
978-1-5090-3707-0/16/$31.00 c©2016 IEEE

A Zynq-based Testbed for the Experimental
Benchmarking of Algorithms Competing in

Cryptographic Contests
Farnoud Farahmand, Ekawat Homsirikamol, and Kris Gaj

George Mason University
Fairfax, Virginia 22030

Email: {ffarahma, ehomsiri, kgaj}@gmu.edu

Abstract—Hardware performance evaluation of candidates
competing in cryptographic contests, such as SHA-3 and CAE-
SAR, is very important for ranking their suitability for stan-
dardization. One of the most essential performance metrics is the
throughput, which highly depends on the algorithm, hardware
implementation architecture, coding style, and options of tools.
The maximum throughput is calculated based on the maximum
clock frequency supported by each algorithm. A common way
of determining the maximum clock frequency is static timing
analysis provided by the CAD toolsets such as Xilinx ISE, Xilinx
Vivado, and Altera Quartus Prime. In this project, we have
developed a universal testbed, which is capable of measuring the
maximum clock frequency experimentally, using a prototyping
board. We are targeting cryptographic hardware cores, such as
implementations of SHA-3 candidates. Our testbed is designed
using a Zynq platform and takes advantage of software/hardware
co-design. It supports two separate clock domains, one for a
hardware module under test, and the other for the commu-
nication between an ARM core and hardware accelerator. We
measured the maximum clock frequency and the execution time
of 12 Round 2 SHA-3 candidates experimentally on ZedBoard
and compared the results with the frequencies reported by Xilinx
Vivado. Our results indicate that depending on the characteristics
of each algorithm, we may achieve either much higher or the
same experimental frequency than the results reported by the
tools using static timing analysis. This behavior is then further
analyzed, and the relevant conclusions drawn.

I. INTRODUCTION

In November 2007, NIST announced a public competition
to develop a new cryptographic hash function standard, called
SHA-3. About four years have been spent on evaluating
candidates submitted to this contest in terms of security,
software and hardware efficiency, simplicity, and flexibility.
Fifty one candidates were qualified to the first round of the
contest. Their number was reduced first to fourteen and then
to five candidates, in the second and the third round of the
competition, respectively. Majority of candidates qualified to
Round 2 were judged to have adequate security, and thus
their performance in software and hardware became a decisive
factor. Throughput, area, and throughput to area ratio were
the most important metrics used for hardware evaluation.
Throughput of a hash function is the number of message bits
for which a hash value (digest) can be computed per unit
of time. In hardware, the maximum throughput depends on

This work is supported by NSF Grant #1314540

the maximum clock frequency supported by each algorithm,
the block size, and the number of clock cycles required
to process a block. Maximum clock frequency that can be
achieved by a hardware implementation can be estimated or
measured at different stages of the design process. The main
stages are synthesis, placing and routing (P&R), and actual
implementation on the board. The post-synthesis and post
place & route results are determined by the FPGA tools using
static timing analysis. Hardware evaluation of 14 round 2
SHA-3 candidates, based on post-placing and routing results,
is reported in [1].

In this paper, we demonstrate that the interface of Hash
Core proposed in [1] can be easily combined with the de-
facto industry standard, AMBA AXI [2], in order to achieve
the practical, industry-grade designs for hardware accelerators
implemented using reconfigurable logic of All Programmable
Systems on Chip (SoC), such as Zynq. We also investigate the
communication overhead introduced by the transfer of data
between these hardware accelerators and the microprocessor
core, for various sizes of data inputs. Secondly, we explore
how the maximum clock frequency reported by Xilinx Vivado
and the actual frequency measured experimentally compare to
each other. Thus, we are verifying the accuracy of the worst-
case values of the maximum clock frequency, reported by
static timing analysis. Our expectation is that the experimental
clock frequency should be greater or equal than the worst-
case value returned by the tools for all investigated algorithms.
Finally, we also compare the ratios of the maximum experi-
mental clock frequency to the maximum frequency returned by
the tools. The straightforward expectation could be that these
ratios should be approximately the same for all algorithms, as
any given instance of the Zynq device is likely to operate with
a frequency higher by a certain specific percentage than the
worst case instance of the same integrated circuit. However,
as shown in this paper, this naive expectation appears to be
very far from the true behavior of a particular Zynq device
observed for various investigated algorithms.

