
From	 C	 to	 Hardware:	 	
Toward	 Using	 High-‐Level	 Synthesis	 for	

Hardware	 Benchmarking	 of	 	
Candidates	 in	 Cryptographic	 Contests	

Kris Gaj
George Mason University

CERG	 @	 GMU	

 9 PhD students
8 MS students

co-advised by Kris Gaj & Jens-Peter Kaps

hEp://cryptography.gmu.edu/	

Major	 Focus	 of	 CERG	

High-speed Implementations
of Cryptographic Algorithms

Lightweight Implementations
of Cryptographic Algorithms

Evaluation of Candidates for New Cryptographic Standards
(secret-key, pairing-based, and post-quantum cryptography)

Implementation of Codebreaking
Algorithms in Hardware

Side-Channel
Attacks & Countermeasures

Primary	 Support	 for	 This	 ParKcular	 Project	

Ekawat Homsirikamol
a.k.a “Ice”

Working on the PhD Thesis
entitled

“A New Approach to the Development
of Cryptographic Standards Based

on the Use of
High-Level Synthesis Tools”

RTL codes developed by:
William Diehl,
Farnoud Farahmand,
Ahmed Ferozpuri,
Ekawat Homsirikamol, and
Marcin Rogawski

Outline

•  Introduction & motivation

•  Traditional vs. HLS-based
development & benchmarking
flow

•  Case studies

•  SHA-3 contest

•  CAESAR contest

•  Future work

•  Conclusions

Cryptography is everywhere
We trust it because of standards

Buying a book on-line Withdrawing cash from ATM

Teleconferencing
over Intranets

Backing up files
on remote server

Cryptographic Standards Before 1997

time

1970 1980 1990 2000 2010

DES – Data Encryption Standard

1977 1999

Triple DES

SHA-1–Secure Hash Algorithm
SHA-2

Secret-Key Block Ciphers

Hash Functions 1995 2003 1993

SHA

2005

NSA

IBM
& NSA

Cryptographic Standard Contests

time
97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

AES

NESSIE

CRYPTREC

eSTREAM

SHA-3

34 stream 4 HW winners
ciphers → + 4 SW winners

51 hash functions → 1 winner

15 block ciphers → 1 winner

IX.1997 X.2000

I.2000 XII.2002

IV.2008

X.2007 X.2012

XI.2004

CAESAR
I.2013

57 authenticated ciphers → multiple winners

XII.2017

9

Evaluation Criteria

Security

Software Efficiency Hardware Efficiency

Simplicity

FPGAs ASICs

Flexibility Licensing

µProcessors µControllers

Benchmarking
Tools

Tools for Benchmarking
Implementations of Cryptography

Software ASICs FPGAs

SUPERCOP

D. Bernstein (UIC)
T. Lange (TUE)

?
ATHENa

K. Gaj,
J. Kaps, et al.
(GMU)

2006-present 2009-present

ATHENa – Automated Tool for Hardware
EvaluatioN

12	

Open-source benchmarking environment,
written in Perl, aimed at

 AUTOMATED generation of
OPTIMIZED results for
MULTIPLE hardware platforms.

http://cryptography.gmu.edu/athena

FPL Community Award 2010

Why Athena?

13	

"The Greek goddess Athena was frequently
called upon to settle disputes between
the gods or various mortals.
Athena Goddess of Wisdom was
known for her superb logic and intellect.
Her decisions were usually well-considered,
highly ethical, and seldom motivated
by self-interest.”

from "Athena, Greek Goddess
of Wisdom and Craftsmanship"

