
Toward a New HLS-Based Methodology
for FPGA Benchmarking of Candidates

in Cryptographic Competitions:
The CAESAR Contest Case Study

Ekawat Homsirikamol
and Kris Gaj

George Mason University
USA

Based on work partially supported by the
National Science Foundation

under Grant No. 1314540

Ekawat Homsirikamol
a.k.a “Ice”

Ph.D. Thesis Defense
November 2016

Currently with Cadence Design Systems,
San Jose, California

First Author

2

Cryptography is Everywhere!

Software updates
Mobile phones connecting to cell towers
Credit/debit card authorizations
On-line payments and tax declarations
Skype
WhatsApp, iMessage
ePassports

Crypto-curencies (e.g., Bitcoin)
Cloud computing
Internet of Things, etc.

3

Need for Standards

4Sources: http://geology.com, http://bluebuddies.com

Cryptographic Contests

5
time

97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

AES

NESSIE

CRYPTREC

eSTREAM

SHA-3

34 stream 4 HW winners
ciphers ® + 4 SW winners

51 hash functions ® 1 winner

15 block ciphers ® 1 winner
IX.1997 X.2000

I.2000 XII.2002

IV.2008

X.2007 X.2012

XI.2004

CAESAR
I.2013

57 authenticated ciphers ® multiple winners
TBD

Evaluation Criteria

6

Security

Software Efficiency Hardware Efficiency

Simplicity

FPGAs ASICs

Flexibility Licensing

µProcessors µControllers

AES Final Round: 5 candidates

7

Straw Poll @ AES 3 conferenceGMU FPGA Results

Rijndael second best in FPGAs,
selected as a winner due to much better performance

in software

SHA-3 Round 2: 14 candidates

8

Throughput vs. Area: Normalized to Results for SHA-2
and Averaged over 7 FPGA Families

Area

Throughput

Best: Fast & Small

Worst: Slow & Big

Percentage of Candidates in Hardware

9

Initial number
of candidates

15

34

51

57

69

AES

eSTREAM

SHA-3

CAESAR

PQC

Implemented
in hardware

5

8

14

28

?

Percentage

33.3%

23.5%

27.5%

49.1%

?

High-Level Synthesis (HLS)

10

High Level Language
(C, C++, Java, Python, etc.)

Hardware Description Language
(VHDL or Verilog)

High-Level Synthesis

Case for HLS in Crypto Competitions

All submissions include reference implementations in C
Development time potentially decreased several times
All candidates can be implemented by the same
group, and even the same designer, reducing the bias
Results from High-Level Synthesis could have a large
impact in early stages of the competitions and help
narrow down the search (saving thousands of man-
hours of cryptanalysis)
Potential for quickly detecting suboptimal code written
manually, using Register Transfer Level (RTL) approach

11

Popular HLS Tools

12

Commercial (FPGA-oriented):

Academic:
• Bambu: Politecnico di Milano, Italy
• DWARV: Delft University of Technology, The Netherlands
• GAUT: Universite de Bretagne-Sud, France
• LegUp: University of Toronto, Canada

• Vivado HLS: Xilinx – selected for this study
• FPGA SDK for OpenCL: Intel

HLS & Crypto: State-of-the-Art

13

Tools aes-
encrypt

aes-
decrypt

sha blowfish

Best HLS 1,191 2,579 51,399 57,590

Manual RTL 20 20 20,480 18,736

Best HLS
/Manual RTL

60 129 2.5 3.1

Cryptographic Benchmarks

Best HLS: Best result (minimum number of clock cycles)
from among those generated by
Vivado HLS, Bambu, DWARV, and LegUp

Based on “A Survey and Evaluation of FPGA High-Level Synthesis Tools”, IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 10, Oct. 2016.

GMU Case Studies

14

Ekawat Homsirikamol
a.k.a “Ice”

• AES, winner
ReConFig 2014, Dec. 2014

• 5 Final SHA_3 Candidates + SHA-2
Applied Reconfigurable Computing,
ARC 2015, Bochum, Apr. 2015

• 15 Round 3 CAESAR Candidates
+ AES-GCM
This Talk

ReConFig 2014: AES

15

HLS/Manual ratios:
Clock cycles: 12/10 = 1.20
Area: 343/354 = 0.97

Manual/HLS ratios:
Frequency: 230/231 = 0.996
Throughput: 2943/2467 = 1.19
Throughput/Area: 8.31/7.19 = 1.16

