C vs. VHDL: Comparing Performance of CAESAR Candidates Using High-Level Synthesis on Xilinx FPGAs

Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand, and <u>Kris Gaj</u> George Mason University USA

http:/cryptography.gmu.edu https://cryptography.gmu.edu/athena

Primary Support for This Particular Project

Ekawat Homsirikamol a.k.a "Ice"

Working on the PhD Thesis entitled "A New Approach to the Development of Cryptographic Standards Based on the Use of High-Level Synthesis Tools"

RTL codes developed by: William Diehl, Farnoud Farahmand, Ahmed Ferozpuri, and Ekawat Homsirikamol.

Cryptographic Standard Contests

Evaluation Criteria

Traditional Development & Benchmarking Flow

Extended Traditional Development & Benchmarking Flow

Remaining Difficulties of Hardware Benchmarking

- Large number of candidates
- Long time necessary to develop and verify RTL (Register-Transfer Level) Hardware Description Language (HDL) codes
- Multiple variants of algorithms (e.g., multiple key, nonce, and tag sizes)
- High-speed vs. lightweight algorithms
- Multiple hardware architectures
- Dependence on skills of designers

High-Level Synthesis (HLS)

Short History of High-Level Synthesis

G. Martin & G. Smith "HLS: Past, Present, and Future," IEEE D&ToC, 2009

Generation 1 (1980s-early 1990s): research period

Generation 2 (mid 1990s-early 2000s):

- Commercial tools from Synopsys, Cadence, Mentor Graphics, etc.
- Input languages: behavioral HDLs Target: ASIC

Outcome: Commercial failure

Generation 3 (from early 2000s):

- Domain oriented commercial tools: in particular for DSP
- Input languages: C, C++, C-like languages (Impulse C, Handel C, etc.), Matlab + Simulink, Bluespec
- Target: FPGA, ASIC, or both

Outcome: First success stories

Cinderella Story

AutoESL Design Technologies, Inc. (25 employees) Flagship product:

AutoPilot, translating C/C++/System C to VHDL or Verilog

- Acquired by the biggest FPGA company, Xilinx Inc., in 2011
- AutoPilot integrated into the primary Xilinx toolset, Vivado, as Vivado HLS, released in 2012

"High-Level Synthesis for the Masses"

Our Hypotheses

- Ranking of candidate algorithms in cryptographic contests in terms of their performance in modern FPGAs & All-Programmable SoCs will remain the same independently whether the HDL implementations are developed manually or generated automatically using High-Level Synthesis tools
- The development time will be reduced by at least an order of magnitude

Potential Additional Benefits

Early feedback for designers of cryptographic algorithms

- Typical design process based only on security analysis and software benchmarking
- Lack of immediate feedback on hardware performance
- Common unpleasant surprises, e.g.,
 - Mars in the AES Contest
 - BMW, ECHO, and SIMD in the SHA-3 Contest

Proposed HLS-Based Development and Benchmarking Flow

Examples of Source Code Modifications

Unrolling of loops:

Flattening function's hierarchy:

Function Reuse:

```
(b) After modification
// (a) Before modification
                                           for(round=0; round<NB_ROUNDS; ++</pre>
  for(round=0; round<NB_ROUNDS;</pre>
                                                round)
       round)
  ł
                                             if (round == NB ROUNDS-1)
    if (round == NB ROUNDS-1)
                                               x = 1;
      single_round(state, 1);
                                             else
    else
                                               \mathbf{x} = 0;
      single_round(state, 0);
                                             single_round(state, x);
  }
```

Our Test Case

- 8 Round 1 CAESAR candidates + current standard AES-GCM
- Basic iterative architecture
- **GMU AEAD Hardware API**
- Implementations developed in parallel using RTL and HLS methodology
- 2-3 RTL implementations per student, all HLS implementations developed by a single student (Ice)
- Starting point: Informal specifications and reference software implementations in C provided by the algorithm authors
- Post P&R results generated for
 - Xilinx Virtex 6 using Xilinx ISE + ATHENa, and
 - Virtex 7 and Zynq 7000 using Xilinx Vivado with 26 default option optimization strategies
- No use of BRAMs or DSP Units in AEAD Core

