Battles of Cryptographic Algorithms: From AES to CAESAR in Software & Hardware

Kris Gaj George Mason University

Collaborators

Joint 3-year project (2010-2013) on benchmarking cryptographic algorithms in software and hardware sponsored by

software

FPGAs

ASICs

Daniel J. Bernstein, University of Illinois at Chicago


Jens-Peter Kaps George Mason University

Patrick Schaumont Virginia Tech

CERG @ GMU http://cryptography.gmu.edu/

CERG

Cryptographic Engineering

10 PhD students 4 MS students co-advised by Kris Gaj & Jens-Peter Kaps

Outline

- Introduction & motivation
- Cryptographic standard contests

> AES

> eSTREAM

> SHA-3

- > CAESAR
- Progress in evaluation methods
- Benchmarking tools
- Open problems

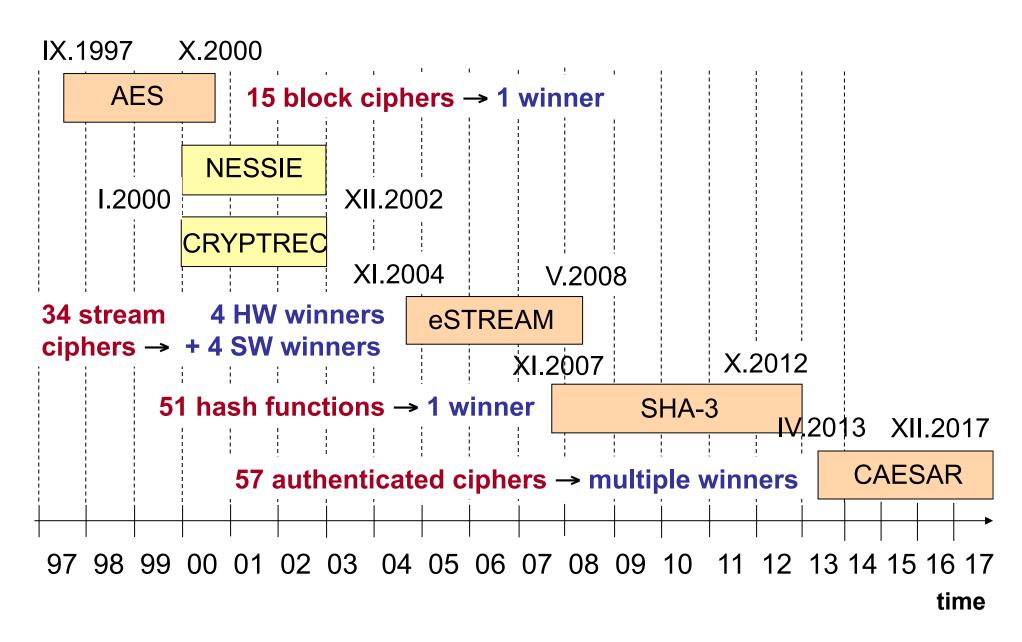
Cryptography is everywhere We trust it because of standards

Buying a book on-line

Teleconferencing over Intranets

Withdrawing cash from ATM

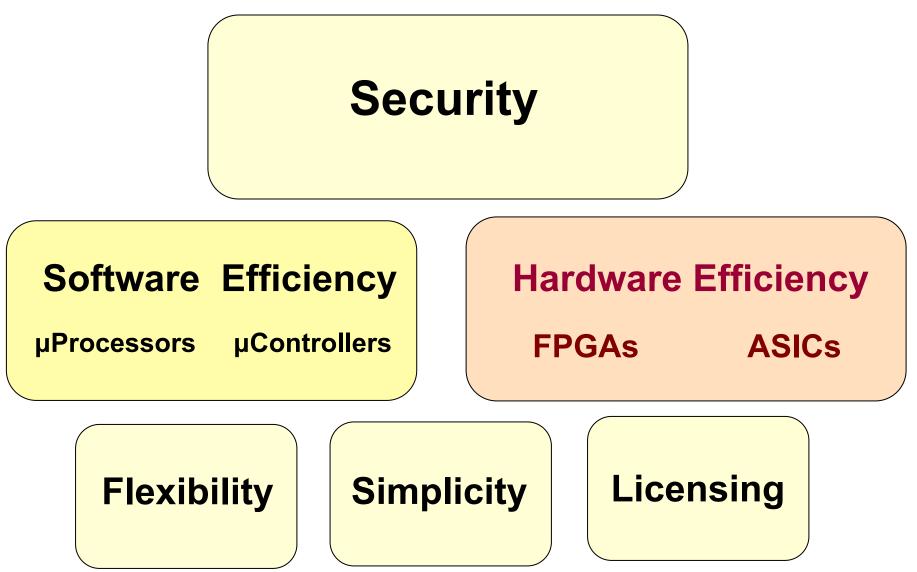
Backing up files on remote server


Cryptographic Standards Before 1997

Secret-Key Block Ciphers

time

Cryptographic Standard Contests



Why a Contest for a Cryptographic Standard?

- Avoid back-door theories
- Speed-up the **acceptance** of the standard
- Stimulate non-classified research on methods of designing a specific cryptographic transformation
- Focus the effort of a relatively small cryptographic community

Cryptographic Contests - Evaluation Criteria

Specific Challenges of Evaluations in Cryptographic Contests

- Very wide range of possible applications, and as a result performance and cost targets
 - speed:tens of Mbits/s to hundreds Gbits/scost:single cents to thousands of dollars
- Winner in use for the next 20-30 years, implemented using

technologies not in existence today

- Large number of candidates
- Limited time for evaluation
- The results are final

Mitigating Circumstances

- Performance of competing algorithms tend to very significantly (sometimes as much as 500 times)
- Only relatively large differences in performance matter (typically at least 20%)
- Multiple groups independently implement the same algorithms (catching mistakes, comparing best results, etc.)
- Second best may be good enough

Rules of the Contest

Each team submits

Detailed		Justification	Tentative			
cipher		of design	results			
specification		decisions	of cryptanalysis			
	Source code in C	Source code in Java	Test vectors			

AES: Candidate Algorithms

Canada: **CAST-256** Deal USA: Mars RC6 Twofish Safer+ HPC **Costa Rica:** Frog

Germany: Magenta

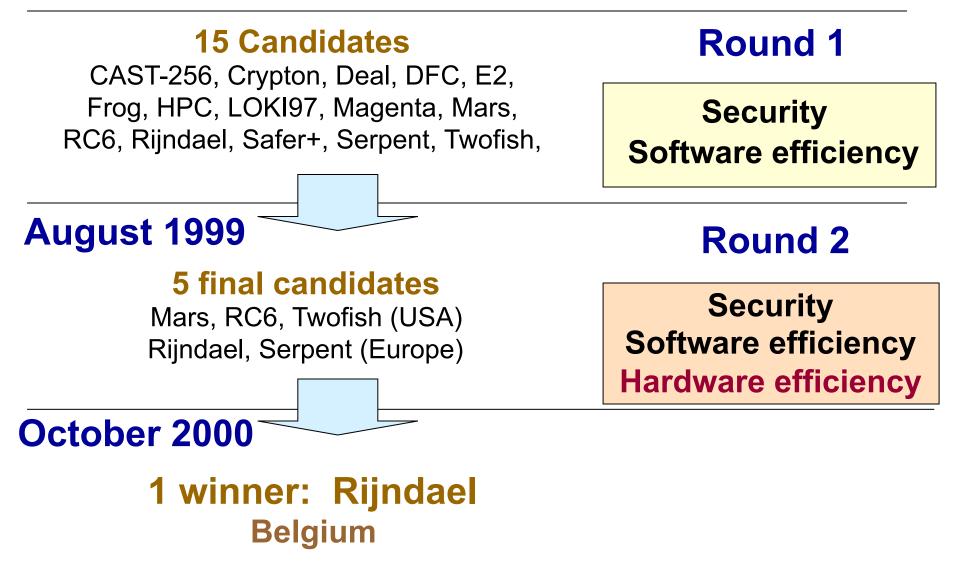
Belgium: Rijndael

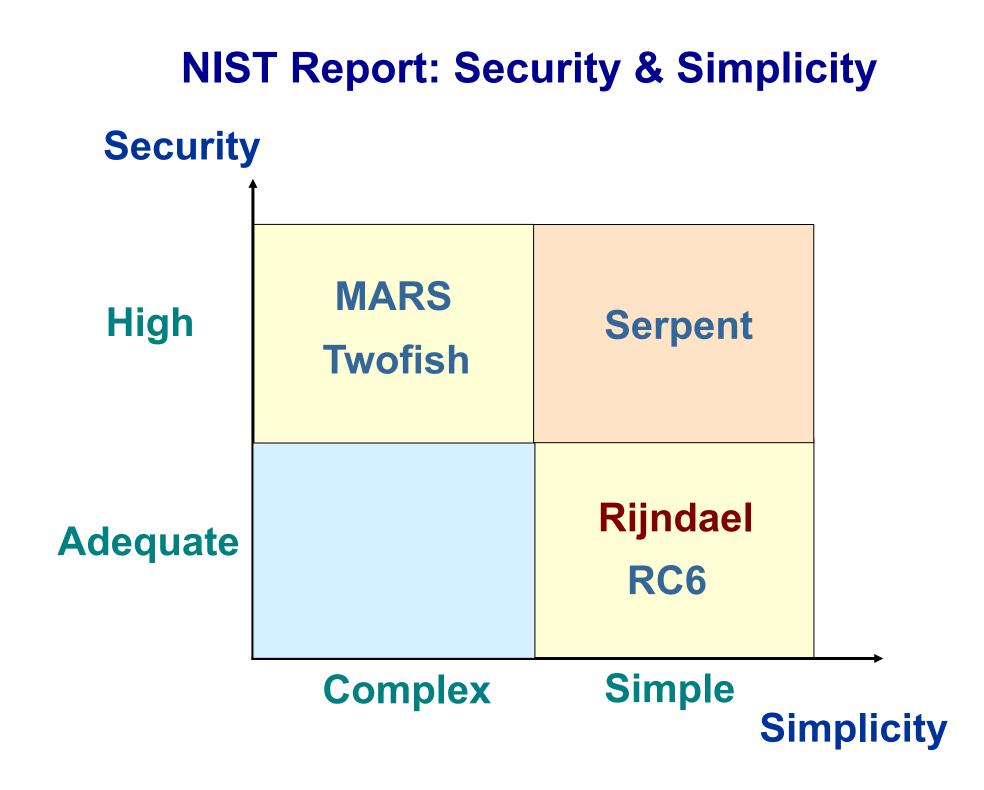
France:

DFC

Israel, UK, Norway:

Serpent

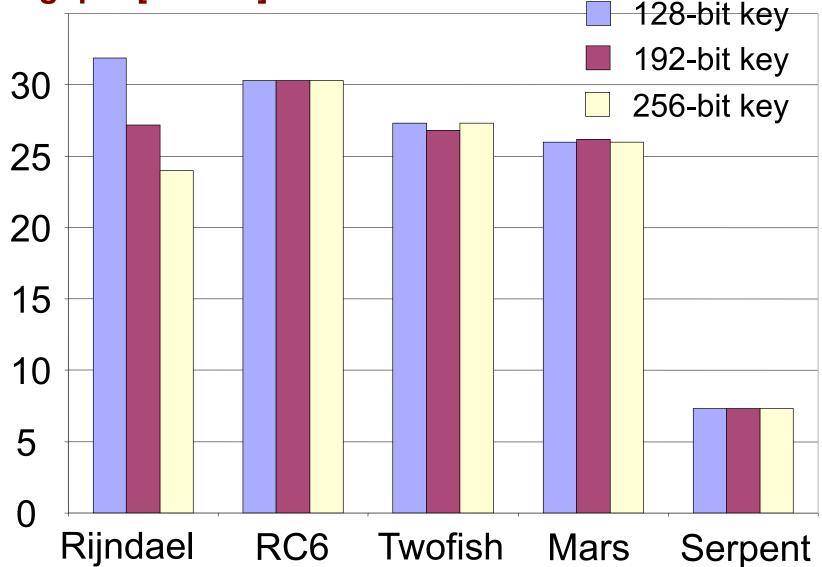

Korea: Crypton Japan: E2



Australia: LOKI97

AES Contest Timeline

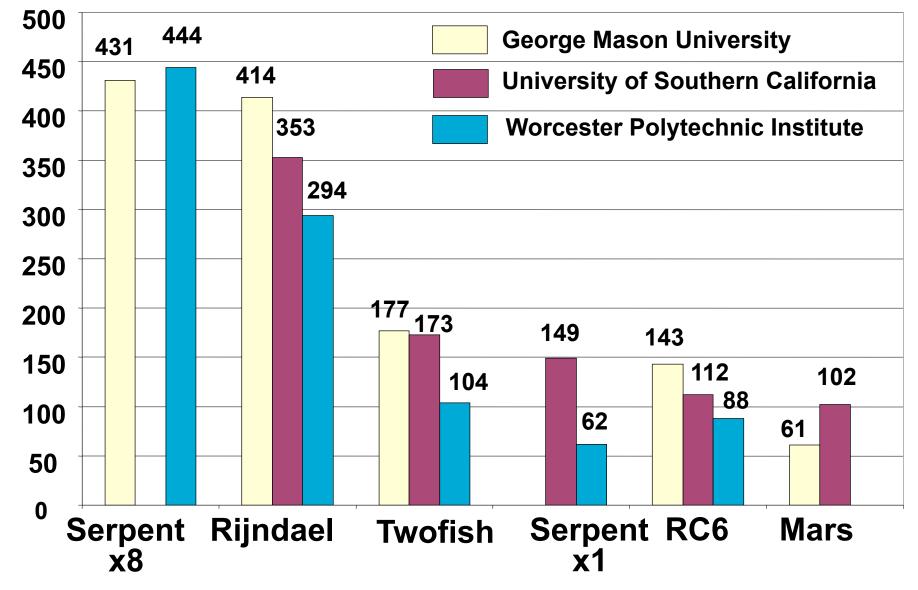
June 1998



Efficiency in software: NIST-specified platform

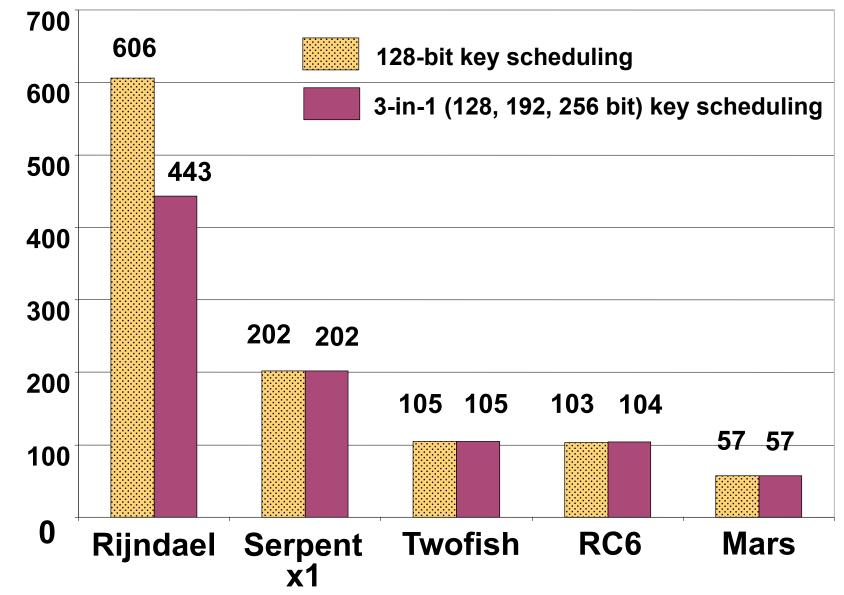
200 MHz Pentium Pro, Borland C++

Throughput [Mbits/s]



NIST Report: Software Efficiency									
Encryption and Decryption Speed									
	32-bit processors		64-bit processors		DSPs				
high	RC6		<mark>Rijndael</mark> Twofish		<mark>Rijndael</mark> Twofish				
medium	<mark>Rijndael</mark> Mars Twofish		Mars RC6		Mars RC6				
low	low Serpent		Serpent		Serpent				