14

Generation of Results Facilitated by ATHENa

vs.
old days…

“working” with ATHENa…

Manual
Design

RTL	 HDL	 Code	

Manual Optimization
FPGA	 Tools	

Netlist	

Post	
Place	 &	 Route	

Results	

Functional
Verification

Timing
Verification

Informal	 SpecificaKon	 Test	 Vectors	

Traditional Development and Benchmarking Flow

Manual
Design

RTL	 HDL	 Code	

Automated Optimization
FPGA	 Tools	

Netlist	

Post	
Place	 &	 Route	

Results	

Functional
Verification

Timing
Verification

Informal	 SpecificaKon	 Test	 Vectors	

Extended Traditional Development and Benchmarking Flow

GMU ATHENa

SHA-3
Contest

2007-2012

NIST SHA-3 Contest - Timeline

51
candidates

Round 1
14 5 1

Round 3

July 2009 Dec. 2010 Oct. 2012
Oct. 2008

Round 2

19	

SHA-3 Round 2

20

Primary Secondary

1. Throughput

 2. Area

3. Throughput / Area

 4. Hash Time for
 Short Messages
 (up to 1000 bits)

Performance Metrics

21

Overall Normalized Throughput: 256-bit variants of algorithms
Normalized to SHA-256, Averaged over 10 FPGA families

7.47
7.21

5.40

3.83
3.46

2.98

2.21
1.82 1.74 1.70 1.69 1.66 1.51

0.98

0

1

2

3

4

5

6

7

8

22	

Thr/Area Thr Area Short msg. Thr/Area Thr Area Short msg.

256-bit variants 512-bit variants

BLAKE
BMW
CubeHash
ECHO
Fugue
Groestl
Hamsi
JH
Keccak
Luffa
Shabal
SHAvite-3
SIMD
Skein

23	

SHA-3 Round 3

SHA-3 Contest Finalists

25

•  6 algorithms (BLAKE, Groestl, JH, Keccak, Skein, SHA-2)
•  2 variants (with a 256-bit and a 512-bit output)
•  7 to 12 different architectures per algorithm
•  4 modern FPGA families (Virtex 5, Virtex 6, Stratix III,

Stratix IV)

Benchmarking of the SHA-3 Finalists by CERG GMU

Total: ~ 120 designs
 ~ 600+ results

26

BLAKE-256 in Virtex 5

x1 – basic iterative architecture
xk – unrolling by a factor of k

xk-PPLn – unrolling by a factor of k with n pipeline stages

/k(h) – horizontal folding by a factor of k
/k(v) – vertical folding by a factor of k

27

256-bit variants in Virtex 5

28

256-bit variants in 4 high-performance FPGA families

29

•  Large number of candidates
•  Long time necessary to develop and verify

RTL (Register-Transfer Level)
Hardware Description Language (HDL) codes

•  Multiple variants of algorithms
(e.g., multiple key, nonce, and tag sizes)

•  High-speed vs. lightweight algorithms
•  Multiple hardware architectures
•  Dependence on skills of designers

Remaining Difficulties of Hardware Benchmarking

30

High-Level Synthesis (HLS)

High Level Language
(e.g. C, C++, SystemC)

Hardware Description Language
(e.g., VHDL or Verilog)

High-Level
Synthesis

31

Generation 1 (1980s-early 1990s): research period
Generation 2 (mid 1990s-early 2000s):
•  Commercial tools from Synopsys, Cadence, Mentor Graphics, etc.
•  Input languages: behavioral HDLs Target: ASIC
 Outcome: Commercial failure
Generation 3 (from early 2000s):
•  Domain oriented commercial tools: in particular for DSP
•  Input languages: C, C++, C-like languages (Impulse C, Handel C, etc.),

Matlab + Simulink, Bluespec
•  Target: FPGA, ASIC, or both
 Outcome: First success stories

Short History of High-Level Synthesis
G. Martin & G. Smith “HLS: Past, Present, and Future,” IEEE D&ToC, 2009

32

AutoESL Design Technologies, Inc. (25 employees)
Flagship product:
 AutoPilot, translating C/C++/SystemC to VHDL or Verilog
•  Acquired by the biggest FPGA company, Xilinx Inc., in 2011
•  AutoPilot integrated into the primary Xilinx toolset, Vivado, as
 Vivado HLS, released in 2012

 “High-Level Synthesis for the Masses”

Cinderella Story

33

•  Ranking of candidate algorithms in cryptographic contests
in terms of their performance in modern FPGAs &
All-Programmable SoCs will remain the same independently
whether the HDL implementations are developed manually
or generated automatically using High-Level Synthesis tools