It should be stressed that we do not advocate replacing the
well-established benchmarking methodology based on post-
place and route results with the comparison of experimental
values, as these values are more accurate only for a specific
instance of the Zynq device, and cannot be generalized to

millions of similar devices operating in the field, affected to
a different extant by variations in the fabrication process. Our
study should be used just to confirm (or question) the worst-
case values returned by the tools, which are likely to better
represent the entire population of Zynq devices fabricated in
a given technology.

VHDL implementation of all Round 2 SHA-3 candidates is
available at [3]. We selected 12 of them and applied our testing
environment to these algorithms. BMW (Blue Midnight Wish)
and SIMD were excluded due to poor performance. Addition-
ally, the BMW module has two different clock domains for the
i/o interface and the main hash core, which substantially com-
plicates experimental testing. The results generated for each
algorithm, collected using our testbed, included: 1) hardware
execution time for various input sizes, 2) software execution
time, 3) HW/SW speed up, 4) maximum clock frequency after
placing and routing (obtained using Vivado Design Suite), and
5) maximum experimental clock frequency.

II. PREVIOUS WORK

Experimental benchmarking of cryptographic algorithms
has been performed previously on different platforms other
than Zynq. In [4], maximum frequency of SHA-256 has been
measured experimentally using the SLAAC-1V board based
on Xilinx Virtex VCV 1000. In [5] and [12], an experimental
measurement of the hardware performance of 14 round 2
SHA-3 candidates is performed using the SASEBO-GII FPGA
board. The investigated implementations are run at their max-
imum clock frequency reported by the CAD tool. Hence, no
investigation of higher clock frequencies is performed.

In [6], the experimental evaluation of SHA-2 and five Round
3 SHA-3 Candidates was performed using a standard-cell
ASIC realized using 65nm CMOS technology. The authors
combined two sets of implementations, developed using differ-
ent performance targets, and implemented them on one ASIC,
with a common input/output (I/O) interface. Area, throughput,
and throughput to area ratio were generated for all of these
algorithms. Synthesis was performed using Synopsys Design
Compiler, and placing & routing using Cadence Encounter
Digital Implementation. All cores have been demonstrated to
operate at the experimental clock frequencies from 15% to
92% higher then the worst case estimates returned by the
placing & routing tools.

In [7], the throughput and power results, from the exper-
imental evaluation of SHA-3 finalists, using 130nm ASIC
technology, are reported. SASEBO-GII FPGA board is used as
a controller. The obtained results indicated that the measured
throughput was always lower than the Post-layout results, with
the difference less than 30%.

In [8], a comprehensive evaluation of all Round 2 SHA-
3 candidates, based on post-layout reports, using the 90 nm
ASIC technology, is performed. The post-layout results were
reported for two target throughputs, 20 Gbps and 0.2 Gbps,
and the corresponding results compared against each other. No
experimental measurements were performed as a part of this
work. Similarly, in [9], post-layout throughputs are reported

for all Round 2 candidates, using the ASIC 180 nm technology,
and no experimental measurements are reported.

III. DESIGN & VERIFICATION

A. System Design
The Zynq-7020 All-Programmable System on Chip (SoC)

has been selected as our target device, due to its high perfor-
mance and flexibility. In particular, our testbed takes advantage
of software/hardware co-design and the memory management
provided by the ARM platform. For each algorithm, the
optimized C implementation [10] is first run on the ARM core
and its performance recorded. As a result, after the conclusion
of the hardware measurements, hardware vs. software speed
up can be easily and fairly evaluated. Our system, composed
of three major parts, is shown in Fig. 1:

1) Processing System (PS): The Processing System con-
tains two Cortex A9 ARM Processor cores, and related logic.
The HP (High Performance) ports are used for communication
between PS and Programmable logic (PL). The input data
(message) is sent to the hash core, located in PL. After the
calculations are completed, an interrupt is generated, and the
hash value is transferred back to the ARM core.

2) Interconnects: Two AXI Interconnect IPs take care of
the data transmission between PS and PL using the memory
mapped mode, AXI Full. These IPs are added and configured
automatically using Vivado Design Suite.