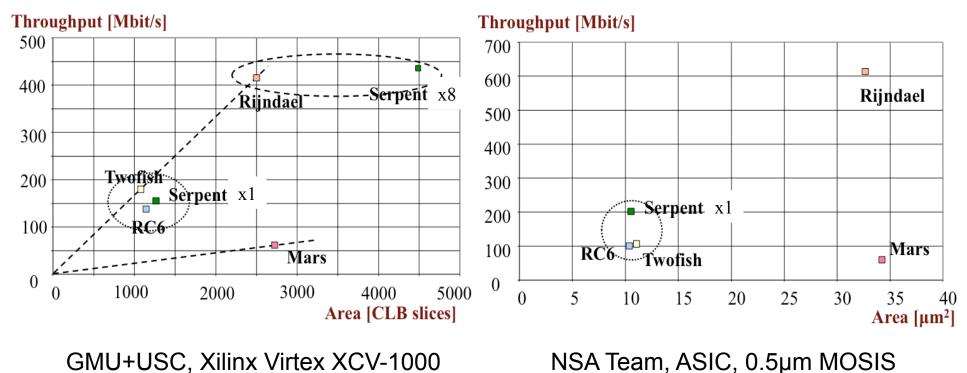
Efficiency in FPGAs: Speed


Xilinx Virtex XCV-1000

Throughput [Mbit/s]

Efficiency in ASICs: Speed MOSIS 0.5µm, NSA Group

Throughput [Mbit/s]

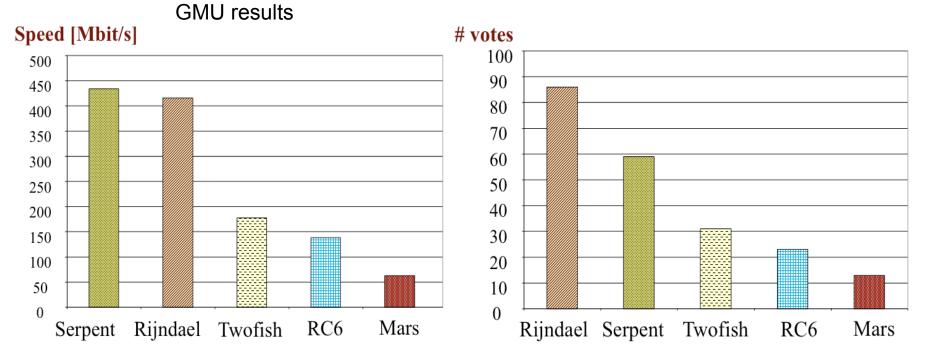


Lessons Learned

Results for ASICs matched very well results for FPGAs, and were both very different than software

FPGA

Serpent fastest in hardware, slowest in software



Hardware results matter!

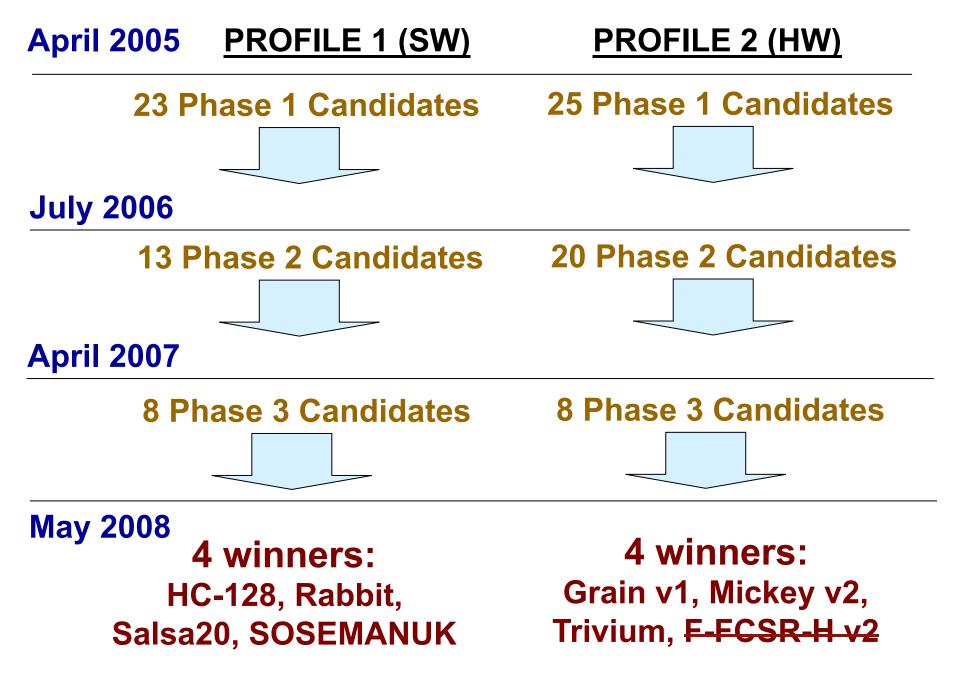
Final round of the AES Contest, 2000

Speed in FPGAs

Votes at the AES 3 conference

eSTREAM Contest 2004-2008

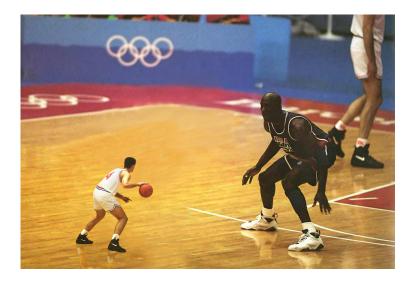
eSTREAM - Contest for a new stream cipher standard

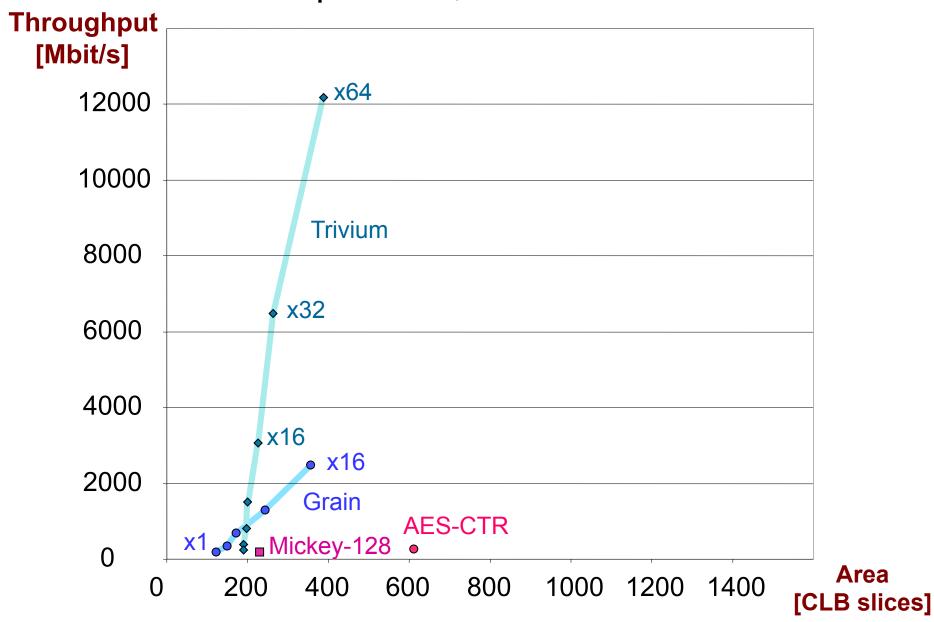

PROFILE 1 (SW)

- Stream cipher suitable for software implementations optimized for high speed
- Key size 128 bits
- Initialization vector 64 bits or 128 bits

PROFILE 2 (HW)

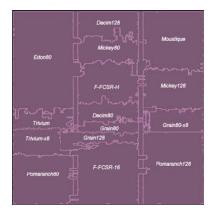
- Stream cipher suitable for hardware implementations with limited memory, number of gates, or power supply
- Key size 80 bits
- Initialization vector 32 bits or 64 bits


eSTREAM Contest Timeline


Lessons Learned

Very large differences among 8 leading candidates

- ~30 x in terms of area (Grain v1 vs. Edon80)
- ~500 x in terms of the throughput to area ratio(Trivium (x64) vs. Pomaranch)

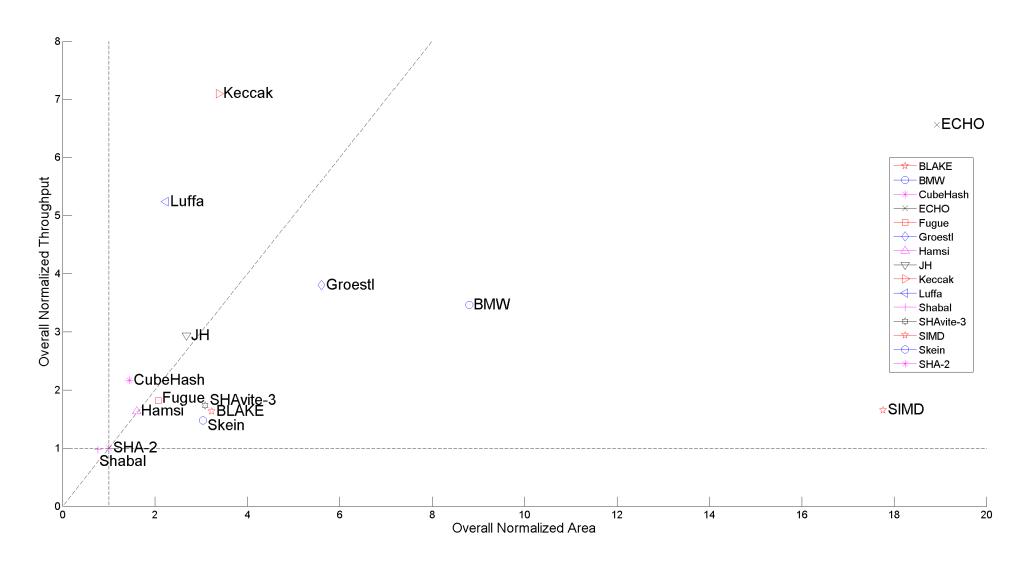

Hardware Efficiency in FPGAs Xilinx Spartan 3, GMU SASC 2007

eSTREAM ASIC Evaluations

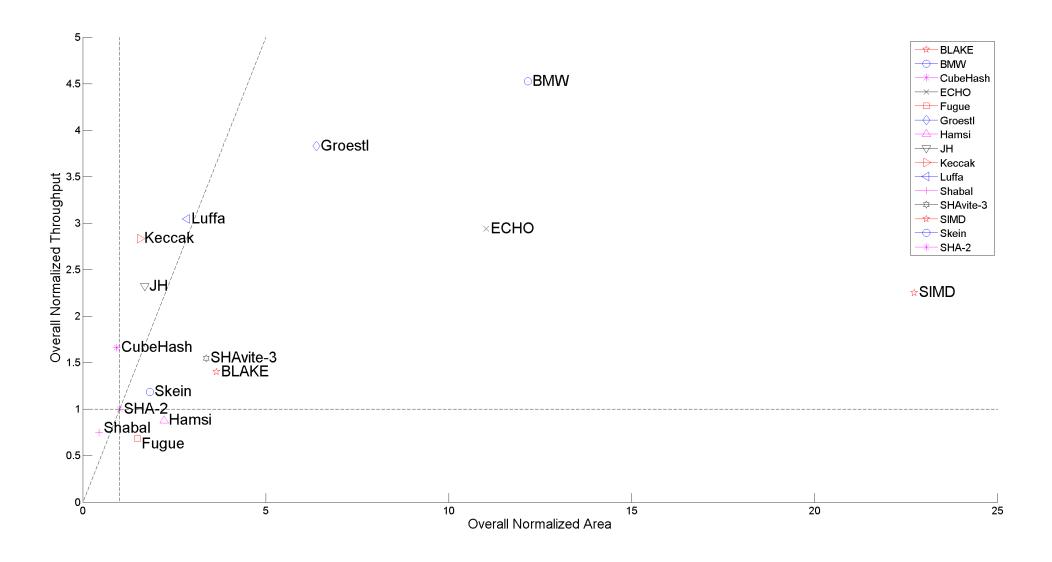
New compared to AES:

- Post-layout results, followed by
- Actually fabricated ASIC chips (0.18µm CMOS)

- Two representative applications
 > WLAN @ 10 Mbits/s
 > RFID / WSN @ 100 kHz clock
- More complex performance measures
 > Power x Area x Time



NIST SHA-3 Contest - Timeline


SHA-3 Round 2

Throughput vs. Area Normalized to Results for SHA-256 and Averaged over 11 FPGA Families – 256-bit variants

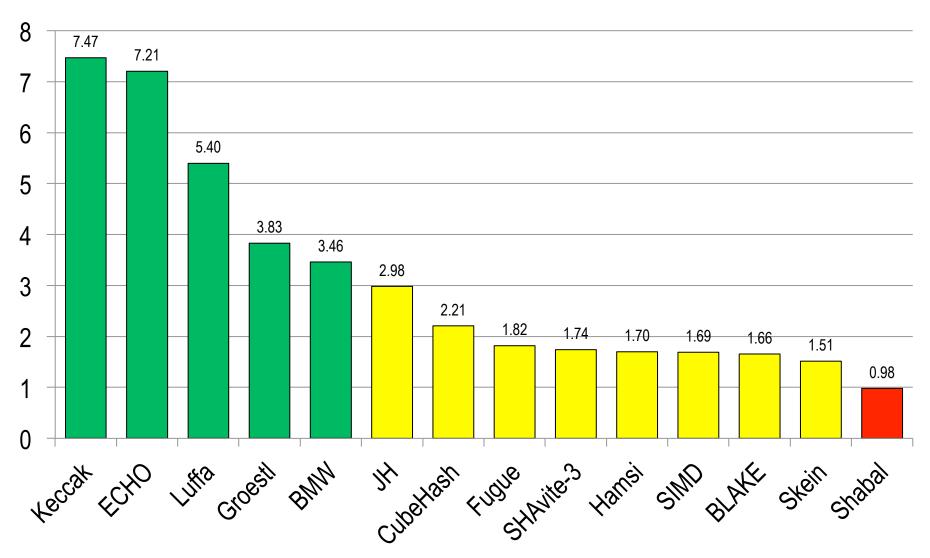
32

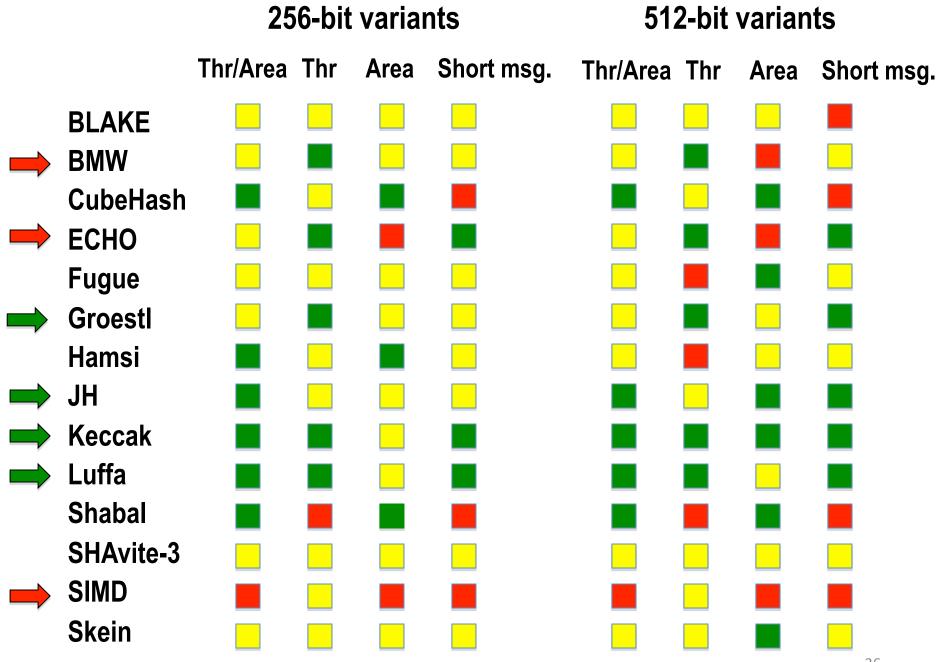
Throughput vs. Area Normalized to Results for SHA-512 and Averaged over 11 FPGA Families – 512-bit variants

