case 1: Lightweight applications (constrained environments)

Use Case 2: High-performance applications

Use Case 3: Defense in depth

• critical: authenticity despite nonce misuse

• desirable: limited privacy damage from nonce misuse

• desirable: authenticity despite release of unverified plaintexts

• desirable: limited privacy damage from release of unverified plaintexts

• desirable: robustness in more scenarios; e.g., huge amounts of data

CAESAR Three Use Cases
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Misuse Resistant Authenticated Encryption (MRAE)

= authenticity and privacy even if nonce is repeated

Robust Authenticated Encryption (RAE)

= MRAE for any choice of ciphertext expansion 
(including no expansion at all)

AEZ Strong Security Notions

Advantages:       easy to use, less prone to implementation errors

Disadvantages:  two-pass, affecting speed and 
memory requirements
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Round 2:

AEZ, Deoxys=, HS1-SIV, Joltik=

Round 3:

AEZ, Deoxys-II

CAESAR Candidates Targeting MRAE
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Robust Authenticated Encryption Scheme

K – Key, N – Nonce, A – Associated Data, 𝛌 - Ciphertext Expansion, T - Tweak
Source: P. Rogaway, “Update on AEZ v4”, DIAC 2016
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Using Generalized Block Cipher to realize 
Robust Authenticated Encryption (RAE) Scheme

Generalized Block Cipher
- Arbitrary input size in bytes
- Output size = Input size
- Tweak - non-secret value that 

individualizes the permutation 
associated with the key

Authenticator
- String of 𝜏 zeros

N – Nonce
A – Associated Data
𝜏 – Authenticator length (in bits)

a.k.a. Ciphertext Expansion

Source: P. Rogaway, “Update on AEZ v4”, DIAC 2016
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Strong Security Properties

a) If (M, A) tuples are known not to repeat, no nonce is needed.
b) Nonce repetitions: privacy loss is limited to revealing repetitions 

in (N, A, M) tuples, authenticity not damaged at all.
c) Any authenticator-length can be selected, achieving best-

possible authenticity for this amount of ciphertext expansion.
d) If there’s redundancy in plaintexts, whose presence is verified 

on decryption, this augments authenticity.
e) By last two properties: one can minimize length-expansion 

for bandwidth-constrained apps.

Source: P. Rogaway, “Update on AEZ v4”, DIAC 2016
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Structure of AEZ

AEZ-tiny:

For strings < 32 bytes

AES4-based

AEZ-core:

For strings ≥ 32 bytes

AES4 and AES based

Source: P. Rogaway, “Update on AEZ v4”, DIAC 2016
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AEZ-tiny

AEZ-core

Basic Building Block:
Tweakable Block Cipher - TBC
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Tweakable Block Cipher - Notation

j=-1, i

X

Y

j≥0, i

X

Y

j≥0
AES4-based

j=-1
AES10-based
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“Writing software for AEZ is not easy, while doing a 
hardware design for AEZ is far worse”

“From the hardware designer’s perspective, AEZ’s name 
might seem ironic, the name better suggesting anti-easy, the 
antithesis of easy, or anything-but easy”

Warnings by the Authors of AEZ

V. T. Hoang, T. Krovetz, and P. Rogaway, 
specification of AEZ v4.1, October 2015



18

• Three algorithms in one

a. AEZ-prf to process empty messages
b. AEZ-tiny to process messages of the size smaller than 

32 - authenticator length (in bytes) 
(= 16 bytes for recommended values of parameters)

c. AEZ-core to process all remaining message sizes.
Dilemma:

• Resource sharing: decreases area, complicates scheduling

• No resource sharing: increases area, simplifies scheduling

Hardware Implementation Challenges (1)
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AEZ-tiny
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AEZ-core

5 · 4 AES rounds per 2 AES blocks
=  10   AES rounds per 1 AES block

Special treatment of the 
last 4 blocks
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• Three algorithms in one
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• Two-pass algorithm (AES-core)

• Pass 1 – Used to calculate S

• Pass 2 – Used to calculate all output blocks

Dilemma:

• repeat ~40% of computations involving all message blocks, 
already done in the first pass

• store intermediate results of the size of the entire message

Hardware Implementation Challenges (2)
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AEZ-core

Pass 1

Goal of Pass 1
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• Input Reblocking caused by blocks with variable length
dependent on the overall message size
• AEZ-tiny: variable-size blocks L and R
• AEZ-core: variable-size blocks Mu and Mv

• Last but one pair of blocks, Mu possibly empty
Problem:
• must internally create and process blocks of 

unconventional sizes
• requires variable shifts and rotations costly in terms of area

Hardware Implementation Challenges (3)
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Variable-size blocks

AEZ-tiny

AEZ-core
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• Treatment of incomplete blocks
• Complex padding required for blocks other than the last 

block of the message (Mu and Mv)
• Need for precomputations in TBC

• Time and storage required depends on the 
maximum size of message and the maximum size of AD

• Complex scheduling and control

Hardware Implementation Challenges (4)



28

• No support for 
§ arbitrary key length
§ vector-valued Associated Data
§ arbitrary ciphertext expansion

(features not supported by implementations of any other candidates)

Limitations of Our Implementation

• Key size fixed at 384 bits
• Authenticator length a.k.a. Ciphertext Expansion

fixed at 16 bytes = 128 bits



CAESAR 
Hardware API
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• Specifies:
• Minimum compliance criteria
• Interface
• Communication protocol
• Timing characteristics

• Assures:
• Compatibility
• Fairness

• Timeline:
• Based on the GMU Hardware API presented at CryptArchi 2015, 

DIAC 2015, and ReConFig 2015
• Revised version posted on Feb. 15, 2016
• Officially approved by the CAESAR Committee on May 6, 2016