3) Programmable Logic (PL): Programmable Logic is
used to implement the following major submodules:

a) Input FIFO: Input FIFO can be written to using
AXI Stream Slave (AXIS) interface and read from using
FWFT FIFO (First Word Fall Through FIFO) interface. It
supports independent read and write clock domains. It was
designed specifically for the purpose of this project, and its
interface is shown in Fig. 2.

b) Hash Core: Hardware implementation of a hash
algorithm, compliant with the top-level interface and commu-
nication protocol described in [1]. This module can be replaced
with any other hardware accelerator that can communicate
with the FWFT FIFO interface.

c) Output FIFO: Output FIFO can be written to using
the FWFT FIFO interface and read from using AXIS interface.
It is also capable of handling independent clock domains for
reading and writing. Moreover, it has an AXI Lite interface
for configuring the transfer length and start delay information.
Transfer length indicates the number of output words to be
sent using the AXI Stream interface. Start delay lets the
user to specify the delay, in clock cycles, before this module
starts transferring the output data back to the processor. Delay
countdown starts when the output is ready to send. Output
FIFO was designed specifically for the purpose of this project,
and its interface is shown in Fig. 3.

d) Clocking Wizard: Clocking Wizard was added
from the Xilinx IP catalog [11] and is capable of generating
a clock signal with a variable frequency, configurable from
software. This module can be controlled using the AXI Lite
interface and let us change the clock frequency on the fly.

Fig. 1. Block Diagram of the Testbed with the division into Programmable logic (PL), Interconnects, and Processing System (PS)

e) AXI Direct Memory Access (DMA): AXI
DMA was added to block design from the Xilinx IP catalog
[11], and converts the stream transaction protocol to the
memory mapped protocol. As a result, it allows the hardware
accelerator to read from and write to the DDR memory. The
operation of this module is fully configurable from software,
and frees the ARM processor to perform other tasks.

f) AXI Timer: AXI Timer is also a standard unit,
available in the Xilinx IP catalog. It is capable of performing
the execution time measurements for software and hardware
implementations of various functions, with the accuracy of a
single clock cycle of a system clock (by default: 10 ns).

g) Concat: The Concat module is used to concatenate
two input signals and produce a single output, active when
any of the two inputs is active. In the circuit from Fig. 1, it is
used to create an interrupt to PS, active when either an input
transfer or an output transfer is completed by AXI DMA.

In case a single clock domain was used, the maximum
clock frequency supported by our testbed would be limited
by the maximum clock frequency of the AXI DMA and
other standard IP components. To overcome this limitation,
our testbed supports two separate clock frequencies, one
for communication and auxiliary modules (AXI DMA, AXI

Fig. 2. Input FIFO

Fig. 3. Output FIFO

Timer, etc.) and the other for our dedicated hash core. The
system clock frequency, used for communication between PL
and PS, is fixed. At the same time, the Clocking Wizard is used
to generate the second clock, with a variable clock frequency,
set on the fly, under the software control. Multiple frequencies
of the second clock are then used during the binary search for
the maximum frequency supported by a given hash core.

A simplified diagram of our testbed, with two independent
clocks, is shown in Fig. 4. In this testbed, at first AXI
DMA, AXI Timer, and Interrupts are initialized. Then, Output
FIFO is configured with the desired transfer length and start
delay, and Clocking Wizard is configured with the UUT
(Unit Under Test) output clock frequency. All initializations
and configurations are done through the AXI Lite interface.
Afterward, a buffer is allocated in DDR memory to store input
data (message) of a certain size. Software implementation of
the corresponding hash algorithm is run on ARM core. The
software execution time is measured using AXI Timer. AXI
Timer is started before the hash algorithm function call. Next,
the message is transferred from the DDR memory through
AXI DMA to Input FIFO. The Hash Core starts reading data
from Input FIFO and writes the corresponding hash value to

Fig. 4. Simplified block diagram of the PL side with the indication of two independent clocks

Output FIFO. Then, Output FIFO sends back the result to
another buffer in the DDR memory through its AXI-Stream
interface and AXI DMA. After the end of this transfer, the
AXI Timer is stopped.