Performance Metrics

Primary

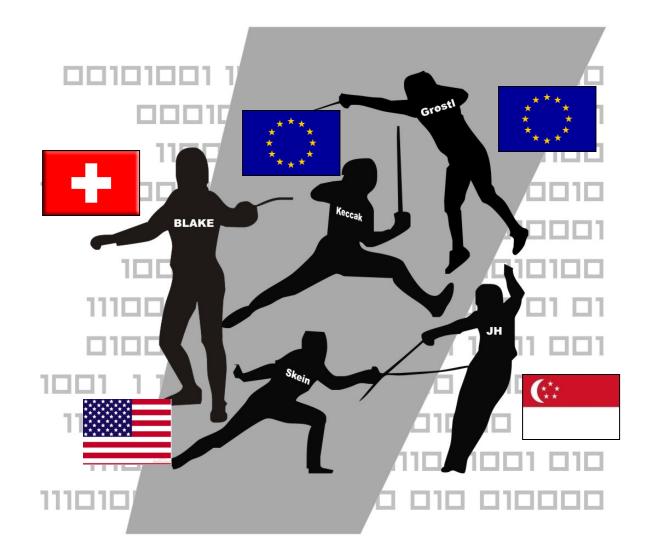
1. Throughput


3. Throughput / Area


Secondary

2. Area

4. Hash Time for Short Messages (up to 1000 bits)


Overall Normalized Throughput: 256-bit variants of algorithms Normalized to SHA-256, Averaged over 10 FPGA families

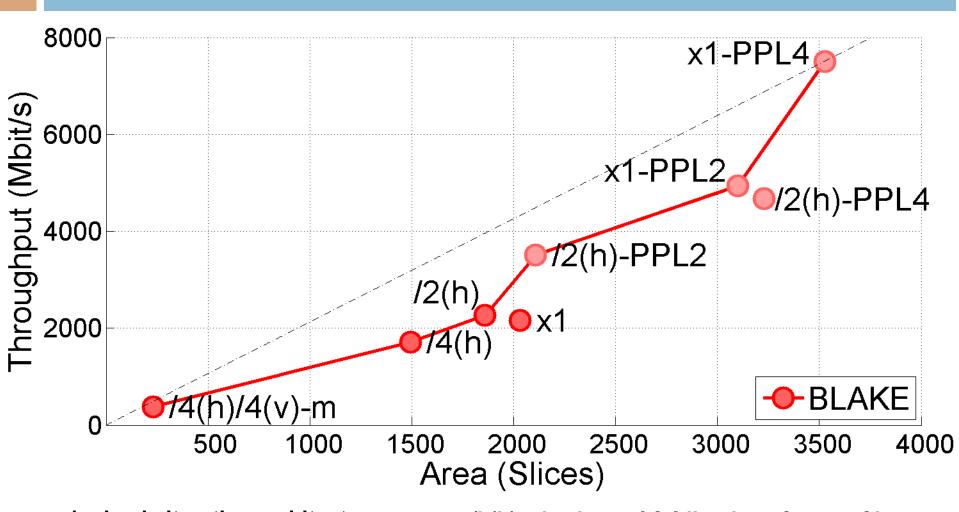
SHA-3 Round 3

SHA-3 Contest Finalists

New in Round 3

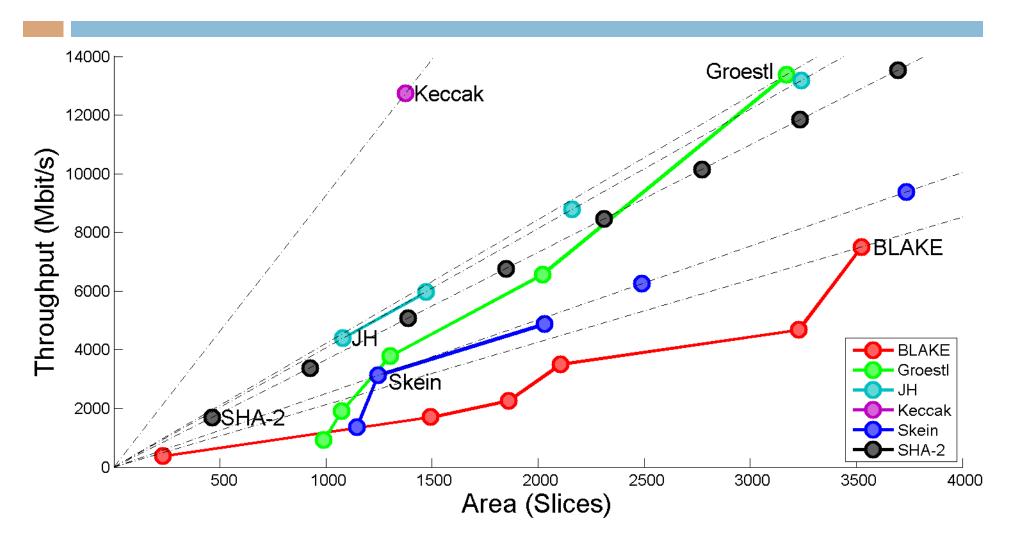
- Multiple Hardware Architectures
- Effect of the Use of Embedded Resources (Block RAMs, DSP units)
- Low-Area Implementations

Study of Multiple Architectures

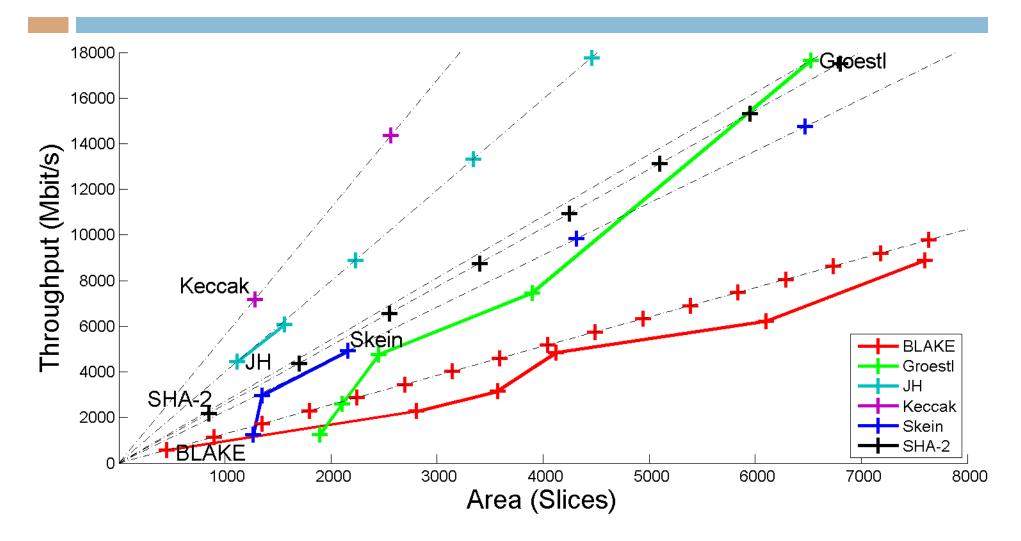

- Analysis of multiple hardware architectures per each finalist, based on the known design techniques, such as
 - Folding
 - Unrolling
 - Pipelining
- Identifying the best architecture in terms of the throughput to area ratio
- Analyzing the flexibility of all algorithms in terms of the speed vs. area trade-offs

Benchmarking of the SHA-3 Finalists by CERG GMU

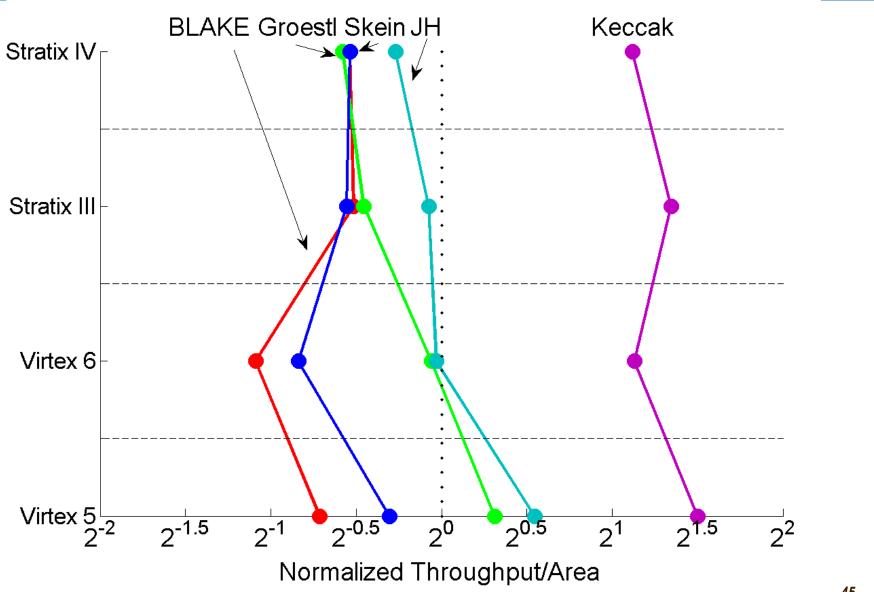
- 6 algorithms (BLAKE, Groestl, JH, Keccak, Skein, SHA-2)
- 2 variants (with a 256-bit and a 512-bit output)
- 7 to 12 different architectures per algorithm
- 4 modern FPGA families (Virtex 5, Virtex 6, Stratix III, Stratix IV)

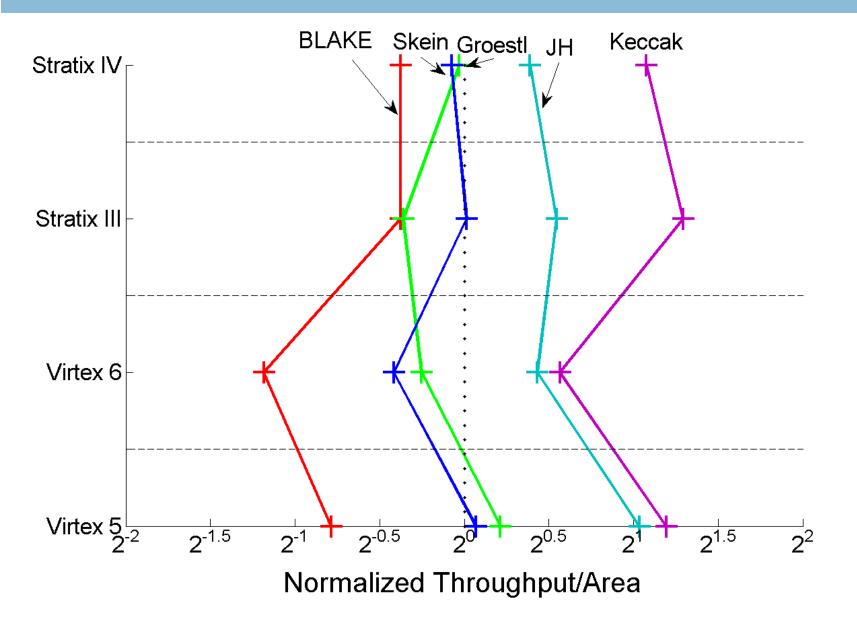

Total: ~ 120 designs ~ 600+ results

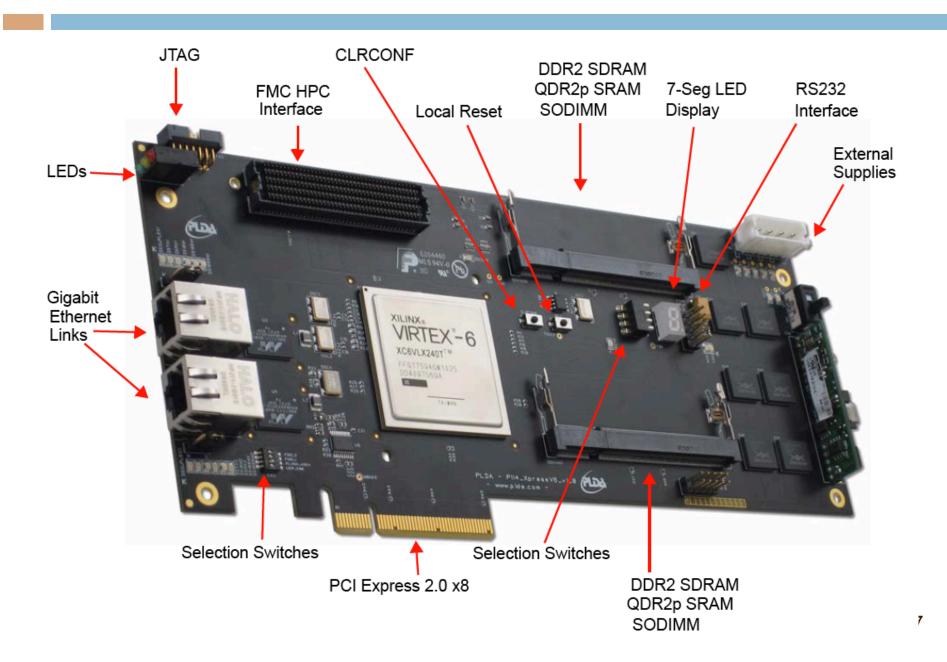
BLAKE-256 in Virtex 5

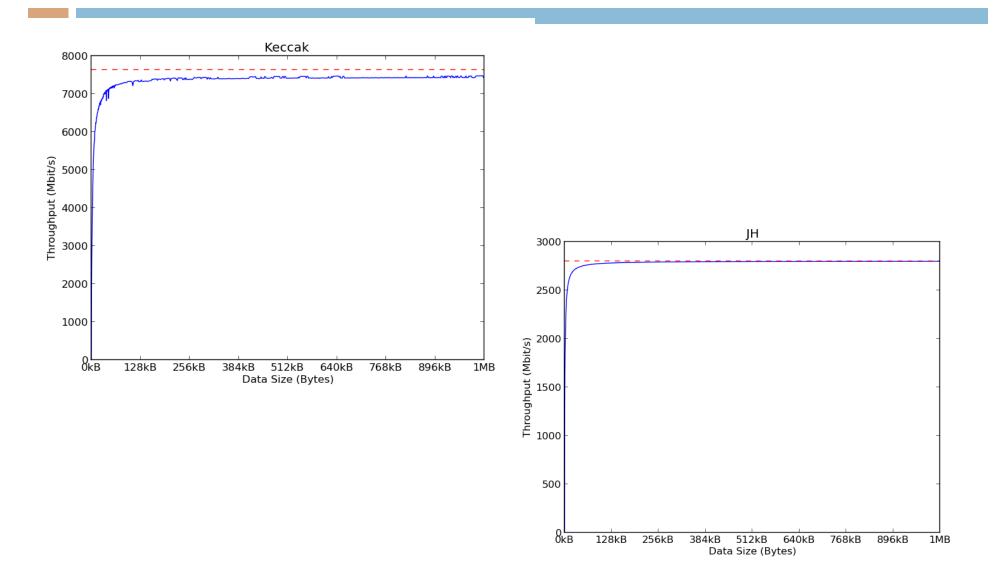


x1 – basic iterative architecture /k(h) – horizontal folding by a factor of k xk – unrolling by a factor of k /k(v) – vertical folding by a factor of k xk-PPLn – unrolling by a factor of k with n pipeline stages 42