Parameters of Authenticated Ciphers

Algorithm	Key size	Nonce size	Tag size	Basic Primitive		
Block Cipher Based						
AES-COPA	128	128	128	AES		
AES-GCM	128	96	128	AES		
CLOC	128	96	128	AES		
POET	128	128	128	AES		
SCREAM	128	96	128	TLS		
Permutation Based						
ICEPOLE	128	128	128	Keccak-like		
Keyak	128	128	128	Keccak-f		
PRIMATEs- GIBBON	120	120	120	PRIMATE		
PRIMATEs- HANUMAN	120	120	120	PRIMATE 16		

Parameters of Ciphers & GMU Implementations

Algorithm	Word Size, w	Block Size, b	#Rounds	Cycles/Block RTL	Cycles/Block HLS	
Block-cipher Based						
AES-COPA	32	128	10	11	12	
AES-GCM	32	128	10	11	12	
CLOC	32	128	10	11	12	
POET	32	128	10	11	12	
SCREAM	32	128	10	11	12	
Permutation Based						
ICEPOLE	256	1024	6	6	8	
Keyak	128	1344	12	12	14	
PRIMATEs- GIBBON	40	40	6	7	8	
PRIMATEs- HANUMAN	40	40	12	13	14 17	

Datapath vs. Control Unit

Determines

- Area
- Clock Frequency

Determines

• Number of clock cycles

Encountered Problems

Control Unit suboptimal

- Difficulty in inferring an overlap between completing the last round and reading the next input block
- One additional clock cycle used for initialization of the state at the beginning of each round
- The formulas for throughput:

HLS: Throughput = Block_size / ((#Rounds+2) * T_{CLK})

RTL: Throughput = Block_size / (#Rounds+C * T_{CLK}) C=0, 1 depending on the algorithm

RTL vs. HLS Clock Frequency in Zynq 7000

RTL vs. HLS Throughput in Zynq 7000

RTL vs. HLS Ratios in Zynq 7000

RTL vs. HLS #LUTs in Zynq 7000

RTL vs. HLS Throughput/#LUTs in Zynq 7000

RTL vs. HLS Ratios in Zynq 7000

#LUTs

Throughput/#LUTs

Throughput vs. LUTs in Zynq 7000

RTL vs. HLS Throughput

RTL vs. HLS #LUTs

RTL vs. HLS Throughput/#LUTs

ATHENa Database of Results for Authenticated Ciphers

• Available at

http://cryptography.gmu.edu/athena

- Developed by John Pham, a Master's-level student of Jens-Peter Kaps
- Results can be entered by designers themselves.
 If you would like to do that, please contact me regarding an account.
- The ATHENa Option Optimization Tool supports automatic generation of results suitable for uploading to the database

Ordered Listing with a Single-Best (Unique) Result per Each Algorithm

Database of FPGA Results for Authenticated Ciphers

Show Help

Compare Selected

Show 25 \$ entries

About		Algorithm		Design	Platform	Timing
All FPGA Results	Result ID 🍦	Algorithm 💧	Key Size [bits] 崇	Implementation	Family 🌢	Enc/Auth TP
FPGA Rankings		Disable Unique		Approach		[Mbits/s] *
Login	72	ICEPOLE	128	HLS	Virtex 7	26,902
	107	Keyak	128	HLS	Virtex 7	22,594
	97	AES-GCM	128	HLS	Virtex 7	3,015
	101	CLOC	128	HLS	Virtex 7	2,459
	111	POET	128	HLS	Virtex 7	1,795
	93	AES-COPA	128	HLS	Virtex 7	1,670
	116	PRIMATEs-GIBBON	120	HLS	Virtex 7	1,590
	89	SCREAM	128	HLS	Virtex 7	1,414
	121	PRIMATEs-HANUMAN	120	HLS	Virtex 7	809
	Result ID	Algorithm	Key Size [bits]	HLS	Virtex 7	Enc/Auth TP [Mbits/s]

Details of Result ID 97

Algorithm	
IV or Nonce Size [bits]:	96
Transformation Category:	Cryptographic
Transformation:	Authenticated Cipher
Group:	Standards
Algorithm:	AES-GCM
Tag Size [bits]:	128
Associated Data Support:	-
Key Size [bits]:	128
Secret Message Number:	-
Secret Message Number Size	-
[bits]:	
Message Block Size [bits]:	128
Other Parameters:	-
Specification:	SP-800-38D.pdf
Formula for Message Size After	-
Padding:	
Design	
Design ID:	21
Impl Approach:	HLS
Hardware API:	GMU_AEAD_Core_API_v1
Primary Optimization Target:	Throughput/Area
Secondary Optimization Target:	-
Architecture Type:	Basic Iterative
Description Language:	VHDL
Use of Megafunctions or	No
Primitives:	
List of Megarunctions of Primitives:	-
Processed in Parallely	1
Number of Clock Cycles per	12
Message Block in a Long Message:	16
Datapath Width [bits]:	128
Padding:	Yes
Minimum Message Unit:	
Input Bus Width [bits]:	32
Output Bus Width [bits]:	32