The entire end-to-end data transfer time and the hardware
execution time are measured together using AXI Timer. The
hash value received from the hardware side is compared with
the value calculated by software. If they are equal, we increase
the frequency of Hash core using Clocking Wizard, and rerun
the entire process again. Otherwise, we decrease the frequency.
The aforementioned procedure is repeated multiple times using
the rules of binary search. The process ends only when we
find the maximum clock frequency achievable by each hash
algorithm with the precision of 0.1 MHz. The maximum ex-
perimental clock frequency, software execution time, hardware
execution time at the maximum clock frequency, and the speed
up (hardware vs. software) is reported.

B. Verification methodology
A universal testbench has been developed in the Vivado

environment to verify the operation of our testbed using
simulation. Apart from the circuit under test (composed of
the Input FIFO, Hash Core, and Output FIFO), this testbench
includes three AXI Traffic Generators (ATG) and one FIFO
to simulate the functionality of the Zynq PS and AXI DMA.

Fig. 5. Universal testbench for Vivado environment

A simplified block diagram of the testbench is shown in Fig.
5. The first ATG module is used in the AXI Stream mode

to provide the control signals of the AXI Stream Interface
to the Input FIFO module. Data that is provided by this
ATG, configured in the AXI Stream mode, is random data.
Therefore, an additional FIFO is included in the testbench
to provide a source of desired input data. The second ATG
module configures the first ATG module (AXI Stream ATG)
with the desired configuration data, such as length of trans-
action, programmable delay, and the number of transactions,
through AXI Lite interface. The third ATG module, configured
in the AXI Lite mode, is used to configure Output FIFO.
All AXI Traffic generators are preloaded with appropriate
configurations, using the configuration COE files (address and
data). At first the FIFO is filled with the input data. Then,
all AXI Traffic Generators are started. The AXI Stream ATG
and FIFO provide the input message through the AXI Stream
interface to the Input FIFO module. Hash Core reads data
from Input FIFO, calculates hash value, and transfers it to the
Output FIFO module. Eventually, we can compare the received
hash value with the expected result to verify the functionality
of the design.

IV. RESULT

ZedBoard and Vivado 2015.4 have been used for result gen-
eration. All options of Vivado design suite including synthesis
and implementation settings are set to default mode. On the
software side, the bare metal environment and Xilinx SDK
are used for running the C code on the ARM core of Zynq.
The frequency of the primary system clock, connected to the
interface IPs, including AXI DMA, AXI Timer, etc., is set to
100 MHz. Clocking Wizard generates the second clock, under
the control of the C program, based on binary search. The
frequency of Dual Core ARM (PS) is set to 667 MHz.

A. Maximum Frequency
Fig. 6 illustrates the maximum clock frequency achieved

using static timing analysis and experimental testing, re-
spectively, for each of the investigated algorithms. For all
algorithms the experimental clock frequency is higher than that
returned by static timing analysis. This result is expected, as
CAD Tools alway take into account the worst case scenario,
and thus report the pessimistic estimates in terms of speed.
In particular, during any particular test, the critical path is not
always triggered, even for a relatively long input. Additionally,
a particular device used for testing (i.e., a particular instance
of Zynq-7020 in our case) tends to have average rather than
worst-case timing characteristics.

At the same our analysis reveals significant differences
among the behavior of various algorithms. BLAKE, Cube-
Hash, SHAvite-3, and Skein have an experimental frequency
higher than the post-place & route frequency by 80 to 100%.
In the second group, Fugue, JH, and Luffa, have the frequency
higher by 55 to 65%. The third group includes Grøstl, Hamsi,
and Keccak, and is characterized by the frequency improve-
ment factor between 19 and 30%. Finally, ECHO and Shabal
have almost identical frequencies returned by the static timing
analyzer and the experimental test.