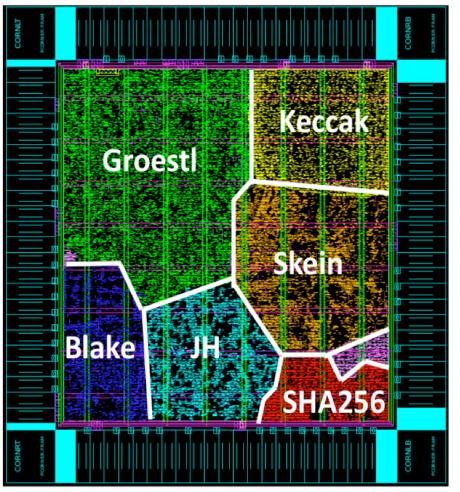

256-bit variants in Virtex 5


512-bit variants in Virtex 5

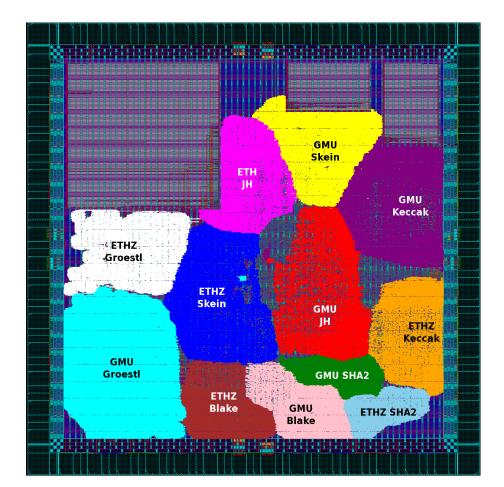

256-bit variants in 4 high-performance FPGA families


512-bit variants in 4 high-performance FPGA families

Experimental Testing using PCI Express Boards

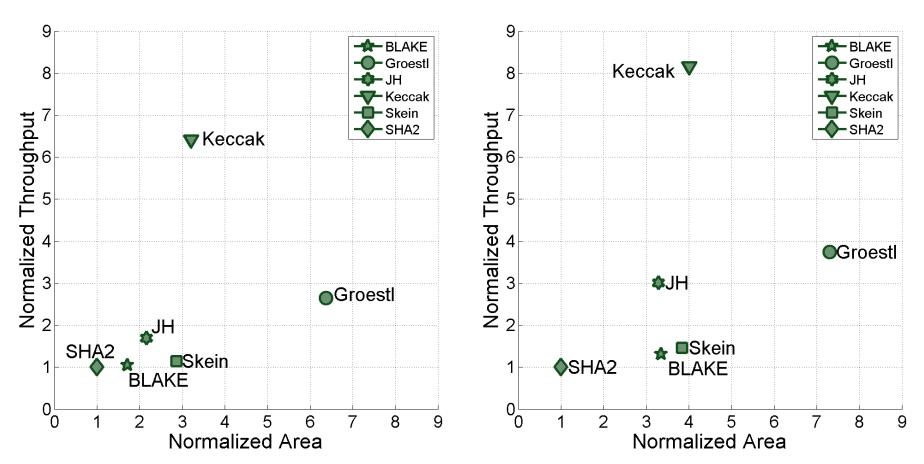


Experimental Throughput Measurements

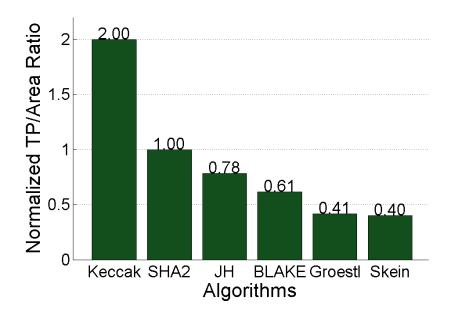


Virginia Tech ASIC

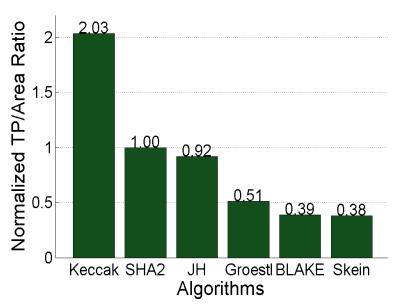
- IBM MOSIS 130nm process
- The first ASIC implementing 256-bit variants of 5 final SHA-3 candidates
- Taped-out in Feb. 2011, successfully tested in Summer 2011
- Multiple chips made available to other research labs


GMU/ETH Zurich ASIC

- standard-cell CMOS 65nm UMC ASIC process
- 256-bit variants of algorithms
- Taped-out in Oct. 2011, successfully tested in Feb. 2012


Correlation Between ASIC Results and FPGA Results

ASIC


Stratix III FPGA

Correlation Between ASIC Results and FPGA Results

ASIC

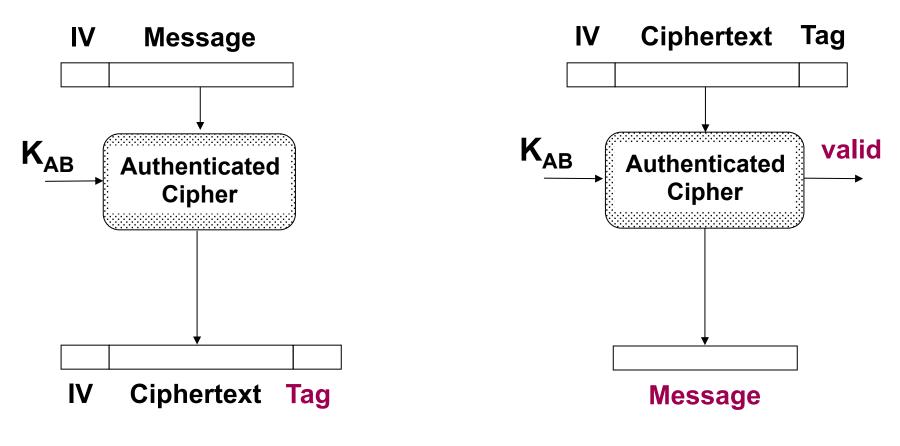
Stratix III FPGA

Progress in Evaluation Methods

FPGA Evaluations - Summary

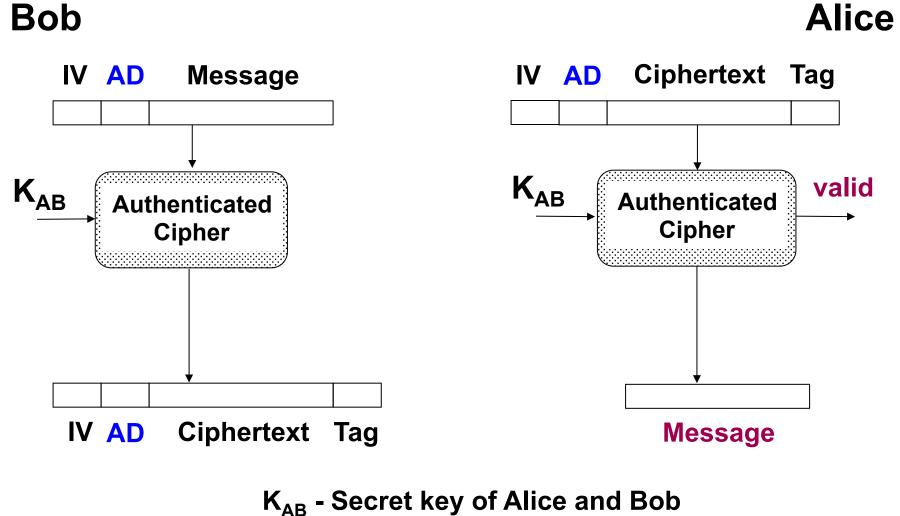
	AES	eSTREAM	SHA-3
Multiple FPGA families	Νο	Νο	Yes
Multiple architectures	Νο	Yes	Yes
Use of embedded resources	Νο	Νο	Yes
Primary optimization target	Throughput	Area Throughput/ Area	Throughput/ Area
Experimental results	Νο	Νο	Yes
Availability of source codes	Νο	Νο	Yes
Specialized tools	Νο	Νο	Yes

ASIC Evaluations - Summary


	AES	eSTREAM	SHA-3
Multiple processes/ libraries	Νο	No	Yes
Multiple architectures	Νο	Yes	Yes
Primary optimization target	Throughput	Power x Area x Time	Throughput /Area
Post-layout results	Νο	Yes	Yes
Experimental results	Νο	Yes	Yes
Availability of source codes	Νο	Νο	Yes
Specialized tools	Νο	Νο	Νο

CAESAR Contest 2013-2017

Authenticated Ciphers


Bob

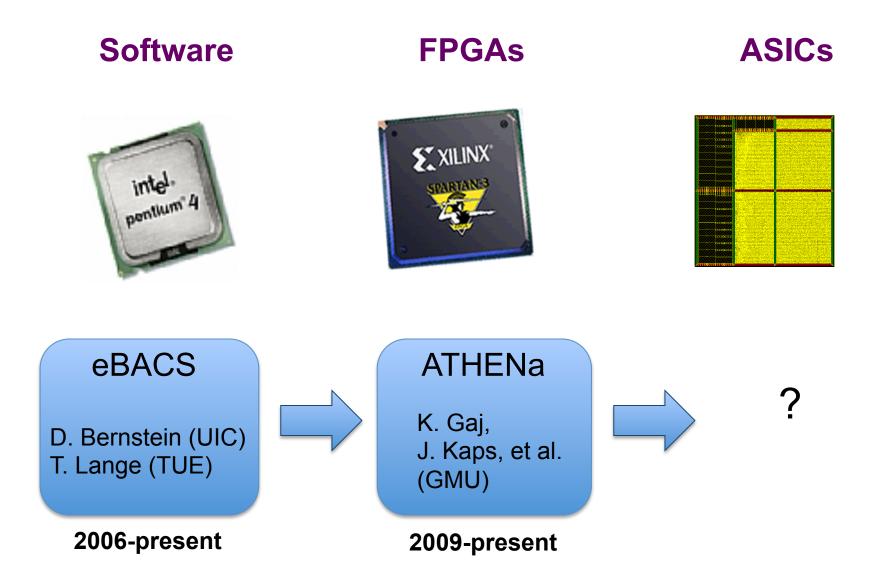
Alice

K_{AB} - Secret key of Alice and Bob IV – Initialization Vector

Authenticated Ciphers with Associated Data

IV – Initialization Vector, AD – Associated Data

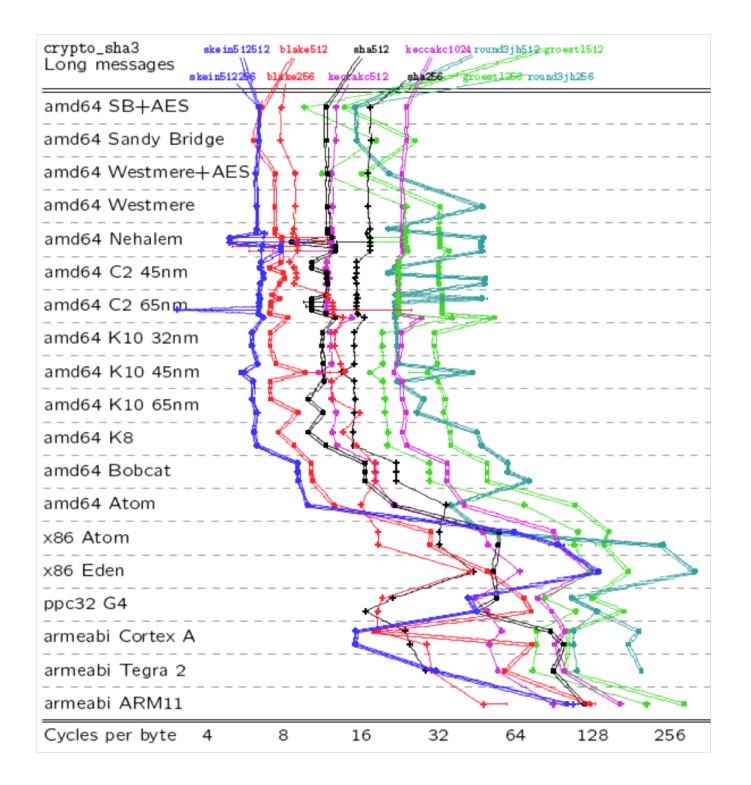
Contest Timeline


- 2014.03.15: Deadline for **first-round submissions**
- 2014.04.15: Deadline for **first-round software**
- 2015.01.15: Announcement of second-round candidates
- 2015.04.15: Deadline for second-round Verilog/VHDL
- 2015.12.15: Announcement of third-round candidates
- 2016.12.15: Announcement of finalists
- 2017.12.15: Announcement of final portfolio

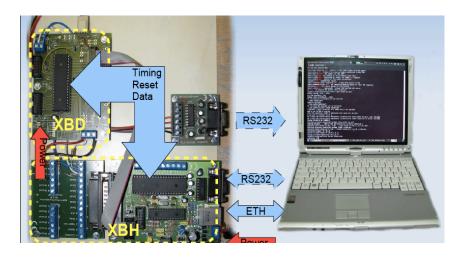
Preliminary Work @ CERG GMU

- Development of a standard input/output interface
- Implementation of the most popular authenticated ciphers:
 - AES-GCM
 - AES-OCB3
 - AES-CCM
- Enhancing capabilities of **benchmarking tools**
- Customizing database of results

Tools for Benchmarking Implementations of Cryptography


Benchmarking in Software: eBACS

eBACS: ECRYPT Benchmarking of Cryptographic Systems:


http://bench.cr.yp.to/

SUPERCOP - toolkit developed by D. Bernstein and T. Lange for measuring performance of cryptographic software

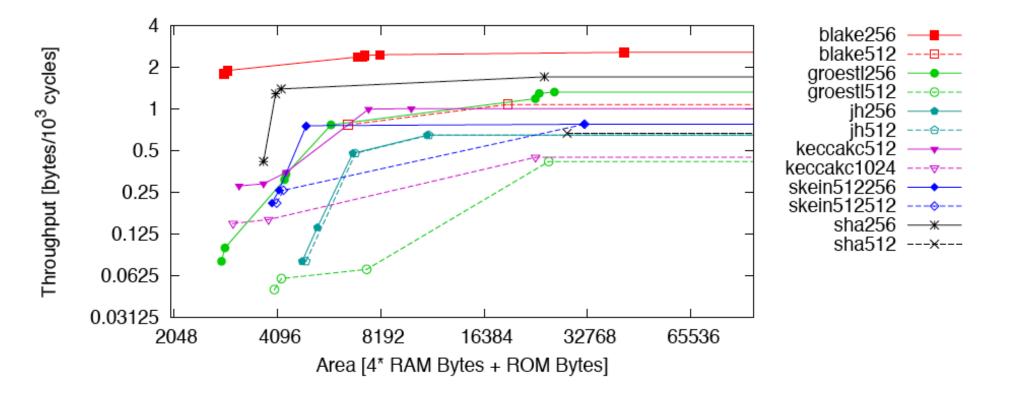
- measurements on multiple machines (currently over 90)
- each implementation is recompiled multiple times (currently over 1600 times) with various compiler options
- time measured in clock cycles/byte for multiple input/output sizes
- median, lower quartile (25th percentile), and upper quartile (75th percentile) reported
- standardized function arguments (common API)

SUPERCOP Extension for Microcontrollers – XBX: 2009-present

Developers:

- Christian Wenzel-Benner,
 ITK Engineering AG, Germany
- Jens Gräf, LiNetCo GmbH, Heiger, Germany

Allows on-board timing measurements


Supports at least the following microcontrollers:

8-bit: Atmel ATmega1284P (AVR)

16-bit TI MSP430

32-bit: Atmel AT91RM9200 (ARM 920T) TI AR7 (MIPS) Intel XScale IXP420 (ARM v5TE) NXP LPC1114 Cortex-M3 (ARM)

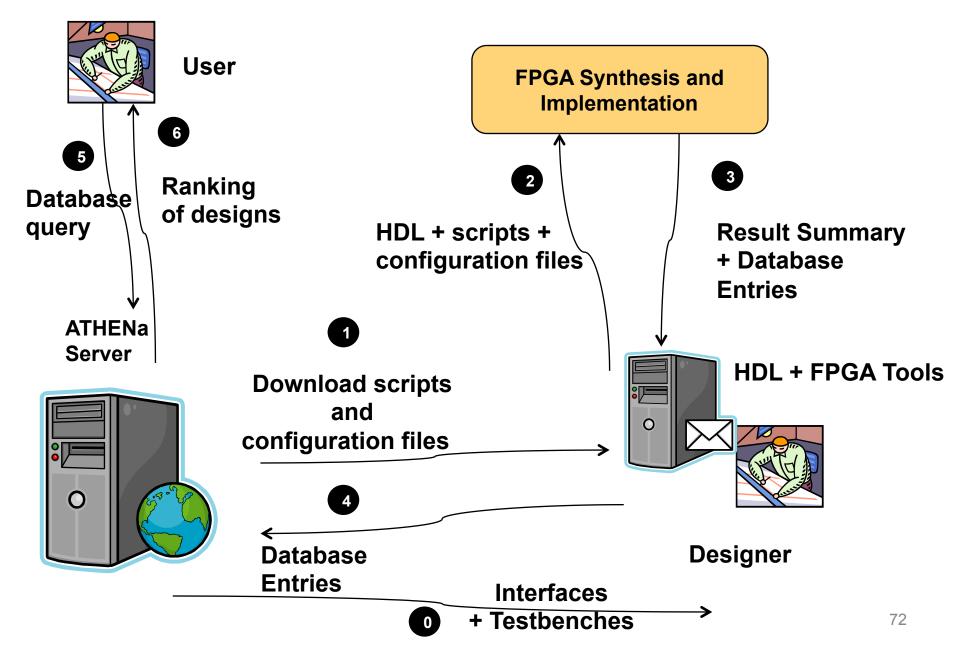
Microcontroller Performance for Texas Instruments MSP430

