Toward Fair and Comprehensive Benchmarking of CAESAR Candidates in Hardware: Standard API, High-Speed Implementations in VHDL/Verilog, and Benchmarking Using FPGAs

Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand, Michael X. Lyons, Panasayya Yalla, and <u>Kris Gaj</u> George Mason University USA

Based on work partially supported by the National Science Foundation under Grant No. 1314540

GMU Benchmarking Team

"Ice" Homsirikamol

Will Diehl

Ahmed Ferozpuri

Farnoud Farahmand

Mike X. Lyons

Panasayya Yalla

Evaluation Criteria in Cryptographic Contests

Hardware Benchmarking in Previous Contests

AES (1999-2000): 5 final candidates

eSTREAM (2007-2008): 8 Phase-3 candidates

SHA-3 (2010-2012): 14 Round 2 Candidates + 5 Final Candidates

CAESAR (2016): 29 Round 2 Candidates

New in CAESAR

- 1) standard hardware Application Programming Interface (API)
- 2) comprehensive Implementer's Guide and
 Development Package, including VHDL and Python
 code common for all candidates
- 3) the design teams have been asked to submit their own Verilog/VHDL code

CAESAR Hardware API

CAESAR Hardware API

Specifies:

- Minimum Compliance Criteria
- Interface
- Communication Protocol
- Timing Characteristics

Assures:

- Compatibility
- Fairness

CAESAR Hardware API - Timeline

- July 2015, CryptArchi, Leuven, GMU API v1.0
- Sep. 2015, DIAC, Singapore, GMU API v1.1
- Dec. 2015, ReConFig, Cancun, GMU API v1.2
- Feb. 16, 2016, proposed CAESAR API v1.0
- Mar. 22, 2016, CAESAR Committee considers adoption
- May 7, 2016, official adoption by the CAESAR Committee
- May 12, 2016, final version of CAESAR API v1.0
- June 30, 2016, deadline for VHDL/Verilog Code
- August 12, 2016, last submission of the code

CAESAR API v1.0 vs. GMU API v1.2

Feb. 16, 2016

- Functional Changes
 - Supporting both high-speed and lightweight implementations
 - Supporting both single-pass and two-pass algorithms
 - Moving the buffering of decrypted data to an external unit, common for all candidates
 - No passing of Npub and AD to the output
 - Specifying the maximum size of AD/message/ciphertext explicitly
 - Requiring full support for key scheduling
- Editorial Changes
 - Adding Minimum Compliance Criteria & Timing Characteristics
 - Separating from the Implementer's Guide

Advantages of CAESAR API v1.0 vs. GMU API 1.2

- Simplified:
 - code development
 - definitions of timing parameters for decryption
 - resource utilization characterization
 - benchmarking
- Aimed to
 - speed-up coding
 - encourage more design teams to get involved

Limitations of the CAESAR API v1.0

Interface:

• No parallel loading of AD and Message (used by Keyak)

Protocol:

- No support for intermediate tags (used by variants of ELmD, POET, TriviA-ck, and COLM)
- No protocol support for a second pass without storing intermediate results (or the entire input) inside of the authenticated cipher core

CAESAR Implementer's Guide & Development Package

Top-level block diagram of a High-Speed architecture

May. 12, 2016 - present

- a. VHDL code of a generic PreProcessor, PostProcessor, and CMD FIFO, common for all Round 2 Candidates (src_rtl)
- b. Universal testbench common for all Round 2 candidates (AEAD_TB)
- c. Python app used to automatically generate test vectors (aeadtvgen)
- d. Six reference high-speed implementations of Dummy authenticated ciphers (dummyN)