Comparison of Result #s 95 and 97

Comparison of Result #s 95 and 97

Algorithm

-	IV or Nonce Size [bits]:	96	96
	Transformation Category:	Cryptographic	Cryptographic
	Transformation:	Authenticated Cipher	Authenticated Cipher
	Group:	Standards	Standards
	Algorithm:	AES-GCM	AES-GCM
	Tag Size [bits]:	128	128
	Associated Data Support:		
	Key Size [bits]:	128	128
	Secret Message Number:		
	Secret Message Number Size [bits]:	-	-
	Message Block Size [bits]:	128	128
	Other Parameters:		
	Specification:	SP-800-38D.pdf	SP-800-38D.pdf
	Formula for Message Size After		
	Padding:		
Desi	gn		
	Design ID:	20	21
	Impl Approach:	RTL	HLS
	Hardware API:	GMU_AEAD_Core_API_v1	GMU_AEAD_Core_API_v1
	Primary Optimization Target:	Throughput/Area	Throughput/Area
	Secondary Optimization Target:		
	Architecture Type:	Basic Iterative	Basic Iterative
	Description Language:	VHDL	VHDL
	Use of Megafunctions or Primitives:	No	No
	List of Megafunctions or Primitives:		
	Maximum Number of Streams	1	1
	Processed in Parallel:		
	Number of Clock Cycles per Message Block in a Long Message:	11	12
	Datapath Width [bits]:	128	128
	Padding:	Yes	Yes
	Minimum Message Unit:		
	Input Bus Width [bits]:	32	32

Comparison of Result #s 95 and 97						
Platform						
Device Vendor:	Xilinx	Xilinx				
Family:	Virtex 7	Virtex 7				
Device:	xc7vx485tffg1761-2	xc7vx485tffg1761-2				
Timing						
Encryption/Authentication	3261	3015				
Throughput [Mbits/s]:						
Decryption/Authentication	3261	3015				
Throughput [Mbits/s]:						
Authentication-Only	3261	3015				
Throughput [Mbits/s]:						
Synthesis Clock Frequency		•				
[MIZ]: Key Scheduling Time [ns]:						
Reguested Synthesis Clock						
Frequency [MHz]:	•	•				
Requested Implementation						
Clock Frequency [MHz]:						
Implementation Clock	280.27	282.65				
Frequency [MHz]:						
(Encryption/Authentication	0.909	0.879				
Throughput)/LUT						
[(Mbits/s)/LUT]:	2 707	2 720				
(Encryption/Authentication	2./9/	2.728				
[(Mbits/s)/Slice]:						
(Decryption/Authentication	0.909	0.879				
Throughput)/LUT	0.505	0075				
[(Mbits/s)/LUT]:						
(Decryption/Authentication	2.797	2.728				
Throughput)/Slice						
[(Mbits/s)/Slice]:						
(Auth-Only Throughput)/LUT	0.909	0.879				
[(MDIts/s)/LUT]:	2 707	3 730				
(Auth-Only Inroughput)/Slice [(Mbits/s)/Slice]:	2.797	2.728				
Resource Utilization						
CLB Slices:	1166	1105				
LUTs:	3588	3430				
Flip Flops:						
DSPs:	0	0				
BRAMs:	0	0				

Conclusions

- High-level synthesis offers a potential to facilitate hardware benchmarking during the design of cryptographic algorithms and at the early stages of cryptographic contests
- Case study based on 8 Round 1 CAESAR candidates & AES-GCM demonstrated correct ranking for majority of candidates using all major performance metrics
- More research needed to overcome remaining difficulties
 - Suboptimal control unit
 - Wide range of RTL to HLS performance metric ratios
 - Efficient and reliable generation of HLS-ready C codes

Thank you!

Comments?

Questions?

Suggestions?

ATHENa: http://cryptography.gmu.edu/athena CERG: http://cryptography.gmu.edu