
1	

An	Alterna)ve	Approach	to	Hardware	
Benchmarking	of	CAESAR	Candidates	

Based	on	the	Use	of	High-Level	
Synthesis	Tools	

Ekawat	Homsirikamol	
and	Kris	Gaj	

George	Mason	University	
USA	

Based on work partially supported by the
National Science Foundation

under Grant No. 1314540

First	Author	

Ekawat Homsirikamol
a.k.a “Ice”

Working on the PhD Thesis
entitled

“A New Approach to the Development
of Cryptographic Standards Based

on the Use of
High-Level Synthesis Tools”

3

Number of Candidates in Cryptographic Contests

Initial number
of candidates

15

34

51

57

AES

eSTREAM

SHA-3

CAESAR

Implemented
in hardware

5

8

14

28

Percentage

33.3%

23.5%

27.5%

49.1%

4

Pros:
•  Distribution of effort
•  Larger talent pool
•  Potential for design space exploration

Cons:
•  Different skills of designers
•  Different amount of time and effort
•  Misunderstandings regarding API and optimization target
•  Requests for extending the deadline or disregarding ALL results

Pros & Cons of Multiple Designers

5

Potential Solution: High-Level Synthesis (HLS)

High Level Language
(preferably C or C++)

Hardware Description Language
(VHDL or Verilog)

High-Level
Synthesis

6

•  Each submission includes reference implementation in C
•  Development time potentially decreased 3-10 times
•  All candidates can be implemented by the same

group, and even the same designer
•  Results from High-Level Synthesis could have a large impact

in early stages of the competitions and help narrow down the
search

•  RTL code and results from previous contests form
excellent benchmarks for High-Level Synthesis tools,
which can generate fast progress targeting
cryptographic applications

Case for High-Level Synthesis & Crypto

7

BEFORE: Early feedback for designers of algorithms
•  Typical design process based only on security analysis and

software benchmarking
•  Lack of immediate feedback on hardware performance
•  Common unpleasant surprises, e.g.,

§  Mars in the AES Contest
§  BMW, ECHO, and SIMD in the SHA-3 Contest

DURING: Faster design space exploration
•  Multiple hardware architectures (folded, unrolled, pipelined, etc.)
•  Multiple variants of the same algorithms (e.g., key, nonce, tag size)
•  Detecting suboptimal manual designs

Potential Additional Benefits

8

•  How can we trust these tools?

•  Isn’t manual design always better?

•  Is it fair to compare manual designs with HLS designs?

•  Won’t the number of candidates saturate soon anyway?

Typical Doubts (from reviewers of our papers)

9

•  How can we trust these tools?

•  Isn’t manual design always better?

•  Is it fair to compare manual designs with HLS designs?

•  Won’t the number of candidates saturate soon anyway?

•  Why did not you implement Serpent?

 (the same reviewer at two major crypto conferences)

Typical Doubts (from reviewers of our papers)

10

“A Survey and Evaluation of FPGA
High-Level Synthesis Tools”

IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (Volume: 35, Issue: 10, Oct. 2016)

Razvan Nane, Vlad-Mihai Sima, Koen Bertels:
Delft University of Technology, The Netherlands
Christian Pilato, Fabrizio Ferrandi:
Politecnico di Milano, Italy
Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen,
Hsuan Hsiao, Stephen Brown, Jason Anderson:
University of Toronto, Canada

High-Level Synthesis: State of the Art

11

Number of Tools

C, C++, or
Extended C

Other
Languages

In Use 14 3

Abandoned 7 4

Status
Unknown

5 0

Total 26 7

12

Number of Tools supporting C, C++, Extended C

Commercial Academic

In Use 10 4

Abandoned 1 (C2H) 6

Status
Unknown

1 4

Total 12 14

13

In-Use Tools supporting C, C++, Extended C

Commercial:

Academic:
•  Bambu: Politecnico di Milano, Italy
•  DWARV: Delft University of Technology, The Netherlands
•  GAUT: Universite de Bretagne-Sud, France
•  LegUp: University of Toronto, Canada

•  CHC: Altium; CoDeveloper: Impulse Accelerated;
Cynthesizer: FORTE; eXCite: Y Explorations;
ROCCC: Jacquard Comp.

•  Catapult-C: Calypto Design Systems; CtoS: Cadence;
DK Design Suite: Mentor Graphics; Synphony C: Synopsys

•  Vivado HLS: Xilinx

14

Crypto-related Benchmarks (C programs)

CHStone Benchmark Program Suite for
Practical C-based High-Level Synthesis

http://www.ertl.jp/chstone/
aes-encrypt:

 Key scheduling + Encryption of 1 128-bit block
aes-decrypt:

 Key scheduling + Decryption of 1 128-bit block
sha:

 Hashing of 256 512-bit blocks using SHA-1
blowfish:

 Key scheduling + Encryption of 650 64-bit blocks
 in CFB64 mode

15

Benchmarking Results in Number of Clock Cycles
Before Optimization
Tools aes-

encrypt
aes-

decrypt
sha blowfish

Bambu 1,574 2,766 111,762 57,590

DWARV 5,135 2,579 71,163 70,200

LegUp 1,564 7,367 168,886 75,010

Commercial 3,976 5,461 197,867 101,010

Manual 20 20 20,480 18,736

Best/Manual 78 129 3.5 3.1

16

Benchmarking Results in Number of Clock Cycles
After Optimization
Tools aes-

encrypt
aes-

decrypt
sha blowfish

Bambu 1,485 2,585 51,399 57,590

DWARV 3,282 2,579 71,163 70,200

LegUp 1,191 4,847 81,786 64,480

Commercial 3,735 3,923 124,339 96,460

Manual 20 20 20,480 18,736

Best/Manual 60 129 2.5 3.1

17

•  Integrated into the primary Xilinx toolset, Vivado, and
released in 2012

•  Free (or almost free) licenses for academic institutions
•  Good documentation and user support
•  The largest number of performance optimizations

•  8 out of 8: Operation Chaining, Bitwidth Analysis and
Optimization, Memory Space Allocation, Loop Optimizations,
Hardware Resource library, Speculation and Code Motion,
If-Conversion [Bambu, LegUp: 6 out of 8, DWARV: 5 out of 8]

•  On average the highest clock frequency of the generated
code

Our Choice of the HLS Tool: Vivado HLS

18

1.  Results cannot be compared with results
obtained using other HLS tools

2.  Designers are not allowed to target ASICs

3.  Designers are not allowed to target devices of
other FPGA vendors (e.g., Altera)

Licensing Limitations of Vivado HLS

19

AES-128-ECB-ENC (Spartan 6):
ReConFig (Reconfigurable Computing and FPGAs), Dec. 2014

HLS/RTL ratios:
•  Clock cycles: 12/10 = 1.2
•  Area: 343/354 = 0.97

RTL/HLS ratios:
•  Frequency: 230/231 = 0.996
•  Throughput: 2943/2467 = 1.19
•  Throughput/Area: 8.31/7.19 = 1.16

GMU (Ice’s) Previous Efforts (1)

20

5 Final SHA-3 Candidates & SHA-2 (Virtex 6):
ARC (Applied ReConfigurable Computing, Apr. 2015

GMU (Ice’s) Previous Efforts (2)

RTL HLS

21

•  Ranking of candidates in cryptographic contests
in terms of their performance in modern FPGAs
will remain the same independently whether the HDL
implementations are developed manually or
generated automatically using High-Level Synthesis tools

•  The development time will be reduced by a factor of 3 to 10
•  This hypothesis should apply to at least

•  AES Contest, SHA-3 Contest, CAESAR Contest
•  possibly Post-quantum Cryptography?

Our Hypotheses

22

1.  Why not other HLS tools ?

2.  Why not ASICs ?

3.  Why not other FPGA vendors (e.g., Altera)?

4.  Why no previous work by other teams?

5.  Why another publication?

18 months of unsuccessful publishing attempts
and unread/ignored rebuttals

23

1.  Why not other HLS tools ?

2.  Why not ASICs ?

3.  Why not other FPGA vendors (e.g., Altera)?

4.  Why no previous work by other teams?

5.  Why another publication?

6.  Why not Serpent?

18 months of unsuccessful publishing attempts
and unread/ignored rebuttals

24

•  CAESAR HW API 1.0 (02/2016) vs. GMU API 1.1 (09/2015)

•  Comparison vs. RTL implementations developed
by other groups

•  New candidates (e.g., MORUS, AEGIS, NORX, SILC)

•  Block-based => stream-based implementation

•  Easily adjustable algorithm-dependent port widths

•  C++ testbench independent of hardware architecture

•  Automated generation of test vectors at the
CipherCore (C++) level

DIAC 2016 vs. DIAC 2015

25

Manual
Design

HDL	Code	

Netlist	

Post	
Place	&	Route	

Results	

Functional
Verification

Timing
Verification

Informal	Specifica)on	 Test	Vectors	

Traditional Register-Transfer Level (RTL)
Development & Benchmarking Flow

Xilinx ISE + ATHENa

26

High-Level Synthesis

HDL	Code	

Netlist	

Post	
Place	&	Route	

Results	

Functional
Verification

Timing
Verification

Reference	Implementa)on	in	C	

Test	Vectors	

Manual Modifications
(pragmas, tweaks)

HLS-ready	C	code	

Proposed HLS-Based
Development and Benchmarking Flow

Xilinx ISE + ATHENa

27

Language Partitioning

28

Mapping Hardware to Software Interface

Basic handshaking signals (valid, ready) added automatically

C++

29

Easily Adjustable Port Widths

30

Reference C vs. HLS-ready C/C++

Data Reference C HLS-ready C/C++
Access Random

Data can be accessed at
any location multiple
times

Serial
Previously accessed data
must be maintained
inside of the code if
required

Width Byte/Word Block size

Total Size Known Unknown

Status Always available Availability unknown
until the time of read

31

Reference C vs. HLS-ready C/C++

Reference C

HLS-ready C/C++

Encryption Decryption

Encryption/
Decryption

Use of pragmas possible but unreliable

32

Low-Level Code Rewriting

Single vs. Multiple Function Calls:

33

Adding Pragmas

for (i = 0; i < 4; i ++)
#pragma HLS UNROLL
 for (j = 0; j < 4; j ++)
#pragma HLS UNROLL
 b[i][j] = s[i][j];

Unrolling of loops:

Change array shapes:

void KeyUpdate (word8 k[4][4],
 word8 round)
{
 #pragma HLS INLINE

 ...
}

Flattening function's hierarchy:

void AES_encrypt (word8 a[4][4], word8 k[4][4], word8 b[4][4])
{
#pragma HLS ARRAY_RESHAPE variable=a[0] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[1] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[2] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[3] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a complete dim =1 reshape

34

HLS-Ready C/C++ Code Generation

Phase I

1.  Step-by-step designer’s guide (under development)
•  Code rewriting
•  Pragmas insertion

2.  Multiple examples (AES, SHA-3, CAESAR contests)

Phase II

1.  Automated insertion of pragmas for Vivado HLS

2.  Translation of Vivado HLS pragmas to pragmas for
academic tools: Bambu, DWARV, LegUp

35

Sources of Productivity Gains

•  Higher-level of abstraction
•  Focus on datapath rather than control logic
•  Debugging in software (C/C++)

•  Faster run time
•  No timing waveforms

36

Verification Framework

CipherCore
Testbench

Tenta)ve	
Results	

	
Post-Round	2	RTL,	

First	Time	with	CAESAR	API		
and	RTL	designers	from	mul)ple	groups	

38

RTL vs. HLS Throughput [Mbits/s]

Different hardware
architectures
in HLS vs. RTL

39

RTL vs. HLS Ratios for Throughput in Virtex 6

Suboptimal HLS

Sub-
optimal

RTL

> 1.30 < 0.70

40

RTL vs. HLS Area [LUTs]

Different hardware
architectures
in HLS vs. RTL

Small difference
in RTL

41

RTL vs. HLS Ratios for Area in Virtex 6
Sub-

optimal
RTL

Sub-
optimal

HLS

> 1.30 < 0.70

42

RTL vs. HLS Throughput/Area [(Mbits/s)/LUTs]

Different hardware
architectures
in HLS vs. RTL

43

RTL vs. HLS Ratios for Throughput/Area in Virtex 6

Suboptimal
HLS

Sub-
optimal

RTL

> 1.30

< 0.70

(0.70, 0.90]

RTL
may be

improved

[0.90, 1.30]
RTL and HLS
acceptable

44

Identifying suboptimal RTL implementations in Round 3
of the CAESAR Contest

Designing new building blocks [e.g., rounds, steps, etc.] for
hardware-friendly block ciphers, hash functions, and
authenticated ciphers

Post-Quantum Cryptography

Early Rounds of Future Contests

Possible Future Uses of HLS

45

•  Suboptimal control unit of HLS implementations
#cycles per block ≥ #rounds + 2

•  Wide range of RTL to HLS performance metric ratios
Wide range of RTL designer skills and selected architectures

•  A few potentially suboptimal HLS or RTL implementations

•  Dependence of results on particular FPGA family

•  Efficient and reliable generation of HLS-ready C/C++ code

•  Portability among HLS tools

•  Licensing limitations of commercial tools

Remaining Difficulties

46

HLS vs. RTL Ratios for Number of Clock Cycles

47

Best HLS/RTL reported so far

Tools aes-
encrypt

aes-
decrypt

sha blowfish

Best/Manual 60 129 2.5 3.1

• “A Survey and Evaluation of FPGA
High-Level Synthesis Tools”

• IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (Volume: 35, Issue: 10, Oct. 2016)

•  12 leading researchers in the HLS field
•  Co-developers of top 3 academic HLS Tools

48

•  How can we trust these tools?
If HLS used efficiently, maximum 20% penalty
in the number of clock cycles per block.
Easy to verify by comparing vs. the number of rounds.

•  Isn’t manual design always better?
Multiple HLS designs with one or more metrics better.
7 out of 19 HLS designs with better Throughput/Area.

•  Is it fair to compare manual designs with HLS designs?
It is not our intention. HLS results are supposed
to be compared with HLS only. However if an
existing RTL result worse, it is OK to use HLS result
temporarily.

Typical Doubts (from reviewers of our papers)

Ekawat Homsirikamol
a.k.a “Ice”

•  Main developer of the RTL Round 2
Benchmarking Framework and
Developer’s Package

•  RTL Designer for 12 Round 2
Candidates: AES-GCM, AEZ,
Ascon, Deoxys, HS1-SIV, ICEPOLE,
Joltik, NORX, OCB, PAEQ,
Pi-Cipher, STRIBOB

•  Developer of the HLS-based
methodology and framework
for crypto applications

Comments?

Thank you!

50

Questions?

Suggestions?
ATHENa: http:/cryptography.gmu.edu/athena

CERG: http://cryptography.gmu.edu