The API Compliant Code Development

Overview of Submitted Designs

Submitters

- 1. CCRG NTU (Nanyang Technological University) Singapore ACORN, AEGIS, JAMBU, & MORUS
- 2. CLOC-SILC Team, Japan CLOC & SILC
- 3. Ketje-Keyak Team Ketje & Keyak
- 4. Lab Hubert Curien, St. Etienne, France ELmD & TriviA-ck
- 5. Axel Y. Poschmann and Marc Stöttinger Deoxys & Joltik
- 6. NEC Japan AES-OTR
- 7. IAIK TU Graz, Austria Ascon
- 8. DS Radboud University Nijmegen, Netherlands HS1-SIV
- 9. IIS ETH Zurich, Switzerland NORX
- 10. Pi-Cipher Team Pi-Cipher
- 11. EmSec RUB, Germany POET
- 12. CG UCL, INRIA SCREAM
- 13. Shanghai Jiao Tong University, China SHELL

Total: 19 Candidate Families

Submitters - GMU Benchmarking Team

"Ice" Homsirikamol AES-GCM, AEZ, Ascon, Deoxys, HS1-SIV, ICEPOLE, Joltik, NORX, OCB, PAEQ, Pi-Cipher, STRIBOB

Will Diehl Minalpher OMD POET SCREAM

Ahmed Ferozpuri PRIMATEs-GIBBON & HANUMAN, PAEQ

Farnoud Farahmand AES-COPA CLOC

Mike X. Lyons TriviA-ck

Total: 19 Candidate Families + AES-GCM

Variant vs. Architecture

Round 2 Statistics

- 43 hardware design packages
- 75 variant-architecture pairs
- Covering the majority of primary variants of
 28 out of 29 Round 2 Candidate Families (all except Tiaoxin)
- High-speed implementation of **AES-GCM** (baseline)

The biggest and the earliest hardware benchmarking effort in the history of cryptographic competitions

Summary of Submitted Designs

- 2 Compliant designs + 1 Non-Compliant Design 1: TriviA-ck
- 2 Compliant designs
 - **3:** Ascon, CLOC, Minalpher
- 1 Compliant Design + 1 Non-Compliant Design
 8: Deoxys, ELmD, HS1-SIV, Joltik, NORX, Pi-Cipher, POET, SCREAM
- 1 Compliant Design
 - 17: ACORN, AEGIS, AES-COPA, AES-JAMBU, AES-OTR, AEZ, ICEPOLE, Ketje, Keyak, MORUS, OCB, OMD, PAEQ, PRIMATES-GIBBON, HANUMAN, SHELL, SILC, STRIBOB
- No Designs
 - 1: Tiaoxin

Non Compliant Designs

Algorithm (Target)	Hardware designers	No decryption	Full-block width interface	No support for CAESAR API Protocol	Wrapper required
Deoxys & Joltik (ASIC)	Axel Y. Poschmann & Marc Stöttinger	X	X	X	
POET (ASIC, FPGA)	Amir Moradi		X	X	
SCREAM (ASIC, FPGA)	Lubos Gaspar & Stephanie Kerckhof		X	X	
NORX (ASIC)	Michael Muehl- berghuber		X	X	X

Partial Compliance

Keyak (by the Ketje-Keyak Team)

- Compliance criteria:
 - supported maximum size for AD should be 2³²-1 bytes
- Implementation:
 - supported maximum size for AD is 24 bytes

In the Motorist mode:

metadata (AD) is input together with the plaintext and possibly in input blocks after it

- Feature unique for Keyak
- No plug-in replacement for AES-GCM

Architectures

- Majority of algorithms have designs based on Basic Iterative Architecture
 - One round per clock cycle
 - Straightforward
 - Easy to describe in VHDL/Verilog
 - Best or close to best throughput/area
 - Hard to optimize

Other Architectures:

- Lightweight:
- Folded:
- Unrolled (extra):
- With Speculative Precomputation:

ACORN HS1-SIV, Pi-Cipher Ascon, SCREAM Deoxys

Key sizes

 Majority of implemented ciphers support 128-bit keys only Exceptions:

AES-JAMBU, Ketje:	96
AEZ:	384
PRIMATEs:	80 & 120
STRIBOB:	192
Joltik:	64 & 128
Pi-Cipher:	96, <mark>128</mark> , 256
Deoxys, NORX:	128 & 256

Possible allowed key ranges: |K| ≥ 96

- covers all families
- excludes variants with 64 and 80-bit keys

|K| ≥ 120

- covers all families except AES-JAMBU and Ketje
- covers stronger variants of PRIMATEs
- excludes lightweight variants

PDI & DO Ports Width, w

- The CAESAR API Minimum Compliance Criteria allow
 - High-speed: $32 \le w \le 256$
 - Lightweight: w = 8, 16, 32
- Majority of the API compliant implementations support w=32 or 64 only

Exceptions:

ACORN:	8 & 32
PRIMATEs:	40
HS1-SIV:	128
NORX, Pi-Cipher:	128 & 256
AEGIS, ICEPOLE, MORUS:	256

Benchmarking Methodology

FPGA Families & Devices Used for Benchmarking

High-Performance FPGA Families used for benchmarking of All Round 2 Candidates & AES-GCM

- Xilinx Virtex-6: xc6vlx240tff1156-3
- Xilinx Virtex-7:
- Altera Stratix IV:
- Altera Stratix V:

xc7vx485tffg1761-3 ep4se530h35c2

5sgxea7k2f40c1

Low-Cost FPGA Families used for benchmarking of 10 Candidates with the Smallest Area in High-Performance Benchmarking:

- Xilinx Spartan-6:
- Xilinx Artix-7:
- Altera Cyclone IV:
- Altera Cyclone V:

xc6slx16csg324-3 xc7a100tcsg324-3 EP4CE22F17C6 5CEBA4F23C7

RTL Benchmarking

FPGA Tools (1)

For Benchmarking Targeting Xilinx FPGAs (other than Virtex 7):

Target FPGAs:	
Synthesis Tool:	
Implementation Too	ol:
Automated Optimiz	ation:

Virtex-6, Spartan 6, Artix 7 Xilinx XST 14.7 Xilinx ISE 14.7 ATHENa

For Benchmarking Targeting Altera FPGAs:

Target FPGAs: Synthesis Tool: Implementation Tool: Automated Optimization:

Stratix IV, Stratix V, Cyclone IV, Cyclone V Quartus Prime 16.0.0 Quartus Prime 16.0.0 ATHENa

FPGA Tools (2)

For Benchmarking Targeting Xilinx Virtex 7 FPGAs:

Target FPGAs: Synthesis Tool: Implementation Tool:

Virtex-7 Xilinx Vivado 2015.1 Xilinx Vivado 2015.1 **Automated Optimization:** 25 Default Strategies of Vivado

Results

Virtex-6

Results for Virtex 6 – Throughput vs. Area Linear Scale

Results for Virtex 6 – Throughput vs. Area Logarithmic Scale

Relative Throughput/Area in Virtex 6 vs. AES-GCM

Throughput/Area of AES-GCM = 1.020 (Mbit/s)/LUTs

Relative Throughput in Virtex 6 Ratio of a given Cipher Throughput/Throughput of AES-GCM

Throughput of AES-GCM = 3239 Mbit/s

Relative Area (#LUTs) in Virtex 6 Ratio of a given Cipher Area/Area of AES-GCM

Area of AES-GCM = 3175 LUTs

ATHENa Database of Results

ATHENa Database of Results

- Available at
 http://cryptography.gmu.edu/athena
- Developed by John Pham, a Master's-level student of Jens-Peter Kaps as a part of the SHA-3 Hardware Benchmarking project, 2010-2012, (sponsored by NIST)
- In June 2015 extended to support Authenticated Ciphers

One Stop Website

https://cryptography.gmu.edu/athena/index.php?id=CAESAR OR https://cryptography.gmu.edu/athena and click on Download

