

Enhancing CAESAR Hardware API Support for Lightweight Architectures

Panasayya Yalla¹ **Jens-Peter Kaps**¹ Fabrizio De Santis² Michael Tempelmeier²

> ¹Cryptographic Engineering Research Group (CERG) http://cryptography.gmu.edu Volgenau School of Engineering, GMU, USA
> ²Technische Universität München, Munich, Germany

DIAC 2016: Directions in Authenticated Ciphers 2016

Technische Universität München

Outline

Support for CAESAR Hardware API Goals for LW Support

Support for CAESAR Hardware API

- Specification of standard hardware Application Programming Interface (API)
- Implementer's Guide
- Development Package including VHDL code for high-speed implementations
 - Pre- and PostProcessors to handle the protocol
 - Universal Padding Unit

No VHDL Code for Lightweight Implementations

- Protocol handling is an additional burden
- Makes debugging more difficult

Goals for Support of Lightweight Implementations

- Reduce the burden on the designer
- Fully compliant with the CAESAR API
- Support CAESAR API's bus widths for lightweight implementations of 8, 16, and 32 bits
- Clear separation of Communication Protocol and Algorithm
- Low area footprint:
 - Avoid duplication of elements between protocol handling and algorithm
- Minimize overhead:
 - $\bullet~\mbox{Not}$ a 'one-size-fits-all' solution \Rightarrow needs tweaking
 - $\bullet~$ No universal padding unit $\Rightarrow~$ designer can choose most efficient way to implement

	Introduction			
CAESAR	LW Package			
	Case Study			
	Conclusion			

Components Block Diagram Difference HS vs LW Packages Protocol for Smaller Buses

Main Components

- Lightweight PreProcessor:
 - Handles protocol
 - Provides signals needed for padding
 - Separate state machines for sdi and pdi
 - 16 bits counters for segment lengths
- CipherCore (not provided):
 - Cipher function
 - Padding
 - $\bullet\,$ PISO and SIPO if I/O width different than CAESAR API
- By-Pass FIFO: Stores and passes-on header information and Tag to PostProcessor
- PostProcessor
 - 16 bits counter for output segment length
 - Tag verification module

Components Block Diagram Difference HS vs LW Packages Protocol for Smaller Buses

CAESAR Lightweight Block Diagram

Differences to H5 are shown in blue.

DIAC-2016

6 / 20

Components Block Diagram Difference HS vs LW Packages Protocol for Smaller Buses

CAESAR LW Block Diagram with PISO, and SIPO

Components Block Diagram Difference HS vs LW Packages Protocol for Smaller Buses

Differences between High-Speed vs Lightweight Packages

Lightweight Development Package

- Supports bus widths 8, 16, and 32 bits
- Assumes that Padding is performed in CipherCore
- Sets the width of all data buses between modules *PreProcessor, CipherCore, FIFO, and PostProcessor* equal to bus width **w**
- Moves the Tag comparison to the PostProcessor (when possible)
- Does not provide data storage other than for control signals in the *PreProcessor*

Components Block Diagram Difference HS vs LW Packages Protocol for Smaller Buses

Protocol: Instruction

16-bit Instruction with w=16

16-bit Instruction with w=8

	Opcode	Description	Status	Description
	0010	Authenticated Encryption (ENC)	1110	Success
	0011	Authenticated Decryption (DEC)	1111	Failure
	0100	Load Key (LDKEY)	Othors	Percentrad
	0111	Activate Key (ACTKEY)	Others	Reserved
DIAC-2	016	P. Yalla, JP. Kaps, F. De Santis, et al.	ESAR Hardw	are API LW Archite

States for Processing Instruction

Components Block Diagram Difference HS vs LW Packages Protocol for Smaller Buses

Protocol: Segment Header

Case Study

Introduction CAESAR LW Package Case Study Conclusion

Ketje Ascon Results

- Implementation of Ketje-Sr with integrated support of CAESAR API
- Implementation of Ketje-Sr using new CAESAR lightweight development package
 - \Rightarrow Determine overhead of CAESAR LW package
- Implementation of ASCON using CAESAR LW package
 ⇒ Using CAESAR LW package on "unknown" algorithm

Taget Devices for Benchmarking					
Vendor	FPGA Family	GA Family Device Tool Optimizat		Optimization	
Xilinx	Spartan6	xc6slx16csg324-3	Xilinx	ATHENa	
	Artix7	xc7a100tcsg324-3	ISE 14.7		
Altora	Cyclone IV	ep4ce22f17c6	Quartus Prime		
Altera	Cyclone V	5ceba4f23c7	16.0.0		

Ketje Ascon Results

- Ketje is based on round reduced Keccak-*f* called MonkeyWrap.
- Has four variants Ketje-Jr, Ketje-Sr, Ketje-Minor, and Ketje-Major which use Keccak-p*[200], Keccak-p*[400], Keccak-p*[800], and Keccak-p*[1600] respectively.
- Each round of Keccak- p^* consists of five steps θ, ρ, π, χ , and ι .
- In θ step, each bit in the state is Xored with two other bits from two different columns.
- $\bullet\,$ The state bits are rotated for each lane using one of the 25 different offsets in ρ step
- Lanes are rearranged in π , integer multiplication in χ .
- The last step is ι , where a round constant is added.