Benchmarking in FPGAs: ATHENa

ATHENa – Automated Tool for Hardware EvaluatioN

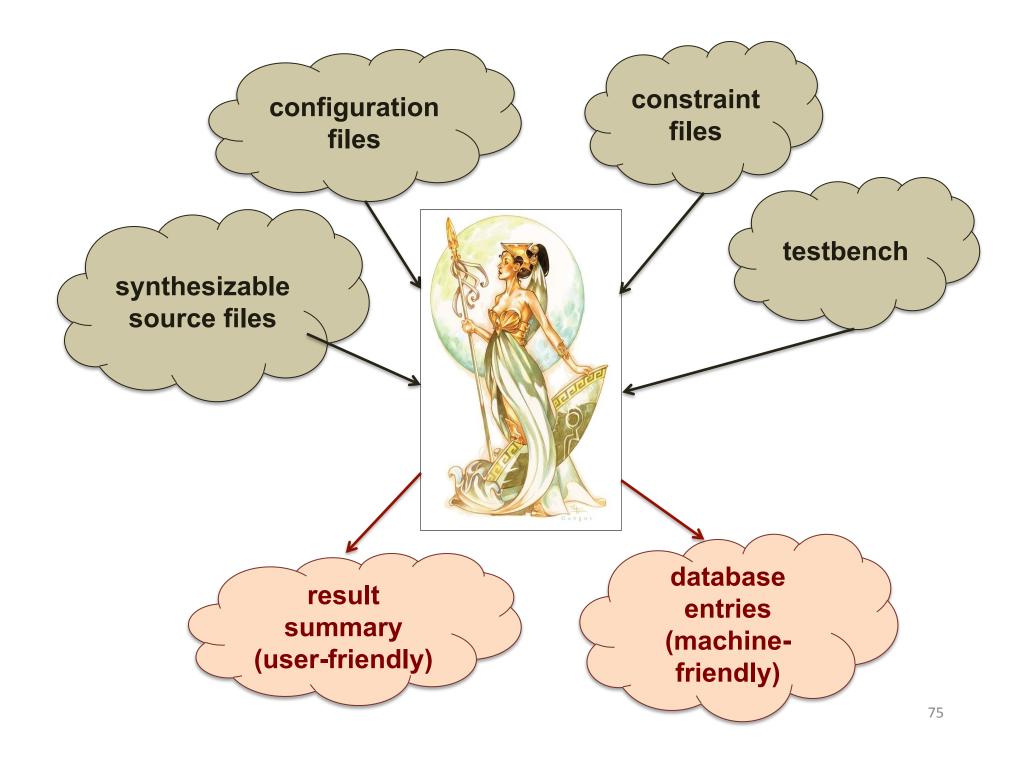
http://cryptography.gmu.edu/athena

Open-source benchmarking environment, written in Perl, aimed at AUTOMATED generation of OPTIMIZED results for MULTIPLE hardware platforms.


Why Athena?

"The Greek goddess Athena was frequently called upon to settle disputes between the gods or various mortals. Athena Goddess of Wisdom was known for her superb logic and intellect. Her decisions were usually well-considered, highly ethical, and seldom motivated by self-interest."

from "Athena, Greek Goddess of Wisdom and Craftsmanship"

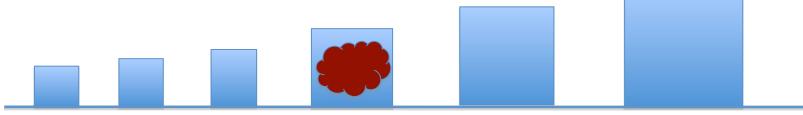

Basic Dataflow of ATHENa

Three Components of the ATHENa Environment

- ATHENa Tool
- ATHENa Database of Results
- ATHENa Website

ATHENa Major Features (1)

- synthesis, implementation, and timing analysis in batch mode
- support for devices and tools of **multiple FPGA vendors**:

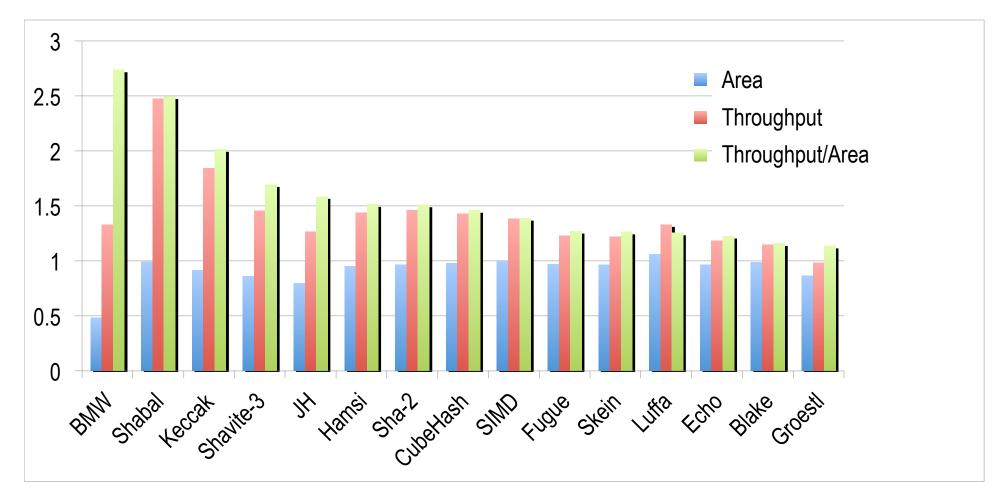


generation of results for multiple families of FPGAs of a given vendor

automated choice of a **best-matching device** within a given family

ATHENa Major Features (2)

 automated verification of designs through simulation in batch mode



- support for multi-core processing
- automated extraction and tabulation of results
- several optimization strategies aimed at finding
 - optimum options of tools
 - best target clock frequency
 - best starting point of placement

Generation of Results Facilitated by ATHENa

Relative Improvement of Results from Using ATHENa Virtex 5, 512-bit Variants of Hash Functions

Ratios of results obtained using ATHENa suggested options vs. default options of FPGA tools

ATHENa – Database of Results

ATHENa Database of Results http://cryptography.gmu.edu/athenadb

FPGA Hash Function Results Table

Show Help

Compare Selected

SHA-3 Round 3 SHA-3 Round 3 & SHA-2

SHA-3 Round 2

SHA-3 Round 2 & SHA-2

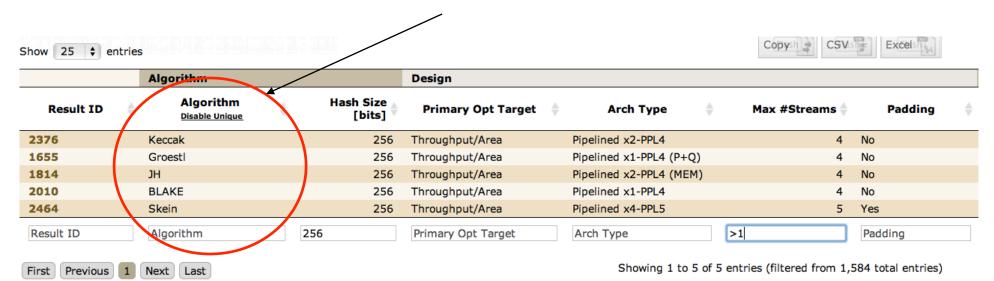
Copy CSV Excel

Show 25 \$ entries

About		Algorithm		Design			
All ASIC Results	Result ID 🚽	Algorithm	Hash Size [bits]	Primary Opt Target 🍦	Arch Type 🛛 🍦	Max #Streams 🔶	Padding
All FPGA Results		Enable Unique	[bits]			-	
EDCA Dankings	2469	Н	512	Throughput/Area	Pipelined x2-PPL2 (MEM)	2	Yes
FPGA Rankings	2467	Skein	512	Throughput/Area	Pipelined x4-PPL5	5	Yes
Login	2465	Skein	512	Throughput/Area	Pipelined x4-PPL5	5	Yes
	2464	Skein	256	Throughput/Area	Pipelined x4-PPL5	5	Yes
	2462	Skein	256	Throughput/Area	Pipelined x4-PPL5	5	Yes
	2460	Groestl	512	Throughput/Area	Pipelined x1-PPL2 (P+Q)	2	Yes
	2459	Groestl	512	Throughput/Area	Pipelined x1-PPL2 (P+Q)	2	Yes
	2458	BLAKE	512	Throughput/Area	Pipelined x1-PPL2	2	No
	2457	BLAKE	512	Throughput/Area	Pipelined x1-PPL2	2	No
	2456	BLAKE	256	Throughput/Area	Pipelined x1-PPL2	2	No
	2454	н	512	Throughput/Area	Pipelined x2-PPL4 (MEM)	4	Yes
	2453	Н	512	Throughput/Area	Pipelined x2-PPL4 (MEM)	4	No
	2452	н	256	Throughput/Area	Pipelined x2-PPL4 (MEM)	4	No
	2451	BLAKE	512	Throughput/Area	Pipelined /2(v)-PPL4	4	No
	2450	BLAKE	512	Throughput/Area	Pipelined /2(v)-PPL4	4	No
	2449	Keccak	256	Throughput/Area	Pipelined x2-PPL2	2	No
	2448	Keccak	512	Throughput/Area	Pipelined x2-PPL2	2	Yes

Algorithm			Design				Platform
Algorithm Enable Unique	*	Hash Size [bits] ♥	Primary Opt Target 🏻 🍦	Arch Type 🛛 🌲	Max #Streams 🝦	Padding	Family
Skein		256	Throughput/Area	Pipelined x4-PPL5	5	Yes	Virtex 5
BLAKE		256	Throughput/Area	Pipelined x1-PPL2	2	No	Virtex 5
Keccak		256	Throughput/Area	Pipelined x2-PPL2	2	No	Virtex 5
JH		256	Throughput/Area	Pipelined x2-PPL4 (MEM)	4	Yes	Virtex 5
Keccak		256	Throughput/Area	Pipelined x2-PPL4	4	No	Virtex 5
Keccak		256	Throughput/Area	Pipelined x1-PPL2	2	No	Virtex 5
BLAKE		256	Throughput/Area	Pipelined x1-PPL4	4	Yes	Virtex 5
Skein		256	Throughput/Area	Pipelined x4-PPL2	2	Yes	Virtex 5
Keccak		256	Throughput/Area	Pipelined x1-PPL2	2	Yes	Virtex 5
ЭН		256	Throughput/Area	Pipelined x2-PPL2	2	Yes	Virtex 5
Groestl		256	Throughput/Area	Pipelined x1-PPL2 (P+Q)	2	Yes	Virtex 5
BLAKE		256	Throughput/Area	Pipelined x1-PPL4	4	Yes	Virtex 5
BLAKE		256	Throughput/Area	Pipelined x1-PPL2	2	Yes	Virtex 5
BLAKE		256	Throughput/Area	Pipelined /2(v)-PPL4	4	Yes	Virtex 5
BLAKE		256	Throughput/Area	Pipelined /2(v)-PPL2	2	Yes	Virtex 5
BLAKE		256	Throughput/Area	Pipelined x1-PPL4	4	No	Virtex 5
BLAKE		256	Throughput/Area	Pipelined /2(v)-PPL4	4	No	Virtex 5
BLAKE		256	Throughput/Area	Pipelined /2(v)-PPL2	2	No	Virtex 5
Skein		256	Throughput/Area	Pipelined x4-PPL5	5	No	Virtex 5
Skein		256	Throughput/Area	Pipelined x4-PPL2	2	Yes	Virtex 5
Skein		256	Throughput/Area	Pipelined x4-PPL2	2	No	Virtex 5
Keccak		256	Throughput/Area	Pipelined x2-PPL4	4	Yes	Virtex 5
Keccak		256	Throughput/Area	Pipelined x1-PPL2	2	Yes	Virtex 5
ЭН		256	Throughput/Area	Pipelined x2-PPL4 (MEM)	4	No	Virtex 5
JH		256	Throughput/Area	Pipelined x2-PPL2 (MEM)	2	No	Virtex 5
Algorithm	2	56	Primary Opt Target	Arch Type	>1	Padding	Virtex 5

Filtering the Results: Hash Size=256, Max #Streams > 1, Family = Virtex 5


Sorting Results According to the Number of CLB Slices in the Ascending Order

Timing		Resource Utilization	on					
TP [Mbits/s] 🔶	Impl Freq [MHz]	CLB Slides	LEs 🔶	ALUTs 🔶	LUTs 🔶	Flip Flops 🔶	MULTs 🔶	DSPs 🔶
5,972	256.608	1,473	-	-	5,052	3,011	-	0
4,711	391.083	1,842	-	-	5,138	6,206	-	0
5,338	198.098	1,858	-	-	4,755	5,744	-	0
2,482	92.090	1,934	-	-	3,987	5,160	-	48
16,121	355.619	1,950	-	-	5,330	6,254	-	0
4,873	180.832	2,030	-	-	5,267	5,672	-	0
11,562	255.037	2,035	-	-	5,446	6,315	-	0
7,041	295.683	2,099	-	-	6,461	6,228	-	0
3,510	195.389	2,107	-	-	6,867	5,344	-	0
12,523	276.243	2,123	-	-	5,433	6,258	-	0
3,506	195.160	2,136	-	-	6,794	5,324	-	0
3,838	318.573	2,147	-	-	5,640	6,512	-	0
8,289	348.068	2,312	-	-	6,330	7,480	-	0
5,143	143.143	2,353	-	-	6,942	5,553	-	0
17,677	194.970	2,390	-	-	6,921	6,252	-	0
9,073	177.211	2,680	-	-	5,135	4,041	-	0
12,479	243.724	2,971	-	-	11,153	4,933	-	0
4,761	134.825	2,976	-	-	8,012	5,769	-	0
8,526	353.857	3,085	-	-	7,926	11,312	-	0

Sorting Results According to Throughput (in Mbits/s) in the Descending Order

Timing			Resource Utilizati	on					
TP [Mbits/s]	-	Impl Freq [MHz] 🔶	CLB Slices 🔶	LEs 🔶	ALUTs 🌲	LUTs 🔷	Flip Flops 🔶	MULTs 🔶	DSPs 🌢
26,690	1	294.377	3,714	-	-	9,557	12,429	-	0
21,717		239.521	3,764	-	-	9,765	12,437	-	0
17,677		194.970	2,390	-	-	6,921	6,252	-	0
16,353		319.387	4,177	-	-	12,591	9,788	-	0
16,121		355.619	1,950	-	-	5,330	6,254	-	0
15,015		293.255	4,587	-	-	13,225	10,116	-	0
13,382		261.370	3,172	-	-	11,567	5,097	-	0
12,523		276.243	2,123	-	-	5,433	6,258	-	0
12,479		243.724	2,971	-	-	11,153	4,933	-	0
11,562		255.037	2,035	-	-	5,446	6,315	-	0
9,073		177.211	2,680	-	-	5,135	4,041	-	0
8,526		353.857	3,085	-	-	7,926	11,312	-	0
8,526		353.857	3,085	-	-	7,926	11,312	-	0
8,289		348.068	2,312	-	-	6,330	7,480	-	0
7,547		210.040	3,495	-	-	9,231	10,298	-	0
7,510		209.030	3,526	-	-	9,476	10,287	-	0
7,077		262.605	3,840	-	-	8,646	11,981	-	0
7,041		295.683	2,099	-	-	6,461	6,228	-	0

