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INTRODUCTION

I Hardware performance evaluation of candidates competing in
cryptographic contests, such as SHA-3 and CAESAR, is very important
for ranking their suitability for standardization.

I One of the most essential performance metrics is the throughput, which
highly depends on the algorithm, hardware implementation architecture,
coding style, and options of tools. The maximum throughput is
calculated based on the maximum clock frequency supported by each
algorithm.

I In this project, we have developed a universal testbed, which is capable
of measuring the maximum clock frequency experimentally, using a
prototyping board. We are targeting cryptographic hardware cores, such
as implementations of SHA-3 candidates. Our testbed is designed using
a Zynq platform and takes advantage of software/hardware co-design.
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I We measured the maximum clock frequency and the execution time of
12 Round 2 SHA-3 candidates experimentally on ZedBoard and
compared the results with the frequencies reported by Xilinx Vivado.

I Experimental benchmarking of cryptographic algorithms has been
performed previously on different platforms other than Zynq.
1. Maximum frequency of SHA-256 has been measured experimentally using the SLAAC-1V board

based on Xilinx Virtex VCV 1000.
2. Experimental measurement of the hardware performance of 14 round 2 SHA-3 candidates has been

performed using the SASEBO-GII FPGA board.

SYSTEM DESIGN

I Simplified block diagram of the PL side with the indication of
two independent clocks:
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IBlock Diagram of the Testbed with the division into
Programmable logic (PL), Interconnects, and Processing
System (PS):
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ICustom IPs:
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VERIFICATION METHODOLOGY

I A universal testbench has been developed in the Vivado environment to
verify the operation of our testbed using simulation.

I ATG (AXI Traffic Gen) IP has limitation in case of generating specific
data in AXI stream mode through tdata port. As a result, we used a
separate FIFO which is already filled with our desired data and AXI
stream ATG only provides control signals.

I AXI Lite ATGs are used to configure Output FIFO and AXI Stream
ATG.

Universal testbench for Vivado environment
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RESULTS: Maximum Frequency

I ZedBoard and Vivado 2015.4 have been used for result generation. All
options of Vivado design suite including synthesis and implementation
settings are set to default mode.

I On the software side, the bare metal environment and Xilinx SDK are
used for running the C code on the ARM core of Zynq.

Maximum clock frequencies obtained using static timing
analysis and the experimental measurement, respectively
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Maximum frequencies and throughputs

Algorithm

Max Freq.
Static
Timing
Analysis
[MHz]

Max Freq.
Experimental

[MHz]

Throughput
Based on
Formula
and Max
Exp. Freq.
[Gb/s]

Throughput
Based on
Exp. HW
Exe. Time
[Gb/s]

BLAKE 76.4 145.4 3.546 3.544
CubeHash 152.9 275.8 4.413 4.399
ECHO 100.1 101.1 5.999 6.000
Fugue 122.9 200.0 3.200 3.191
Grøstl 197.2 258.6 6.305 5.821
Hamsi 105.0 124.9 1.333 1.332
JH 211.6 333.3 4.740 4.726
Keccak 102.6 123.1 5.292 5.314
Luffa 152.5 247.4 7.037 7.213
Shabal 119.7 122.5 0.981 0.983
SHAvite-3 119.0 205.7 2.846 2.828
Skein 70.6 140.3 3.782 3.772

I Max Freq. Experimental was determined as a worst case value across
all investigated input sizes from 10 to 5000 kB.

I Throughput Based on Exp. HW Exe. Time was obtained by dividing the
message input size by the actual execution time of hashing in hardware,
measured using AXI Timer for the input size equal to 1000 kB.

Formulas for the execution time and throughput
Notation: T - clock period in ns, N - number of input blocks

Algorithm I/O Bus
width

Hash Time
[cycles]

Throughput
[Gbit/s]

BLAKE 64 2 + 8 + 21 · N + 4 512/(21 · T )
CubeHash 64 2 + 4 + 16 · N + 160 + 4 256/(16 · T )
ECHO 64 3 + 24 + 26 · N + 1 + 4 1536/(26 · T )
Fugue 32 2 + 2 · N + 37 + 8 32/(2 · T )
Grøstl 64 3 + 21 · N + 4 512/(21 · T )
Hamsi 32 3 + 1 + 3 · (N − 1) + 6 + 8 32/(3 · T )
JH 64 3 + 8 + 36 · N + 4 512/(36 · T )
Keccak 64 3 + 17 + 24 · N + 4 1088/(24 · T )
Luffa 64 3 + 4 + 9 · N + 9 + 1 + 4 256/(9 · T )
Shabal 64 2 + 64 · N + 64 · 3 + 16 512/(64 · T )
SHAvite-3 64 3 + 8 + 37 · N + 4 512/(37 · T )
Skein 64 2 + 8 + 19 · N + 4 512/(19 · T )

RESULTS: SpeedUp vs. Software

HW/SW speed up for three different input sizes in KB
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I Only algorithms with optimized software implementation and ARM
architecture support are shown in this graph.

RESULTS: Data Transaction Overhead

DMA core running at 100 MHz for all algorithms

DMA core running at 150 MHz in case of Luffa and 100 MHz
for all other algorithms

RESULTS: Experiment on Two Different ZedBoards
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CONCLUSIONS

I The testbed can be used to correctly measure performance of designs
with the maximum throughput up to 64 bit · 150 MHz = 9.6 Gbit/s.

I For all the investigated hash functions, the overhead of the
communication between PS and PL was below 5% for 100 kB messages
and negligible for messages above 500 kB.

I All algorithms have also demonstrated significant speed up vs. their
execution in software on the same chip, in spite of the substantial speed
of the ARM core, operating at 667 MHz.

I Our experiments have also demonstrated that the maximum
experimental clock frequency was always higher than the post-place and
route frequency calculated by Vivado using static timing analysis.

I At the same time, somewhat unexpectedly, the spread of ratios
experimental to post-place and route frequency is very large, ranging
from 1 to 2. This fact can be explained by a different influence of
parameter variations and operating conditions on the critical path of
each hash core, due to a different physical location (placement) of these
critical paths in the FPGA fabric
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