Ketje Ascon Results

Ketje-Sr Datapath

- We implemented a Ketje-Sr using a 16-bit datapath and interface.
- Datapath is the same for integrated CAESAR API support and using CAESAR LW package.
- State is stored in a dual-port memory (RAM) with one read/write and one read-only ports.
- To reduce the complexity of padding for key, the key size is fixed to 128-bits.
- Two memory units (RAMK1, and RAMK2) with pre-stored values and a register (reg-K) for key storage and *KeyPack* operations.
- Padding for message and AD using multiplexers.
- Needs 160 clock cycles to process a 32-bit block.

•
$$TP = \frac{32}{160} * F$$

Ketje **Ascon** Results

- ASCON is a permutation based authenticated cipher.
- ASCON-128, and ASCON-128a two variants with block sizes of 64 and 128 respectively.
- In each round, three sub transformations called constant-addition, substitution, and linear diffusion
- Constant-addition is the first operation in the round, where a constant is added to one of the five words. Twelve round constants are used
- Substitution layer uses 5x5 S-boxes
- Linear diffusion layer for diffusion across each of the five 64-bit words using circular shifts and an *XOR*

Ketje **Ascon** Results

ASCON Datapath

- A 80-bit datapath is used in this design and a 32-bit interface.
- The state is stored in a shift-register, which either shifts by 64 bits or 80 bits.
- 80-bit shifts are used for substitution operation as 64 is not a multiple of 5 (5x5 S-boxes).
- 5x5 S-Boxes are implemented using look-up tables.
- The round constants are generated using two 4 bit registers and adders.
- Key is stored in a RAM
- Two 5-to-1 multiplexers are used to perform circular shifts in linear diffusion step (LDiff)
- $TP = \frac{32}{54} * F$

Implementation Results on Xilinx Spartan 6 FPGA

Dosign	Slices	LUTs	FFs	Freq	TP	TP/Area
Design				[MHz]	[Mbps]	[Mbps/slice]
Ketje-SR ¹	140	436	98	122.4	24.48	0.17
Ketje-SR ²	155	450	114	120.1	24.03	0.16
Overhead	15	14	16			
Ascon ²	203	645	393	137.5	154.25	0.76
Joltik ³	168	534	381	200.0	426.67	2.54
ASCON ⁴	202	540	383	231.0	1,852.80	9.17

 1 \Rightarrow Integrated CAESAR API; 2 \Rightarrow CAESAR LW Package;

- 3 \Rightarrow No compliance with CAESAR API (non-GMU design);
- 4 \Rightarrow CAESAR HS Package (tweaked, non-GMU design);
 - Using CAESAR LW Package leads to a small area increase.
 - Three separate counters for *sdi*, *pdi* and *do* buses are used for simplicity and parallel operation.
 - Counter for *sdi* can be dropped if cipher core provides end_of_key signal.

Ketje Ascon Results

Area Overhead HS vs. LW Packages

Design	API	Slices	LUTs	FFs
LW Ascon	Yes	203	645	393
	No	173	619	357
Overhead		30	26	35
HS Ascon	Yes	771	2,299	832
	No	720	2,264	484
Overhead		51	35	348

- Results for Ascon with w=32 on Spartan 6.
- Supporting CAESAR API using LW Package leads to a small area increase.
- Supporting CAESAR API using HS Package leads to a larger area increase.

Conclusion

- CAESAR LW Package allows for bus widths of 8 and 16 bits, which are not currently supported by CAESAR HS Package.
- Using CAESAR LW Package leads to a small area increase over integrated designs, however this can be easily mitigated.
- CEASAR HS Package leads to a much larger area increase than the LW Package as it converts between the word width and block width data buses.
- The CAESAR LW-Package reduces the design time for LW implementations.
- The CAESAR LW Package will be included in the next release of the *Development Package for the CAESAR Hardware API*.
- The usage will be documented in the next release of the *Implementer's Guide to the CAESAR Hardware API*.