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Cryptography is Everywhere!

Software updates
Mobile phones connecting to cell towers 
Credit/debit card authorizations
On-line payments and tax declarations
Skype
WhatsApp, iMessage
ePassports

Crypto-curencies (e.g., Bitcoin)
Cloud computing
Internet of Things, etc.
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Need for Standards

4Sources: http://geology.com, http://bluebuddies.com



Cryptographic Contests
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Evaluation Criteria
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Security

Software  Efficiency Hardware Efficiency 

Simplicity

FPGAs ASICs

Flexibility Licensing

µProcessors µControllers



AES Final Round: 5 candidates
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Straw Poll @ AES 3 conferenceGMU FPGA Results

Rijndael second best in FPGAs,
selected as a winner due to much better performance

in software 



SHA-3 Round 2: 14 candidates
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Throughput vs. Area: Normalized to Results for SHA-2 
and Averaged over 7 FPGA Families

Area

Throughput

Best: Fast & Small

Worst: Slow & Big



Percentage of Candidates in Hardware
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High-Level Synthesis (HLS)
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High Level Language
(C, C++, Java, Python, etc.)

Hardware Description Language
(VHDL or Verilog)

High-Level Synthesis



Case for HLS in Crypto Competitions

All submissions include reference implementations in C
Development time potentially decreased several times
All candidates can be implemented by the same 
group, and even the same designer, reducing the bias
Results from High-Level Synthesis could have a large 
impact in early stages of the competitions and help 
narrow down the search (saving thousands of man-
hours of cryptanalysis)
Potential for quickly detecting suboptimal code written 
manually, using Register Transfer Level (RTL) approach
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Popular HLS Tools
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Commercial (FPGA-oriented): 

Academic: 
• Bambu:  Politecnico di Milano, Italy
• DWARV:  Delft University of Technology, The Netherlands
• GAUT: Universite de Bretagne-Sud, France
• LegUp: University of Toronto, Canada

• Vivado HLS: Xilinx – selected for this study
• FPGA SDK for OpenCL: Intel



HLS & Crypto: State-of-the-Art
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Tools aes-
encrypt

aes-
decrypt

sha blowfish

Best HLS 1,191 2,579 51,399 57,590

Manual RTL 20 20 20,480 18,736

Best HLS
/Manual RTL

60 129 2.5 3.1

Cryptographic Benchmarks

Best HLS: Best result (minimum number of clock cycles) 
from among those generated by 
Vivado HLS, Bambu, DWARV, and LegUp

Based on “A Survey and Evaluation of FPGA High-Level Synthesis Tools”, IEEE 
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 10, Oct. 2016.



GMU Case Studies

14

Ekawat Homsirikamol
a.k.a “Ice”

• AES, winner
ReConFig 2014, Dec. 2014

• 5 Final SHA_3 Candidates + SHA-2
Applied Reconfigurable Computing, 
ARC 2015, Bochum, Apr. 2015

• 15 Round 3 CAESAR Candidates 
+ AES-GCM
This Talk



ReConFig 2014: AES
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HLS/Manual ratios:
Clock cycles:  12/10  = 1.20
Area: 343/354  = 0.97

Manual/HLS ratios:
Frequency: 230/231 = 0.996
Throughput:    2943/2467 = 1.19
Throughput/Area:    8.31/7.19 = 1.16



ARC 2015: SHA-3 Candidates Revisited
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RTL HLS

Keccak

Keccak

Groestl
GroestlJH

JH
SHA-2 SHA-2

BLAKE
Skein

BLAKE Skein

Altera Stratix III FPGA



Our Hypothesis

Ranking of candidates in cryptographic contests 

in terms of their performance in modern FPGAs

will remain the same independently whether the HDL 

implementations are developed manually or

generated automatically using High-Level Synthesis tools

The development time will be reduced by a factor of 

3 to 10

This hypothesis should apply to at least

AES Contest, SHA-3 Contest, CAESAR Contest
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CAESAR Case Study
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• GMU HLS-ready C Code
• 15 Round 3 CAESAR Candidate Variants
• AES-GCM