Ordered Listing with a Single-Best (Unique) Result per Each Algorithm

Comparing Two Results with Each Other: Outcome of the Comparison

Datapath Width [bits]:	1600	1600
Padding:	No	Yes
Minimum Message Unit:		1 byte
Input Bus Width [bits]:	128	128
Output Bus Width [bits]:	64	64
Implementation URL:	index.php?id=source_codes	index.php?id=source_codes
Shared I/O Bus:	No	No
Throughput Formula:	2176/(48*T)	2176/(48*T)
Execution Time Formula:	3+48*N+4	3+48*N+4
Source Available:	Yes	Yes
Source Code Files:	link	link
Design Entry Date:	2012-02-16 @ 18:54 EST	2012-02-16 @ 18:54 EST
Design Modify Date:	2012-04-10 @ 20:52 EST	2012-04-10 @ 20:53 EST
Design Name:	Keccak_x1_PPL2 (256) SHA3C3	Keccak_x1_PPL2 (256) Pad SHA3C3
Comments:		
Platform		
Device Vendor:	Xilinx	Xilinx
Family:	Virtex 5	Virtex 5
Device:	xc5vlx30ff676-3	xc5vlx30ff676-3
Timing		
Throughput [Mbits/s]:	16121	12523
Requested Synthesis	377	283.9
Clock Frequency [MHz]:		
Synthesis Clock	377.601	294.633
Frequency [MHz]:		
Requested	377	283.9
Implementation Clock		

Matching fields in grey Non-matching fields in red and blue

Frequency [MHz]:

Details of Result ID 2469

Algorithm

Transformation Category:	Cryptographic
Transformation:	Hash
Group:	SHA-3 Round 3
Algorithm:	JH
Hash Size [bits]:	512
Message Block Size [bits]:	512
Other Parameters:	-
Specification:	JH_FinalRnd.zip
Formula for Message Size After	-
Padding:	

Design

247

Design ID:	247
Primary Optimization Target:	Throughput/Area
Secondary Optimization Target:	Throughput
Architecture Type:	Pipelined x2-PPL2 (MEM)
Description Language:	VHDL
Use of Megafunctions or Primitives:	No
List of Megafunctions or Primitives:	-
Maximum Number of Streams	2
Processed in Parallel:	
Number of Clock Cycles per Message	43
Block in a Long Message:	
Datapath Width [bits]:	512
Padding:	Yes
Minimum Message Unit:	1 byte
Input Bus Width [bits]:	128
Output Bus Width [bits]:	64
Implementation URL:	index.php?id=source_codes
Shared I/O Bus:	No
Throughput Formula:	1024/(43*T)
Execution Time Formula:	3+43*N+8
Source Available:	Yes

Measured Power [mW]: - Measured Dynamic Power [mW]: - Measured Static Power [mW]: - Measured Energy/Bit [mJ/Gbit]: -	
Measured Static Power [mW]: -	
Operating Conditions used for -	
Measurement (V, Temp, Etc):	
Tool Information	
Synthesis Tool: Xilinx XST	
Synthesis Tool Version: 13.1	
Synthesis Tool Options:	
-generics { UF=2 PPL=2 HS=512 } -dsp_utilization_ratio 0 -opt_level 1 -bram_utilization_ratio	0 (
Implementation Tool: Xilinx ISE	
Implementation Tool Version: 13.1	
Map Options: -c 100 -cm area -t 21	
Implementation Tool Options: -ol high	
Credits	
Primary Designer Name(s): Ekawat Homsirikamol	
Primary Designer Email(s): ehomsiri@gmu.edu	
Co-designer Name(s): Marcin Rogawski, Kris Gaj	
Co-designer Email(s): mrogawsk@gmu.edu, kgaj@gmu.edu	
Primary Designer Affiliation: CERG @ GMU	
Co-Designer Affiliation: CERG @ GMU	
Other	
Result Replication Files: link	
Result Entry Date: 2012-06-20	
Result Modify Date: 2012-06-20	
Design Entered By: ice	
Hidden: No	

Link to a Script that Allows Replicating Results with a Single-Run of Standard FPGA Tools

ATHENa Result Replication Files

- Scripts and configuration files sufficient to easily reproduce all results (without repeating optimizations)
- Automatically created by ATHENa for all results generated using ATHENa
- Stored in the ATHENa Database

In the same spirit of **Reproducible Research** as:

- J. Claerbout (Stanford University)

 "Electronic documents give reproducible research a new meaning,"
 in *Proc. 62nd Ann. Int. Meeting of the Soc. of Exploration Geophysics*, 1992,
 http://sepwww.stanford.edu/doku.php?id=sep:research:reproducible:seg92
- Patrick Vandewalle¹, Jelena Kovacevic², and Martin Vetterli¹ (¹EPFL, ²CMU) Reproducible research in signal processing - what, why, and how.
 IEEE Signal Processing Magazine, May 2009. http://rr.epfl.ch/17/

.

ATHENa - Website

ATHENa Website http://cryptography.gmu.edu/athena/

- Download of ATHENa Tool
- Links to related tools

Cryptographic Competitions in FPGAs & ASICs

- **Specifications** of candidates
- Interface proposals
- RTL source codes
- Testbenches
- ATHENa database of **results**
- Related papers & presentations

GMU Web Page with VHDL Source Codes and Block Diagrams of the SHA-3 Candidates and SHA-2

GMU Source Codes

Introduction

The VHDL source codes provided below have been generated by members of the Cryptographic Engineering Research Group (CERG) at George Mason University in the period from January 2010 to present.

We reuse the same VHDL code to implement both 256 and 512 variants of all hash functions with the help of generics. A user needs only to select an appropriate value, HASH_SIZE_256 or HASH_SIZE_512, for the generic 'h' or 'hs' present in the top level entity. The VHDL file containing the top level entity of the given hash function is indicated in the source_list.txt file present in the 'sources' folder obtained from the zip file.

• Source Codes for the SHA-3 Round 3 Candidates & SHA-2 - The Third SHA-3 Candidate Conference Release, March 2012

Assumptions:

A. All architectures defined in

K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M.U. Sharif, "Comprehensive Evaluation of High-Speed and Medium-Speed Implementations of Five SHA-3 Finalists Using Xilinx and Altera FPGAs," The 3rd SHA-3 Candidate Conference, Washington, D.C., March 22-23, 2012: paper, slides

- B. The GMU Interface and Communication Protocol Used in the Implementations of the SHA-3 Round 3 Candidates (non-pipelined architectures).
- C. Primary Optimization Target: Throughput/Area; Secondary Optimization Target: Throughput.

D. No salt, No special modes of operation.

E. No use of embedded resources, such as multipliers, DSP units and Block Memories.

BLAKE

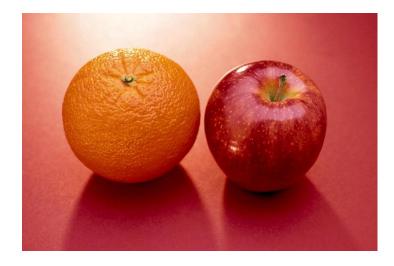
BLAKE_readme.txt

Source Codes with and without Padding	Supported Architectures	Architecture Notation	Block Diagrams	Release Date
BLAKE_folded_pad.zip BLAKE_folded.zip	Basic iterative Folded horizontally	x1, /k(h), k=2,4	BLAKE_x1_diagrams.zip BLAKE_fh2_diagrams.zip BLAKE_fh4_diagrams.zip	03/23/2012
BLAKE_fh4v4_pad.zip BLAKE_fh4v4.zip	Folded horizontally and vertically with internal state stored in memory	/4(h)/4(v)-m	BLAKE_fh4v4_diagrams.zip	03/23/2012
BLAKE_PPL_pad.zip BLAKE_PPL.zip	Pipelined	x1-PPLn, n=2,4 /2(h)-PPLn, n=2,4		03/23/2012

Selected SHA-3 Source Codes Available in Public Domain

- AIST-RCIS: http://www.rcis.aist.go.jp/special/SASEBO/SHA3-en.html
- University College Cork, Queens University Belfast, RMIT University, Melbourne, Australia: <u>http://www.ucc.ie/en/crypto/sha-3hardware/</u>
- Virginia Tech: http://rijndael.ece.vt.edu/sha3/soucecodes.html
- ETH Zurich: <u>http://www.iis.ee.ethz.ch/~sha3/</u>
- George Mason University: http:/cryptography.gmu.edu/athena
- BLAKE Team: http://www.131002.net/blake/
- Keccak Team: http://keccak.noekeon.org/

Benchmarking Goals Facilitated by ATHENa

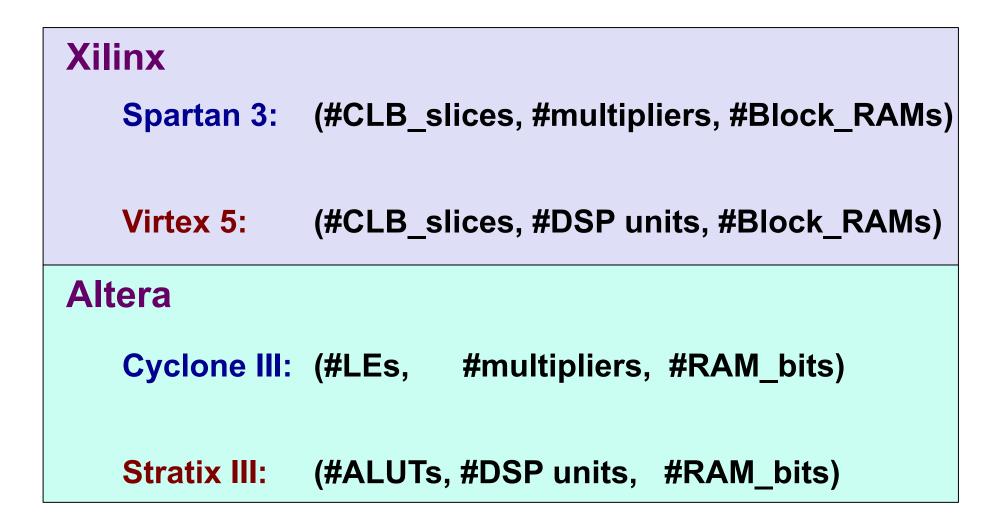

Comparing multiple:

- 1. cryptographic algorithms
- 2. hardware **architectures or implementations** of the same cryptographic algorithm
- hardware platforms from the point of view of their suitability for the implementation of a given algorithm, (e.g., choice of an FPGA device or FPGA board)
- **4. tools and languages** in terms of quality of results they generate (e.g. Verilog vs. VHDL, Synplify Premier vs. Xilinx XST, ISE vs. Vivado)

Objective Benchmarking Difficulties

- lack of standard one-fits-all interfaces
- stand-alone performance vs. performance as a part of a bigger system
- heuristic optimization strategies
- time & effort spent on optimization

or



Objective Benchmarking Difficulties

- lack of convenient cost metric in FPGAs
- accuracy of power estimators in ASICs & FPGAs
- human factor (skills of designers, order of implementations, etc.)
- verifiability of results

Resource Utilization Vector

(#Logic blocks, #Multipliers/DSP units, #RAM blocks)

Potential Problems with Publishing Source Codes

• **Export control** regulations for cryptography

Check: Bert-Jaap Koops, Crypto Law Survey

http://www.cryptolaw.org

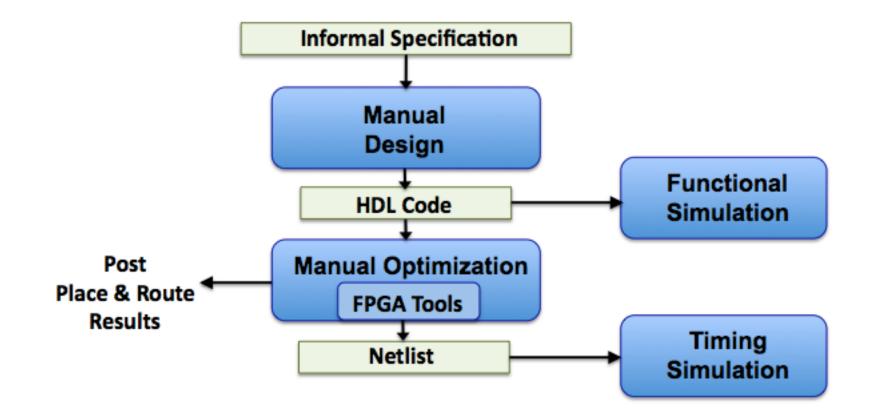
Commercial interests

Competition with other groups for

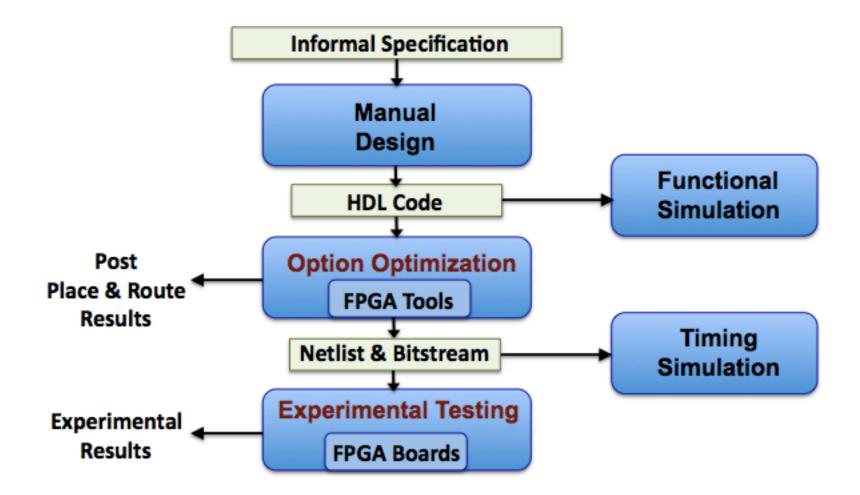
grants and publications in the most renowned journals and conference proceedings

How to assure verifiability of results?

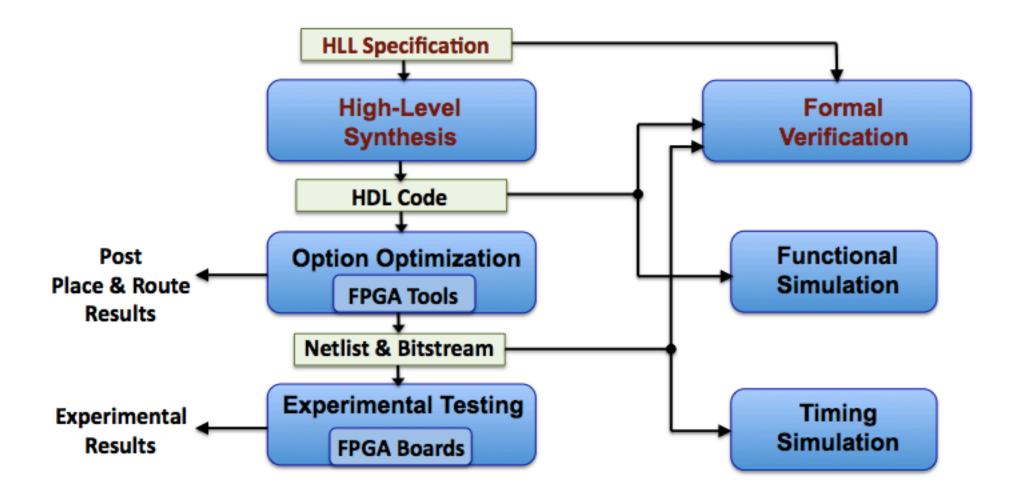
Level of openness


1	Source files	9
	Testimonies	
	Netlists for selected FPGAs	
Previous situation conference/journal papers	Options of tools Constraint files Interfaces	
Results FPGA family/devic Tool names+versic	e	100

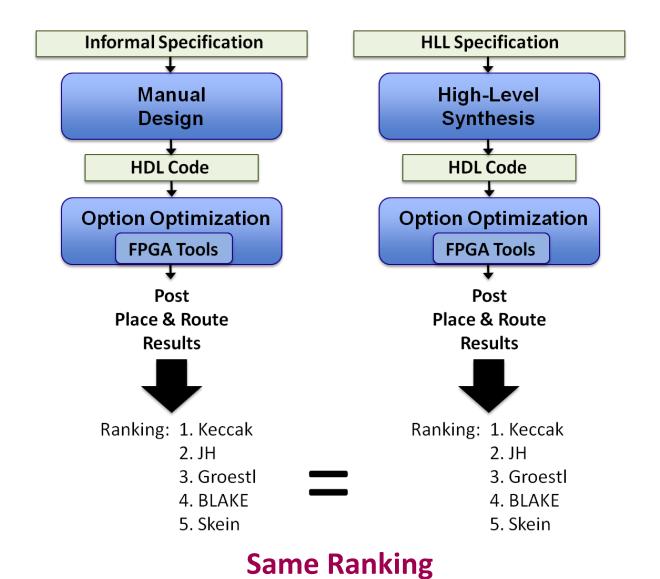
Initial Evaluation by High-Level Synthesis Tools?