TABLE I
DETAILED RESULT FOR MAXIMUM FREQUENCIES AND THROUGHPUTS

Algorithm

Max Freq.
Static

Timing
Analysis
[MHz]

Max Freq.
Experimental

[MHz]

Throughput
Based on
Formula
and Max

Exp. Freq.
[Gb/s]

Throughput
Based on
Exp. HW
Exe. Time

[Gb/s]

BLAKE 76.4 145.4 3.546 3.544
CubeHash 152.9 275.8 4.413 4.399
ECHO 100.1 101.1 5.999 6.000
Fugue 122.9 200.0 3.200 3.191
Grøstl 197.2 258.6 6.305 5.821
Hamsi 105.0 124.9 1.333 1.332
JH 211.6 333.3 4.740 4.726
Keccak 102.6 123.1 5.292 5.314
Luffa 152.5 247.4 7.037 7.213
Shabal 119.7 122.5 0.981 0.983
SHAvite-3 119.0 205.7 2.846 2.828
Skein 70.6 140.3 3.782 3.772

The algorithms belonging to the same group seem to have
little in common in terms of basic operations, area require-
ments, or absolute value of the post-place and route frequency.
As a result, the most likely explanation seems to be the
placement of the respective designs in different locations on
the chip, affected to a different extant by parameter variations.

Table I shows detailed values of the maximum clock fre-
quency obtained from static timing analysis and experimental
testing. Maximum experimental clock frequency was deter-
mined as a worst case value across all investigated input
sizes from 10 to 5000 kB. The fourth column, contains the
Throughput based on the formulas for the Throughput of each
algorithm, listed in Table II, with T replaced by the inverse
of the Maximum Experimental Clock Frequency. The fifth
column is the Throughput obtained by dividing the message
input size by the actual execution time of hashing in hardware,
measured using AXI Timer for the input size equal to 1000
kB.

Fig. 6. Maximum clock frequencies obtained using static timing analysis and
the experimental measurement, respectively

B. Data transaction overhead
Fig. 7(a) shows the ratio of the hardware execution time

measured using AXI Timer (including any communication
overhead) over the calculated hardware execution time (using

(a) DMA core running at 100 MHz for all algorithms (b) DMA core running at 150 MHz in case of Luffa and 100 MHz for all
other algorithms

Fig. 7. Ratio of the Experimental (Measured) Hardware Execution Time to the Theoretical (Calculated) Hardware Execution Time for different input sizes
(expressed in kilobytes)

formulas provided in [1] and in Table II), determined for
different input message sizes. As we can see, for majority of
investigated algorithms, such as BLAKE, CubeHash, ECHO,
etc., the trend is very similar. The overhead of the commu-
nication between the PS and PL is between 20 and 50% for
the messages of the size of 10 kB. For Shabal the respective
value is about 5%. This overhead decreases below 5% for
messages greater or equal to 100 kB. For 500 kB and larger
messages, the relative overhead is very small and the ratio is
almost 1. Luffa is the only exception to this trend. For this
algorithm, the ratio is 2.2 for 10 kB of data and it decreases
to 1.6 for 100 kB messages. For 500 kB and larger inputs,
the ratio is stable around 1.55. Thus, the overhead is very
substantial. The reason for this unusual behavior is that Luffa
is the only algorithm which has the Hash Core throughput
exceeding the throughput of AXI DMA (6.4 Gbit/s at 100 MHz
clock frequency). As a result, DMA core fails to feed the Hash
Core with enough data to maintain the maximum possible
throughput. Since the maximum clock frequency supported
by the DMA Core on Zynq-7020 is 150 MHz [11], we can
increase the DMA frequency to overcome this issue. Fig. 7(b)
depicts the updated graph with new result for Luffa obtained
using AXI DMA running at 150 MHz instead of 100 MHz. As
illustrated by the graph, the DMA throughput bottleneck was
completely eliminated and the behavior of Luffa is similar to
that of other algorithms.

In addition, we repeated the same experiment using a second
ZedBoard in order to demonstrate the effect of manufactoring
variations on the maximum experimental clock frequency (and
thus all other experimental timing measurements). In Table
III, we list the maximum frequency achieved using the first
and second board, average maximum frequency, and standard
deviation. It can be observed that the second board has slightly

TABLE II
THE I/O DATA BUS WIDTH (IN BITS), HASH FUNCTION EXECUTION TIME
(IN CLOCK CYCLES), AND THROUGHPUT (IN GBITS/S) FOR THE 256-BIT
VARIANT OF SHA-3 CANDIDATES. T DENOTES THE CLOCK PERIOD IN NS

AND N INDICATES THE NUMBER OF INPUT BLOCKS.