• GMU RTL VHDL Code
• 10 Round 3 CAESAR Candidates Variants
• AES-GCM

• NTU Singapore RTL VHDL Code 
• ACORN, JAMBU-SIMON, MORUS

• NEC Japan RTL VHDL Code
• AES-OTR

• Ketje-Keyak RTL VHDL Code
• KetjeSr



CAESAR Case Study
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• Uniform Hardware API
• Uniform PreProcessor & PostProcessor
• Uniform Benchmarking Methodology
• Two Platforms

• Xilinx Virtex 6
• Xilinx Virtex 7



HLS vs. RTL Ratios for Number of Clock Cycles
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[1.20..1.00]   <   2.5



21
Suboptimal 

HLS

> 1.30

(0.90..0.70]
RTL may be

improved

[1.30..0.90] RTL and HLS
acceptable

Throughput RTL / Throughput HLS for Xilinx Virtex-7

Suboptimal 
RTL

< 0.70



RTL vs. HLS Throughput [Mbits/s]

Consistently
better than
AES-GCM

Suboptimal 
RTL
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Throughput-to-Area RTL / Throughput-to-Area HLS
in Virtex 7
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Suboptimal 

HLS

> 1.30

(0.90..0.70]
RTL may be

improved

[1.30..0.90] RTL and HLS
acceptable

Suboptimal 
RTL

< 0.70



RTL vs. HLS Throughput/Area [(Mbits/s)/LUTs]

Consistently
better than
AES-GCM

Suboptimal 
HLS

Suboptimal 
RTL
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HLS vs. RTL Throughput vs. Area
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RTL

HLS



Transformation to HLS-ready C/C++ Code

1. Language partitioning and interface mapping

2. Addition of HLS Tool directives (pragmas)

3. Hardware-driven code refactoring
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Language Partitioning
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Mapping Hardware to Software Interface

Basic handshaking signals (valid, ready) added 
automatically 

C++

28



Code Refactoring – High-Level

Reference C

HLS-ready C/C++

Encryption Decryption

Encryption/
Decryption

Use of pragmas possible but unreliable
29



Code Refactoring: Low-Level

Single vs. Multiple Function Calls:
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Adding HLS Tool Directives - Pragmas

for (i = 0; i < 4; i ++) 
#pragma HLS UNROLL

for (j = 0; j < 4; j ++) 
#pragma HLS UNROLL

b[i][j] = s[i][j];

Unrolling of loops:

Change array shapes:

void KeyUpdate (word8 k[4][4], 
word8 round) 

{ 
#pragma HLS INLINE

...
}

Flattening function's hierarchy:

void AES_encrypt (word8 a[4][4], word8 k[4][4], word8 b[4][4]) 
{
#pragma HLS ARRAY_RESHAPE variable=a[0] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[1] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[2] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[3] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a complete dim =1 reshape 
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Verification Framework

CipherCore 
Testbench
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Sources of Productivity Gains

• Higher-level of abstraction
• Focus on datapath rather than control logic
• Debugging in software (C/C++)

• Faster run time
• No timing waveforms

33



Conclusions
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Accuracy:
Good (but not perfect) correlation between algorithm 
rankings using RTL and HLS approaches

Efficiency:
3-10 shorter development time
Designer can focus on functionality : 
control logic inferred
Much easier verification: 
C/C++ testbenches
A single designer can produce implementations of 
multiple (and even all) candidates  

Bottom Line:
Manual design approach still predominant
HLS design approach at the experimental stage – more 
research needed



Open Source
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GMU HLS-ready C Code
• 15 Round 3 CAESAR Candidates
• AES-GCM

GMU RTL VHDL Code
• 10 Round 3 CAESAR Candidates
• AES-GCM

made available at
https://cryptography.gmu.edu/athena

under  CAESAR ⇒
GMU Implementations of Authenticated Ciphers 
and Their Building Blocks



Future Work: High-Level Synthesis
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AES, SHA-3, 
& CAESAR

Vivado HLS

Post-Quantum 
Cryptography
(69 candidates)

Academic Tools:
Bambu, LegUp,
DWARV, GAUT

Deep Analysis
& Contribution to
Tool Development



Q&A
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Suggestions?
CERG: http://cryptography.gmu.edu

ATHENa:  http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!