CAESAR Hardware API
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Top-Level Block Diagram

Pre-Processor, Post-Processor, CMD FIFO, and Two-pass FIFO
generic, common for all candidates
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Top-Level Block Diagram of AEZ

64

64
32



Hardware 
Architecture

of AEZ
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• Optimization Target
• Maximum Throughput to Area ratio

• Operations
• Encryption and decryption in one module, but only one of them 

performed at a time (half-duplex)
• Key scheduling, padding and handling of incomplete blocks

in hardware

• Choice of Parameters
• Key length = 384 bits
• Nonce length =   96 bits
• Authenticator length = 16 bytes = 128 bits

Design Parameters
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• Selection
• Maximum Message Length = 211-1 bytes
• Maximum AD Length = 210-1 bytes

• Maximum Message Length (2047 bytes) 
• Greater than the maximum length of the Ethernet v2 packets 

(1500 bytes)
• Limits the amount of memory required for the Two-Pass FIFO
• Approved by the CAESAR Committee as a recommended 

maximum length for all two pass-algorithms
and an optional maximum length for single-pass algorithms

Maximum Message/AD Length



36

Difference Compared to Software

𝜏

TC

Ciphertext after expansion
divided into the Ciphertext C
and the Tag T
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Low-Level Block – Tweakable Block Cipher

TBC
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Tweakable Block Cipher – Ej,i

j=-1, i

X

Y

j≥0, i

X

Y

j≥0
AES4-based

j=-1
AES10-based

K
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Y = AES-roundKey(X + ∆)   or Y = AES-roundKey(X + ∆) + ∆

TBC Output Y Calculations
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Y = AES-roundKey(X + ∆)   or Y = AES-roundKey(X + ∆) + ∆

TBC Output Y Calculations
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I | J | L ← Extract(K)

Init = 0 or L or 2L or 4L

A = I or J

23+bn[6:3]A    term present
only if  𝛼 = Yes

bn = i - 1

x represents any value

∆ Calculations as a Function of (K, j, i)
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A = I or J

2A, 4A, 8A,…, 210A

Precomputations Required

because
max(bn)= max(i-1) =
=26-1
max(3+bn/8)=10

value of i limited 
by the maximum number
of AD blocks

Init
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Computations of ∆

Each term determined 
in one clock cycle

Maximum 5 clock 
cycles required
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Datapath: Top



Results & 
Discussion
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Resource Utilization & Maximum Clock Frequency

FF FF% LUTs LUTs% Slices Slices%
TBC 927 39% 1527 33% 480 39%
CipherCore 1983 84% 4166 91% 1259 101%
AEAD 2347 100% 4597 100% 1246 100%

Clk
Freq

Clk
Freq%

TBC 362 100%
CipherCore 335 93%
AEAD 335 93%
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Latency (Clock Cycles) vs. Message Size (Bytes)

Encryption/Decryption
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Cycles per Byte vs. Message Size

25 cycles
32 bytes

≈ 0.78 cycle/byte

Encryption/Decryption
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Throughput for Long Messages

ThroughputEncryption/Decryption ≈   
256
25

· Clock Frequency

ThroughputAuthentication ≈   128
5

· Clock Frequency
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Results for Virtex 6 – Throughput vs. Area
Logarithmic Scale

A

E, D

E, D

A

A

E, D

E

D, AE, D
A

E – Throughput for Encryption
D – Throughput for Decryption
A – Throughput for Authentication Only
Default: Throughputs the same for all 3 operations

AES-GCM AEZ
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Relative Throughput in Virtex 6
Ratio of a given Cipher Throughput/Throughput of AES-GCM

Throughput of AES-GCM =  3239 Mbit/s 

E – Throughput for Encryption
D – Throughput for Decryption
A – Throughput for Authentication Only
Default: Throughput the same for all 3 operations

1 12 for R2
8 for R3 29
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Relative Area (#LUTs) in Virtex 6
Ratio of a given Cipher Area/Area of AES-GCM

Area of AES-GCM =  3175 LUTs 

1 20 for R2
12/13 for R3 29
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Throughput/Area of AES-GCM =  1.020 (Mbit/s)/LUTs 

Relative Throughput/Area in Virtex 6
vs. AES-GCM

E – Throughput/Area for Encryption
D – Throughput/Area for Decryption
A – Throughput/Area for Authentication Only
Default: Throughput/Area the same for all 3 operations

1 12 for R2
9 for R3 29



Conclusions & 
Future Work
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Conclusions

• First hardware implementation of AEZ
– Compliant with the CAESAR HW API
– Optimized for the Throughput/Area ratio
– Efficient
– Practical

• Places AEZ 12th in terms of the Throughput/Area ratio among 
28 Round 2 CAESAR candidates benchmarked to date
(assuming the maximum message length of 211-1)

• Almost matches the performance of AES-GCM in hardware, while 
at the same time offering an unprecedented level of security.
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Possible Future Work

• Ability to increase the maximum message length
at the time of synthesis using a generic

• Ability to modify the authenticator length 
at the time of synthesis using a generic

• Ability to modify the authenticator length 
at the run time using the Reserved field of the API instruction

• Implementation with inner-round pipelining 
• Lightweight implementation
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• Detailed description of the circuit operation

Proceedings + ePrint version of the paper 
(under development)

• VHDL Source Code

https://cryptography.gmu.edu/athena
Under: CAESAR
GMU Implementations of Authenticated Ciphers and Their 
Building Blocks

More Details & Code
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Thank you!

Questions?

Suggestions?

ATHENa:  http://cryptography.gmu.edu/athena 
CERG: http://cryptography.gmu.edu

Comments?