Algorithm I/O Bus
width

Hash Time
[cycles]

Throughput
[Gbit/s]

BLAKE 64 2 + 8 + 21 ·N + 4 512/(21 · T)
CubeHash 64 2 + 4 + 16 ·N + 160 + 4 256/(16 · T)
ECHO 64 3 + 24 + 26 ·N + 1 + 4 1536/(26 · T)
Fugue 32 2 + 2 ·N + 37 + 8 32/(2 · T)
Grøstl 64 3 + 21 ·N + 4 512/(21 · T)
Hamsi 32 3 + 1 + 3 · (N − 1) + 6 + 8 32/(3 · T)
JH 64 3 + 8 + 36 ·N + 4 512/(36 · T)
Keccak 64 3 + 17 + 24 ·N + 4 1088/(24 · T)
Luffa 64 3 + 4 + 9 ·N + 9 + 1 + 4 256/(9 · T)
Shabal 64 2 + 64 ·N + 64 · 3 + 16 512/(64 · T)
SHAvite-3 64 3 + 8 + 37 ·N + 4 512/(37 · T)
Skein 64 2 + 8 + 19 ·N + 4 512/(19 · T)

better results than the first one for the majority of algorithms
and the same results for the remaining ones.

C. Hardware/Software execution time speed up

Table IV shows HW/SW speed up for 5 different input
sizes and all evaluated algorithms. As we can see, BLAKE
and Shabal demonstrate speed up below 100. Hamsi, Luffa,
Skein, ECHO, SHAvite-3 and Fugue achieve the speed-up
from 100 to about 620. For CubeHash, Keccak and JH the
speed-up exceeds 2,000, and for JH it is over 20,000. All
of the aforementioned algorithms have almost stable results
for messages larger than 100 kB. For 10 kB, the majority
of them show the decrease in the speed-up caused by the
communication overhead between software and hardware.

TABLE III
EXPERIMENTAL MAXIMUM FREQUENCY RESULT ON 2 DIFFERENT

ZEDBOARD

Algorithm

Max Freq.
Exp.

Board1
[MHz]

Max Freq.
Exp.

Board2
[MHz]

Avr. Max
Freq. Exp.

[MHz]

Std. Dev.
Max Freq.

Exp.
[MHz]

BLAKE 145.4 153.8 149.6 6
CubeHash 275.8 296.3 286.0 14
ECHO 101.1 101.1 101.1 0
Fugue 200.0 200.0 200 0
Grøstl 258.6 258.6 258.6 0
Hamsi 120.2 124.2 122.2 3
JH 333.3 347.8 340.5 10
Keccak 123.1 123.1 123.1 0
Luffa 247.4 262.5 254.9 11
Shabal 122.5 140.0 131.25 12
SHAvite-3 205.7 218.7 212.2 9
Skein 140.3 148.1 144.2 6

TABLE IV
HW/SW SPEED UP FOR 5 DIFFERENT INPUT SIZES IN KB

Input Size
(KB) 10 100 500 1000 5000

BLAKE 73 87 88 89 89
CubeHash 3,326 4,105 4,165 4,181 4,184
ECHO 287 384 397 399 400
Fugue 127 119 119 119 119
Hamsi 581 619 624 624 625
JH 19,155 24,109 24,639 24,712 24,776
Keccak 2,341 3,079 3,169 3,182 3,192
Luffa 302 398 410 411 412
Shabal 6 6 6 6 6
SHAvite-3 81 102 104 105 105
Skein 92 112 114 115 115

V. CONCLUSIONS

We have developed a novel experimental testbed, based
on Zynq All Programmable System on Chip, for evaluating
hardware performance of cryptographic algorithms competing
in cryptographic contests, such as SHA-3, CAESAR, etc. This
testbed allows determining the maximum experimental clock
frequency of each core, using binary search, with the accuracy
of 0.1 MHz. The operation of each hash core and surrounding
FIFOs, can be first verified through simulation, and then tested
experimentally using ZedBoard. The testbed can be used to
correctly measure performance of designs with the maximum
throughput of 64 bit · 150 MHz = 9.6 Gbit/s.