ARC 2015: SHA-3 Candidates Revisited

16

RTL HLS

Keccak

Keccak

Groestl
GroestlJH

JH
SHA-2 SHA-2

BLAKE
Skein

BLAKE Skein

Altera Stratix III FPGA

Our Hypothesis

Ranking of candidates in cryptographic contests

in terms of their performance in modern FPGAs

will remain the same independently whether the HDL

implementations are developed manually or

generated automatically using High-Level Synthesis tools

The development time will be reduced by a factor of

3 to 10

This hypothesis should apply to at least

AES Contest, SHA-3 Contest, CAESAR Contest

17

CAESAR Case Study

18

• GMU HLS-ready C Code
• 15 Round 3 CAESAR Candidate Variants
• AES-GCM

• GMU RTL VHDL Code
• 10 Round 3 CAESAR Candidates Variants
• AES-GCM

• NTU Singapore RTL VHDL Code
• ACORN, JAMBU-SIMON, MORUS

• NEC Japan RTL VHDL Code
• AES-OTR

• Ketje-Keyak RTL VHDL Code
• KetjeSr

CAESAR Case Study

19

• Uniform Hardware API
• Uniform PreProcessor & PostProcessor
• Uniform Benchmarking Methodology
• Two Platforms

• Xilinx Virtex 6
• Xilinx Virtex 7

HLS vs. RTL Ratios for Number of Clock Cycles

20

[1.20..1.00] < 2.5

21
Suboptimal

HLS

> 1.30

(0.90..0.70]
RTL may be

improved

[1.30..0.90] RTL and HLS
acceptable

Throughput RTL / Throughput HLS for Xilinx Virtex-7

Suboptimal
RTL

< 0.70

RTL vs. HLS Throughput [Mbits/s]

Consistently
better than
AES-GCM

Suboptimal
RTL

22

Throughput-to-Area RTL / Throughput-to-Area HLS
in Virtex 7

23
Suboptimal

HLS

> 1.30

(0.90..0.70]
RTL may be

improved

[1.30..0.90] RTL and HLS
acceptable

Suboptimal
RTL

< 0.70

RTL vs. HLS Throughput/Area [(Mbits/s)/LUTs]

Consistently
better than
AES-GCM

Suboptimal
HLS

Suboptimal
RTL

24

HLS vs. RTL Throughput vs. Area

25

RTL

HLS

Transformation to HLS-ready C/C++ Code

1. Language partitioning and interface mapping

2. Addition of HLS Tool directives (pragmas)

3. Hardware-driven code refactoring

26

Language Partitioning

27

Mapping Hardware to Software Interface

Basic handshaking signals (valid, ready) added
automatically

C++

28

Code Refactoring – High-Level

Reference C

HLS-ready C/C++

Encryption Decryption

Encryption/
Decryption

Use of pragmas possible but unreliable
29

Code Refactoring: Low-Level

Single vs. Multiple Function Calls:

30

Adding HLS Tool Directives - Pragmas

for (i = 0; i < 4; i ++)
#pragma HLS UNROLL

for (j = 0; j < 4; j ++)
#pragma HLS UNROLL

b[i][j] = s[i][j];

Unrolling of loops:

Change array shapes:

void KeyUpdate (word8 k[4][4],
word8 round)

{
#pragma HLS INLINE

...
}

Flattening function's hierarchy:

void AES_encrypt (word8 a[4][4], word8 k[4][4], word8 b[4][4])
{
#pragma HLS ARRAY_RESHAPE variable=a[0] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[1] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[2] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a[3] complete dim=1 reshape
#pragma HLS ARRAY_RESHAPE variable=a complete dim =1 reshape

31

Verification Framework

CipherCore
Testbench

32

Sources of Productivity Gains

• Higher-level of abstraction
• Focus on datapath rather than control logic
• Debugging in software (C/C++)

• Faster run time
• No timing waveforms

33

Conclusions

34

Accuracy:
Good (but not perfect) correlation between algorithm
rankings using RTL and HLS approaches

Efficiency:
3-10 shorter development time
Designer can focus on functionality :
control logic inferred
Much easier verification:
C/C++ testbenches
A single designer can produce implementations of
multiple (and even all) candidates

Bottom Line:
Manual design approach still predominant
HLS design approach at the experimental stage – more
research needed

Open Source

35

GMU HLS-ready C Code
• 15 Round 3 CAESAR Candidates
• AES-GCM

GMU RTL VHDL Code
• 10 Round 3 CAESAR Candidates
• AES-GCM

made available at
https://cryptography.gmu.edu/athena

under CAESAR ⇒
GMU Implementations of Authenticated Ciphers
and Their Building Blocks

Future Work: High-Level Synthesis

36

AES, SHA-3,
& CAESAR

Vivado HLS

Post-Quantum
Cryptography
(69 candidates)

Academic Tools:
Bambu, LegUp,
DWARV, GAUT

Deep Analysis
& Contribution to
Tool Development

Q&A

37

Suggestions?
CERG: http://cryptography.gmu.edu

ATHENa: http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!