- All hardware implementations so far developed using RTL HDL
- Growing number of candidates
 in subsequent contests
- Each submission includes
 reference implementation in C
- Results from High-Level Synthesis could have a large impact in early stages of the competitions
- Results and RTL codes from previous contests form interesting benchmarks for High-Level synthesis tools


Past Methodology

Current Methodology



Possible Future Methodology

Currently explored at GMU

Accuracy & Development Time?

Development Time = 10 weeks => Development Time = 1 week

Turning Thousands of Results into a Single Fair Ranking

- Choosing which FPGA families / ASIC libraries should be included in the comparison
 - > wide range?
 - > only most recent?
 - > vendors with the largest market share?
 - > wide spectrum of vendors?
- Methods for combining multiple results into single ranking

Turning Thousands of Results into Fair Ranking

- Deciding on most important application scenarios
 - Throughput Cost Power range from RFIDs to High-speed security gateways
 - Assigning weights to different scenarios

Help/recommendation from the system developers highly appreciated

Conclusions

- Contests for cryptographic standards are important
 - Stimulate progress in design and analysis of cryptographic algorithms
 - Determine future of cryptography for the next decades
 - Promote cryptology: Are easy to understand by general audience
 - Provide immediate recognition and visibility worldwide
- Security Experts, Computer Scientists, Digital System Designers, System Developers can play an important role in these contests
 - Co-designers of new cryptographic algorithms
 - Evaluators
 - Tool developers
 - Early adopters of new standards
- Get involved! It is fun!

Thank you!

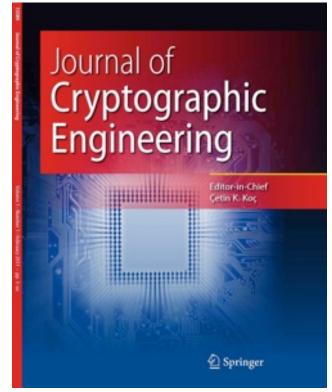
Questions?

Questions?

ATHENa: http:/cryptography.gmu.edu/athena

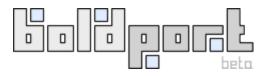
Conferences & Journals

ECRYPT II ↓াদে©৫৩০ ‡


Conferences & workshops devoted to specific contests

CAESAR: DIAC – Directions In Authenticated Ciphers

Since 1999 USA-Europe-Asia CHES 2014, Busan, Korea Sep. 23-26, 2014


Since Jan. 2011

Other (Somewhat) Similar Tools

ExploreAhead (part of PlanAhead)

Design Space Explorer (DSE)

Boldport Flow

EDAx10 Cloud Platform

Distinguishing Features of ATHENa

- Support for multiple tools from multiple vendors
- Optimization strategies aimed at the **best possible performance** rather than design closure
- Extraction and presentation of results
- Seamless integration with the ATHENa database of results

How to measure hardware cost in FPGAs?

1. Stand-alone cryptographic core on an FPGA

Cost of the smallest FPGA that can fit the core?

- Unit: USD [FPGA vendors would need to publish MSRP (manufacturer's suggested retail price) of their chips] – not very likely, very volatile metric
- or size of the chip in mm² easy to obtain
- 2. Part of an FPGA System On-Chip

Resource utilization described by a vector:

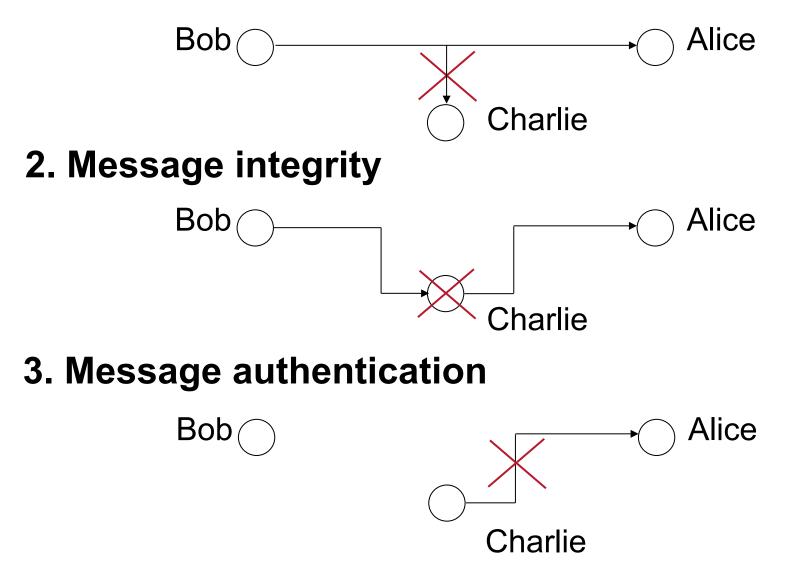
(#CLB slices, #MULs/DSP units, #BRAMs) for Xilinx (#LEs/ALUTs, #MULs/DSP units, #membits) for Altera

Difficulty of turning vector into a single number representing cost

Limitations of the AES Evaluation

- Optimization for maximum throughput
- **Single** high-speed **architecture** per candidate
- No use of embedded resources of FPGAs (Block RAMs, dedicated multipliers)
- Single FPGA family from a single vendor: Xilinx Virtex

Features of the SHA-3 Round 2 Evaluation


- Optimization for maximum throughput to area ratio
- 10 FPGA families from two major vendors : Xilinx and Altera

But still...

- <u>Single high-speed</u> architecture per candidate
- No use of embedded resources of FPGAs (Block RAMs, dedicated multipliers, DSP units)

Authenticated Ciphers: Security Services

1. Confidentiality

Similarities in comparing software and FPGA designs

relatively few major vendors

Intel and AMDfor general-purpose microprocessorsXilinx and Alterafor FPGAs

good quality tools available for free

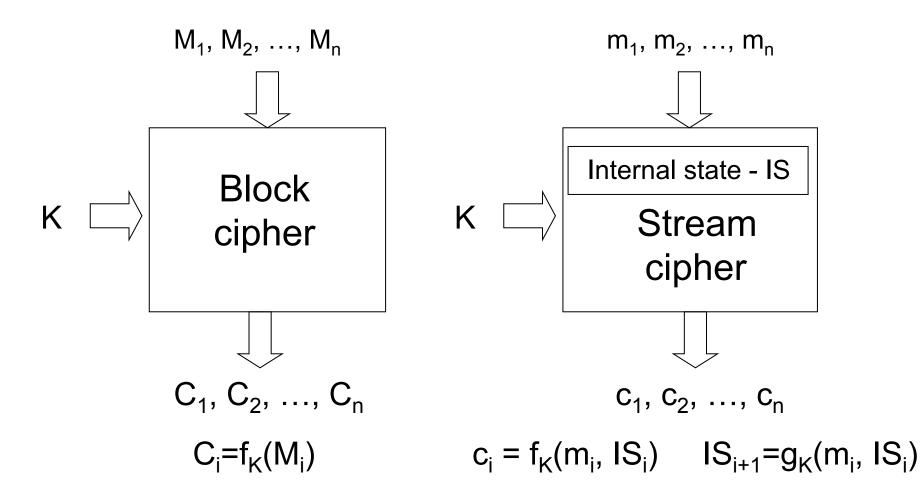
GNU compilers for software full or slightly reduced versions of tools for FPGAs

multiple options of tools

- software programs can be written targeting a specific processor;
 HDL codes can be written targeting a specific FPGA family
- Iow level optimizations possible but typically not portable: in software - assembly language; in FPGAs - low level macros

Differences in comparing software and FPGA designs

- in software speed is a major parameter;
 in hardware speed and area need to be taken into account and can be often traded one for the other
- in software clock frequency is fixed for a given processor; tools try to optimize the sequence of instructions; in FPGAs clock frequency is determined by the implemented circuit; tools try to optimize the most critical paths, and thus minimize the clock period
- in software execution time is measured directly with some nonnegligible measurement error; in FPGAs minimum clock period is reported by software tools; minimum execution time is calculated;
- **open source** software cryptographic libraries widely available; very few open source cryptographic hardware designs 120


ATHENa Has a Potential to Serve

- Researchers fair, automated, and comprehensive comparison of new algorithms, architectures, and implementations with previous work
- Designers informed choice of technology (FPGA, ASIC, microprocessor) and a specific device/library within a given technology
- Developers of Tools comprehensive comparison across various tools; optimization methodologies developed and comprehensively tested as a part of this project
- Standardization Organizations (such as NIST) evaluation of existing and emerging standards; support of contests for new standards.

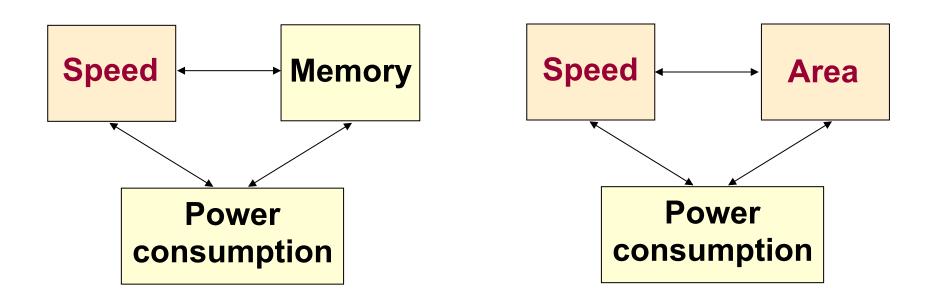
Secret-Key Ciphers

Block vs. Stream Ciphers

Every block of ciphertext is a function of only **one** corresponding **block** of plaintext Every block of ciphertext is a function of the current block of plaintext and the current internal state of the cipher

Hash Function as a Swiss Knife of Cryptography

- storing passwords
- antivirus software
- key update and derivation
- message authentication
- user authentication
- RFID tag security protocols
- etc.


Software or Hardware?

Hardware Software security of data during transmission speed random key generation low cost access control to keys flexibility (new cryptoalgorithms, tamper resistance protection against new attacks) (viruses, internal attacks)

Primary Efficiency Indicators

Software

Hardware

Efficiency in Software

Strong dependence on:

- 1. Instruction set architecture (e.g., variable rotations)
- 2. Programming language (assembler, C, Java)
- 3. Compiler
- 4. Compiler options
- 5. Programming style

Hardware Efficiency in FPGAs

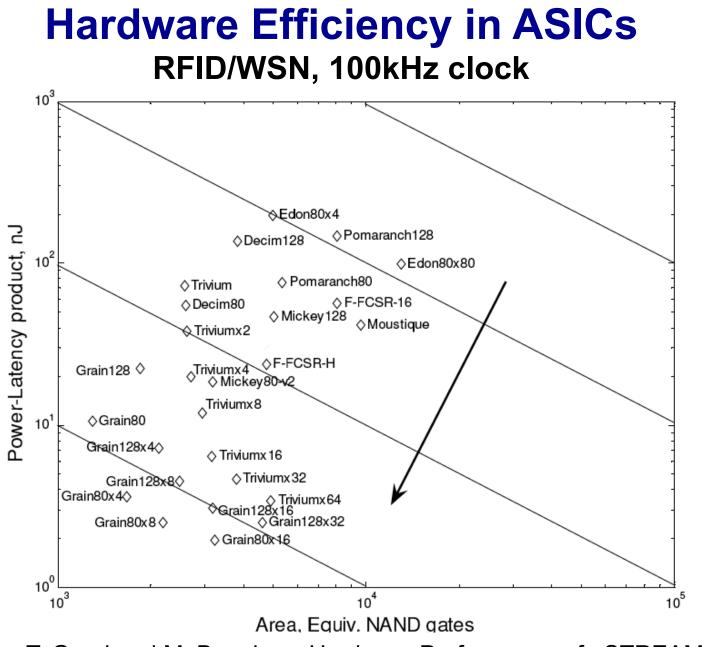
Xilinx Spartan 3, GMU SASC 2008

Candidate	Area (slices)	Candidate	Throughput/Area (Mbps/slices) 39.26		
Grain v1	44	Trivium (x64)			
Grain 128	50	Grain 128 (x32)	7.97		
Trivium	50	Grain v1 (x16)	5.98		
DECIM v2	80	Trivium	4.80		
DECIM 128	89	F-FCSR-16	4.53		
MICKEY 2.0	115	Grain v1	4.45		
MICKEY 128 2.0	176	Grain 128	3.92		
Moustique	278	F-FCSR-H v2	3.23		
F-FCSR-H v2	342	MICKEY 2.0	2.03		
Trivium (x64)	344	MICKEY 128 2.0	1.27		
Grain v1 (x16)	348	Moustique	0.81		
F-FCSR-16	473	DECIM v2	0.58		
Grain 128 (x32)	534	DECIM 128	0.49		
Pomaranch	648	Edon80	0.10		
Edon80	1284	Pomaranch	0.08		

Hardware Efficiency in ASICs

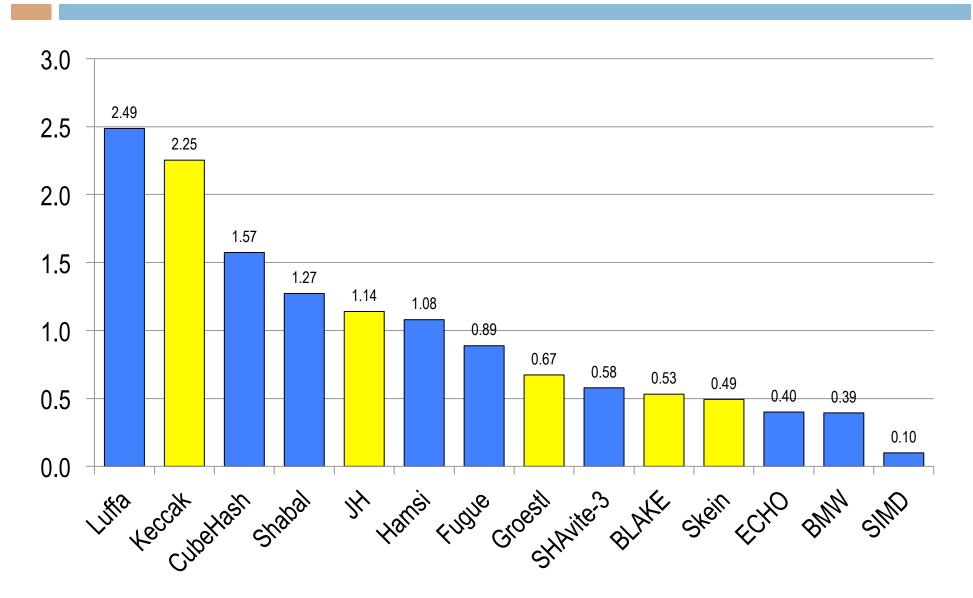
	Power-Area-Time	Power-Area-Time	Power-Area-Time	Flexibility	Simplicity
	Max. clock	WLAN	RFID/WSN	(design space)	(code lines)
¥	Trivium (x64)	Grain80 (x8)	Grain80 (x8)	Trivium	Mickey128
0	Grain80 (x16)	Trivium (x8-x32)	Grain128 (x16)	Grain128	Grain128
	Grain128 (x32)	F-FCSR-H	Trivium (x8-x32)	Grain80	Mickey80v2
	F-FCSR-H				Grain80
	F-FCSR-16				Trivium
					F-FCSR-H
					F-FCSR-16
	Mickey80v2	F-FCSR-16	F-FCSR-H	Edon80	Decim128
	Mickey128	Mickey80v2	Mickey80v2	Decim80	Decim80
	Moustique *	-	Decim80	Decim128	Moustique *
				Moustique *	•
8	Decim80	Mickey128	Mickey128	F-FCSR-H	Pomaranch80
	Edon80	Decim80	Pomaranch80	F-FCSR-16	Pomaranch128
	Pomaranch80	Pomaranch80	F-FCSR-16	Mickey80v2	Edon80
	Decim128	Decim128	Moustique *	Mickey128	
	Pomaranch128	Pomaranch128	Decim128	Pomaranch80	
		Moustique *	Edon80	Pomaranch128	
		Edon80	Pomaranch128		

* Moustique is the only self synchronising stream cipher so should be considered of significant merit irrespective of other performance metrics.