The correct operation of the testbed was demonstrated using
the implementations of 12 Round 2 SHA-3 Candidates. For
all these hash functions, the overhead of the communication
between PS and PL was below 5% for 100 kB messages and
negligible for messages above 500 kB. All algorithms have
also demonstrated significant speed up vs. their execution in
software on the same chip, in spite of the substantial speed
of the ARM core, operating at 667 MHz. Our experiments
have also demonstrated that the maximum experimental clock
frequency was always higher than the post-place and layout
frequency calculated by Vivado, using static timing analysis.

This fact demonstrates that the tool correctly returns the
worst-case boundries, not likely to be reached in practice. At
the same time, somewhat unexpectedly, the spread of ratios
experimental to post-place and route frequency is very large,
ranging from 1 to 2. This fact can be explained by a different
influence of parameter variations, on the critical path of the
each hash core, due to a different physical location (placement)
of these critical paths in the FPGA fabric.

Our future work will involve an attempt at further expla-
nation of the observed differences among various algorithms.
We will also extend our environment to handle other types of
cryptographic transformations, such as authenticated ciphers
and post-quantum public key cryptosystems. Finally, we will
also investigate at the use of other types of prototyping boards,
including the FPGA boards with the PCI Express interface.

REFERENCES

[1] E. Homsirikamol, M. Rogawski, and K. Gaj, ”Comparing Hardware
Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs,”
Cryptology ePrint Archive, Rep. 2010/445, Aug. 2010.

[2] ARM. AMBA Specifications. [Online]. Available: http://www.arm.com/
products/system-ip/amba-specifications.php

[3] GMU Source Code. (2015, Apr. 15). George Mason University.
[Online]. Available: https://cryptography.gmu.edu/athena/index.php?id=
source codes, Accessed Oct. 10, 2016.

[4] D. Fedoryka, ”Fast Implementation of the Secure Hash Algorithm SHA-
256 in FPGA”, Master’ Thesis, George Mason University, July 2004.

[5] K. Kobayashi, J. Ikegami, M. Knežević, X. Guo, S. Matsuo, S. Huang, L.
Nazhandali, U. Kocabas, J. Fan, A. Satoh, I. Verbauwhede, K. Sakiyama,
K. Ohta, ”A Prototyping Platform for Performance Evaluation of SHA-
3 Candidates,” IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST 2010), pp. 60-63, Jun. 2010.

[6] F. K. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller,
M. Rogawski, H. Kaeslin, and J. P. Kaps ”Lessons Learned from
Designing a 65 nm ASIC for Evaluating Third Round SHA-3
Candidates”, The Third SHA-3 Candidate Conference, Washington
DC, 2012. Available: http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/
March2012/Program SHA3 March2012.html

[7] X. Guo, M. Srivastav, S. Huang, D. Ganta, M. B. Henry, L. Nazhandali,
and P. Schaumont, ”ASIC implementations of five SHA-3 finalists,”
2012 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Mar. 12-16, 2012, pp. 1006-1011.

[8] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, and F.
Gürkaynak. ”Developing a hardware evaluation method for SHA-3
candidates” In Cryptographic Hardware and Embedded Systems, CHES
2010, LNCS 6225, pp. 248-263, 2010.

[9] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt,
and A. Szekely. ”High-speed hardware implementations of BLAKE,
Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH,
Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein”. Cryptology ePrint
Archive, Report 2009/510. Available: http://eprint.iacr.org/2009/510.

[10] Cryptographic HASH and SHA-3 Standard Development. (2015, Aug.
5). NIST. [Online]. Available: http://csrc.nist.gov/groups/ST/hash/index.
html Accessed Oct. 10, 2016.

[11] AXI DMA v7.1 LogiCORE IP Product Guide (PG021), Xilinx, Inc.,
2015.

[12] M. Knezevic, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh,
U. Kocabas, J. Fan, T. Katashita, T. Sugawara, K. Sakiyama, I.
Verbauwhede, K. Ohta, N. Homma, and T. Aoki, ”Fair and consistent
hardware evaluation of fourteen round two SHA-3 candidates,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,
issue 5, 2012, pp. 827-840.