- VHDL/Verilog Code of CAESAR Candidates: Summary I
- VHDL/Verilog Code of CAESAR Candidates: Summary II
- ATHENa Database of Results: Rankings View
- ATHENa Database of Results: Table View
- Benchmarking of Round 2 CAESAR Candidates in Hardware: Methodology, Designs & Results
- GMU Implementations of Authenticated Ciphers and Their Building Blocks
- CAESAR Hardware API v1.0

Round 3 Benchmarking Goals & Timeline

Round 3 Candidates Outperforming AES-GCM

High-Speed Implementations (4 FPGA families)

Throughput/Area:

Throughput:

- 1. ACORN
- 2. AEGIS
- 3. Ascon
- 4. Ketje
- 5. Keyak
- 6. MORUS
- 7. NORX

- 1. ACORN
- 2. AEGIS
- 3. Ascon
- 4. Ketje
- 5. Keyak
- 6. MORUS
- 7. NORX

Alphabetical Order

R3 Candidates – Relative Throughput/Area - Virtex 6

Throughput/Area of AES-GCM = 1.020 (Mbit/s)/LUTs

R3 Candidates – Relative Throughput - Virtex 6

Throughput of AES-GCM = 3239 Mbit/s

- I. Lightweight Implementations, benchmarked for area, throughput/area, power, energy/bit
 - 1. ACORN
 - 2. Ascon
 - 3. CLOC (TWINE-80, AES-128
 - 4. JAMBU (SIMON, AES)
 - 5. Ketje
 - 6. SILC (PRESENT-80, LED-80, AES-128)
 - 7. Others (AES-OTR, COLM, Deoxys, Keyak, MORUS)?
- II. Natural resistance to side-channel attacks & the cost of countermeasures

Possibly a subject of the next DPA Contest?

III. ASIC Benchmarking

- High-speed implementations
- Lightweight implementations
- Implementations of two-pass algorithms (effect of external memory)
- Side-channel resistance
- IV. High-speed architectures supporting multiple messages processed in parallel
 - Multi-message pipelining
 - Extensions to API required

V. Investigating Throughputs vs. Area Trade-offs (flexibility, wide range of applications)

Possible Architectures: folded, unrolled, with inner-round pipelining, etc.

VI. Extensions Common for all Authenticated Ciphers

- buffering of decrypted data before authentication
- merging Npub, AD, Ciphertext, and Tag after decryption
- word width conversion (for communication between implementations with different PDI/SDI/DO widths)

VI. Experimental Setups

- power/energy measurements
- communication & control overhead of a hardware accelerator
- operating system overhead
- CAESAR API validation taking into account the most popular Bus Interfaces, such as AXI4 and PCIe

Round 3 Benchmarking Timeline

Requests for changes in the CAESAR API:

October 31, 2016

Round 3 VHDL/Verilog:

At least two months before the announcement of finalists

Independent Benchmarking Efforts (ASIC, Side-channel, etc.):

Early declarations and guidelines for designers strongly encouraged

Conclusions

- The biggest and the earliest hardware benchmarking effort in the history of cryptographic competitions
 - 14 hardware designer groups
 - 28 candidate families
 - 75 variant-architecture pairs
- Key new features:
 - Standard API
 - Implementer's Guide and Development Package
 - Algorithm designers requested to submit HDL code (possibly designed by other teams)
- Modest but noticeable influence on the Round 3 selection

Possible Improvements

- Faster adoption of the submitted proposals (e.g., API) by the CAESAR Committee
- More realistic and relaxed deadlines
- Clear indication of the influence of hardware benchmarking on the final decision
 - Avoiding mixed signals:
 - "reference" hardware implementation
 - advancing candidates without VHDL/Verilog code
- Early collaborations
- More groups involved in various benchmarking efforts (lightweight, ASIC, side-channel)
- Incentives: publication venues, grants, PhD/MS theses

Thank you!

Questions?

Comments?

Suggestions?

ATHENa: http://cryptography.gmu.edu/athena CERG: http://cryptography.gmu.edu