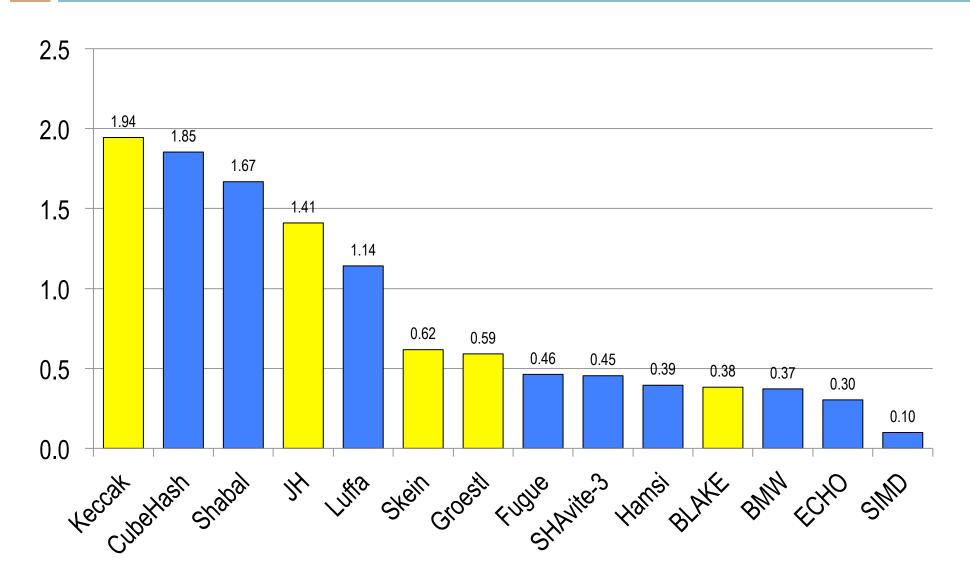

T. Good and M. Benaissa, Hardware Performance of eSTREAM Phase III Stream Cipher Candidates, SASC 2008, Lausanne, Feb. 2008

ASIC Evaluations

- Two major projects
 - T. Good, M. Benaissa, University of Sheffield, UK (Phases 1-3) – 0.13µm CMOS


eSCARG@i

- F.K. Gürkaynak, et al., ETH Zurich, Switzerland (Phase 1) - 0.25µm CMOS
- Two representative applications
 - > WLAN @ 10 Mbits/s
 - RFID / WSN @ 100 kHz clock



T. Good and M. Benaissa, Hardware Performance of eSTREAM Phase III Stream Cipher Candidates, SASC 2008, Lausanne, Feb. 2008

Overall Normalized Throughput/Area: 256-bit variants Normalized to SHA-256, Averaged over 10 FPGA families

Overall Normalized Throughput/Area: 512-bit variants Normalized to SHA-512, Averaged over 10 FPGA families

133

Round 3 Evaluations

Tool Certificates Test vectors Testbench Correct Certified **Simulation** functionality Tools for source files Source with a given hash value and the testbench files Results Certified Implementation after placing **One-way Hash** Tools **Function** and routing for source files with a given hash Hash value value

Normalization & Compression of Results

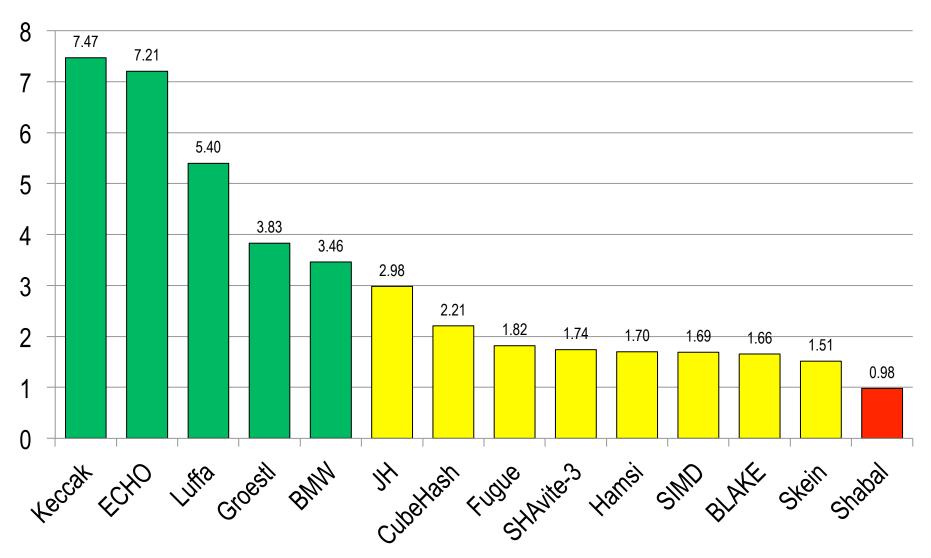
Absolute result

e.g., throughput in Mbits/s, area in CLB slices

Normalized result

 $normalized_result = \frac{result_for_SHA - 3_candidate}{result_for_SHA - 2}$

Overall normalized result


Geometric mean of normalized results for all investigated FPGA families

SHA-3 Round 2: Normalized Throughput & Overall Normalized Throughput

Candidate	Spartan 3	Virtex 4	Virtex 5	Virtex 6	Cyclone II	Cyclone III	Cyclone IV	Stratix II	Stratix III	Stratix IV	Overall
Keccak	7.78	8.31	8.03	5.71	7.02	8.09	7.86	7.34	7.33	7.59	7.47
ЕСНО	5.79	7.88	7.51	6.47	N/A	7.45	6.63	7.59	7.71	8.18	7.21
Luffa	6.09	6.6	5.68	4.05	5.65	6.06	5.95	4.70	4.58	5.19	5.40
Groestl	3.85	4.07	4.68	3.92	3.62	3.37	3.74	3.62	3.73	3.85	3.83
BMW	N/A	3.59	2.68	3.23	N/A	3.71	3.6	4.03	3.42	3.62	3.46
JH	3.01	3.27	3.43	2.47	2.85	3.42	3.28	3.21	2.90	2.24	2.98
CubeHash	2.21	2.51	2.37	2.19	2.08	2.2	2.13	2.20	1.99	2.24	2.21
Fugue	1.95	1.72	2.04	1.91	1.72	1.77	1.79	1.75	1.73	1.82	1.82
SHAvite-3	1.71	1.62	2.24	1.69	1.58	1.66	1.64	1.76	1.76	1.83	1.74
Hamsi	1.78	1.71	1.79	1.28	1.90	1.88	1.83	1.61	1.63	1.68	1.70
SIMD	N/A	1.83	1.86	1.51	1.54	1.57	1.55	1.84	1.68	1.89	1.69
BLAKE	1.69	1.59	1.90	1.45	1.53	1.62	1.57	1.88	1.58	1.82	1.66
Skein	1.52	1.49	1.71	1.66	1.43	1.58	1.53	1.50	1.29	1.47	1.51
Shabal	1.18	1.19	1.03	1.06	0.89	0.92	0.92	0.86	0.86	0.96	0.98

Overall = Geometric mean of normalized results for 10 investigated FPGA families

Overall Normalized Throughput: 256-bit variants of algorithms Normalized to SHA-256, Averaged over 10 FPGA families

SHA-3 Lightweight Implementations

Study of Lightweight Implementations in FPGAs

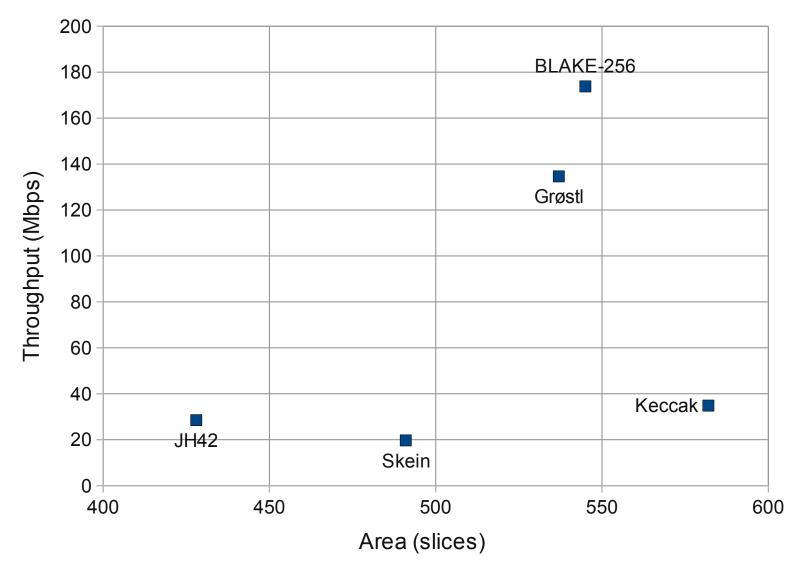
Two major projects

- ➢ J.-P. Kaps, et al., George Mason University, USA
- ➢ F.-X. Standaert, UCL Crypto Group, Belgium

• Target:

- Low-cost FPGAs (Spartan 3, Spartan 6, etc.) for stand-alone implementations
- High-performance FPGAs (e.g., Virtex 6) for system-on-chip implementations

Typical Assumptions – GMU Group


Assumptions

- Implementing for minimum area alone can lead to unrealistic run-times.
- ⇒ Goal: Achieve the maximum Throughput/Area ratio for a given area budget.
- Realistic scenario:
 - System on Chip: Certain area only available.
 - Standalone: Smaller Chip, lower cost, but limit to smallest chip available, e.g. 768 slices on smallest Spartan 3 FPGA.

Target

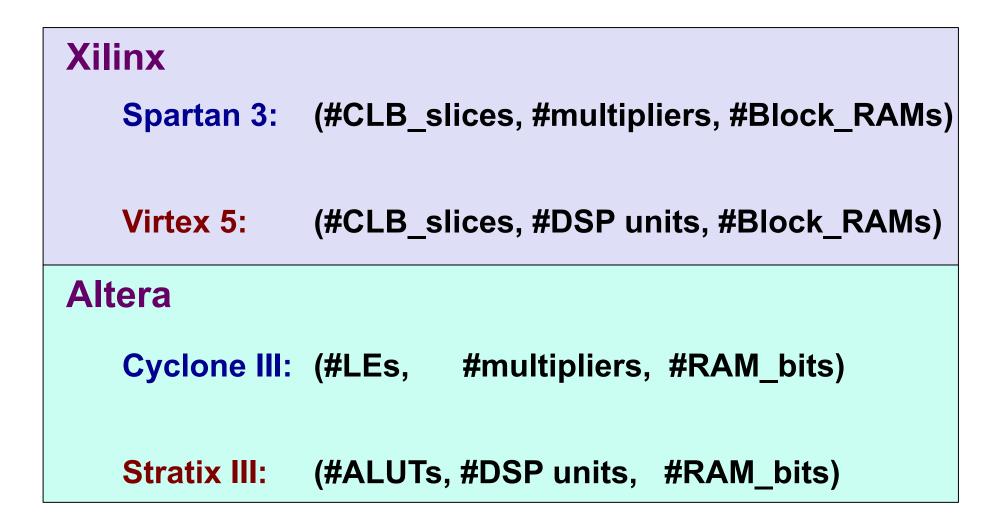
- Xilinx Spartan 3 low cost FPGA family
- Budget: 500 slices, 1 Block RAM (BRAM)


Implementation Results

• Xilinx Spartan 3, ISE 12.3, after P&R, Optimized using ATHENa

SHA-3 Implementations Based on Embedded Resources

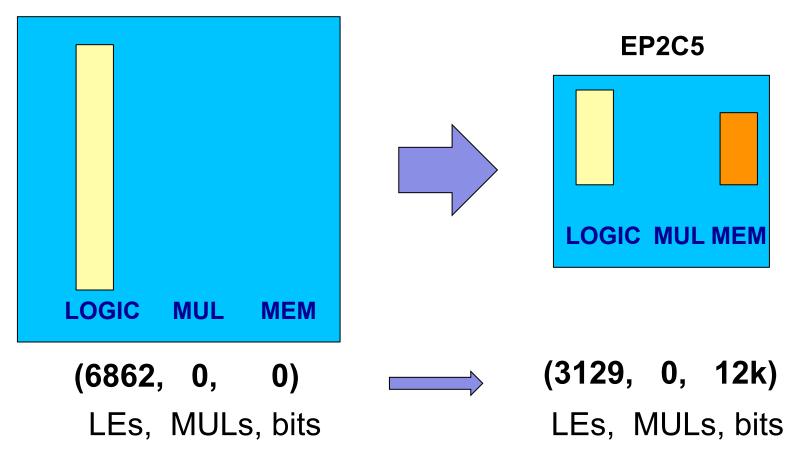
Implementations Based on the Use of Embedded Resources in FPGAs



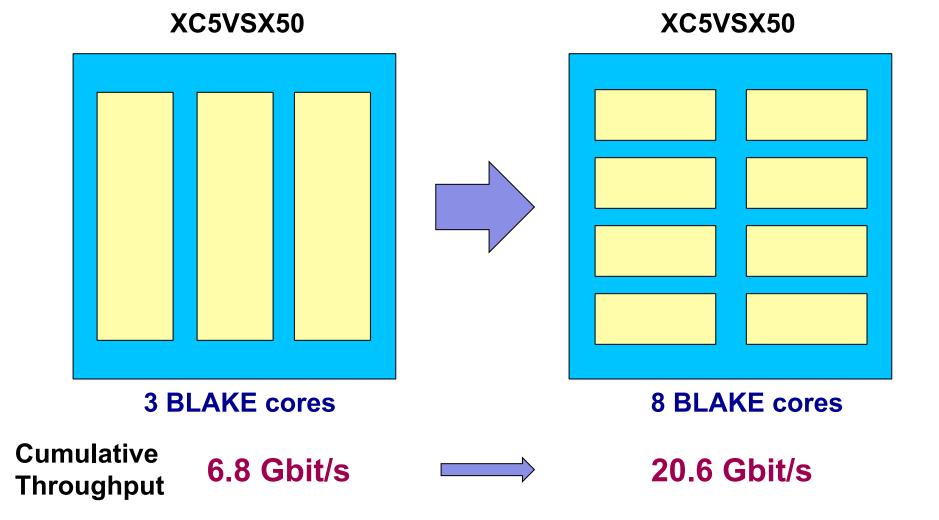
(#Logic blocks, #Multipliers/DSP units, #RAM_blocks)

Graphics based on The Design Warrior's Guide to FPGAs Devices, Tools, and Flows. ISBN 0750676043 Copyright © 2004 Mentor Graphics Corp. (www.mentor.com)

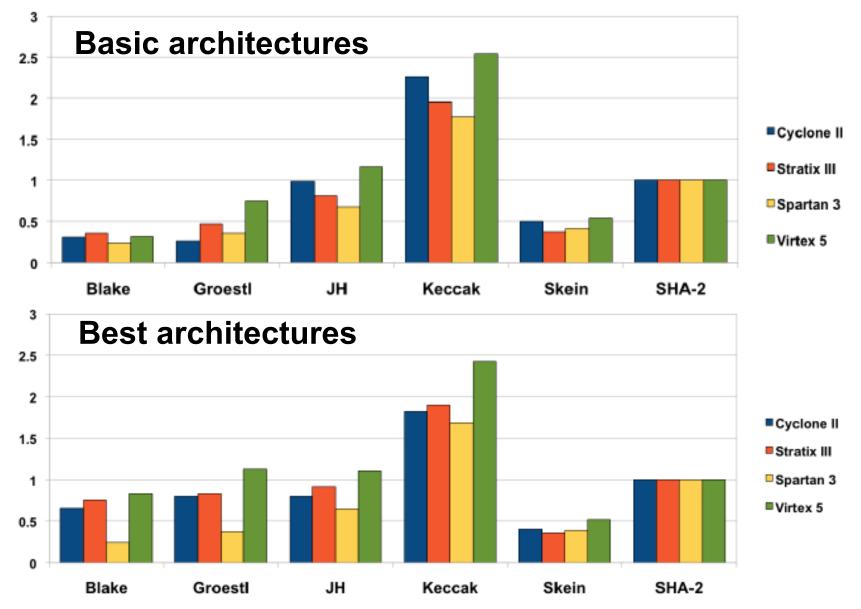
Resource Utilization Vector


(#Logic blocks, #Multipliers/DSP units, #RAM blocks)

Fitting a Single Core in a Smaller FPGA Device


BLAKE in Altera Cyclone II

EP2C20



Fitting a Larger Number of Identical Cores in the same FPGA Device

BLAKE in Virtex 5

Cumulative Throughput for the Largest Device of a Given Family