•  The development time will be reduced by at least an order of
magnitude

Our Hypotheses

34

Early feedback for designers of cryptographic algorithms
•  Typical design process based only on security analysis

and software benchmarking
•  Lack of immediate feedback on hardware performance
•  Common unpleasant surprises, e.g.,

§  Mars in the AES Contest
§  BMW, ECHO, and SIMD in the SHA-3 Contest

Potential Additional Benefits

35

High-Level Synthesis

HDL	 Code	

Automated Optimization
FPGA	 Tools	

Netlist	

Post	
Place	 &	 Route	

Results	

Functional
Verification

Timing
Verification

Reference	 ImplementaKon	 in	 C	

Test	 Vectors	

Manual Modifications
(pragmas, tweaks)

HLS-‐ready	 C	 code	

Proposed HLS-Based
Development and Benchmarking Flow

Xilinx ISE + ATHENa
Vivado + Default Strategies

36

Examples of Source Code Modifications

for (i = 0; i < 4; i ++)
#pragma HLS UNROLL
 for (j = 0; j < 4; j ++)
#pragma HLS UNROLL
 b[i][j] = s[i][j];

Unrolling of loops:

Function Reuse:

void KeyUpdate (word8 k[4][4],
 word8 round)
{
 #pragma HLS INLINE

 ...
}

Flattening function's hierarchy:

37

•  5 final SHA-3 candidates + old standard SHA-2
•  Most efficient sequential architectures
 (/2h for BLAKE, x4 for Skein, x1 for others)
•  GMU VHDL codes developed during SHA-3 contest
•  Reference software implementations in C

included in the submission packages

Our Test Case 1

38

Manual RTL vs. HLS-based Results: Altera Stratix III

RTL HLS

39

Manual RTL vs. HLS-based Results: Altera Stratix IV

RTL HLS

40

Lack of Correlation for Xilinx Virtex 6

RTL HLS

41

RTL vs. HLS Ratios in Altera Stratix IV

Clock Frequency Throughput

42

RTL vs. HLS Ratios in Xilinx Virtex 6

Clock Frequency Throughput

43

RTL vs. HLS Ratios in Altera Stratix IV

#ALUTs Throughput/#ALUTs

44

RTL vs. HLS Ratios in Xilinx Virtex 6

#Slices Throughput/#Slices

45

Hypothesis I:
•  Ranking of candidates in terms of throughput, area, and throughput/

area ratio will remain the same
 TRUE for Altera Stratix III, Stratix IV

 FALSE for Xilinx Virtex 5, Virtex 6, and Virtex 7
Hypothesis II:
•  Performance ratios HDL/HLS similar across candidates

Hypothesis Check

Stratix III Stratix IV
Frequency 0.99-1.30 0.98-1.19
Area 0.71-1.01 0.68-1.02
Throughput 1.10-1.33 1.08-1.27
Throughput/
Area

1.14-1.55 1.17-1.59

46

Correlation Between Altera FPGA Results and ASICs

Stratix III FPGA ASIC

47

Correlation Between ASIC Results and FPGA Results

ASIC Stratix III FPGA

CAESAR
Contest

2013-2017

49

Goal: Portfolio of new-generation authenticated ciphers

Period: March 2015 - December 2017 (tentative)
Organizer: An informal committee of leading cryptographic

 experts

Number of submitted candidates: 57

Upcoming milestones:
 - Announcement of second-round candidates
 - Round 2 tweaks
 - VHDL/Verilog codes

CAESAR Competition

50

Input and Output of an Authenticated Cipher

Message	

Tag	

EncrypKon	

Npub	

Ciphertext	 Npub	

Tag	 Ciphertext	 Npub	

DecrypKon	

K	 -‐	 Secret	 key	
Npub	 (Public	 Message	 Number),	 typically	 Nonce	

Nsec	 (Secret	 Message	 Number)	 	 [supported	 by	 few	 algorithms]	
AD	 –	 Associated	 Data	

AD	

AD	

AD	

Message	 AD	

K	

Invalid	
or	

Nsec	 K	 Nsec	

51

•  8 Round 1 CAESAR candidates + current standard AES-GCM
•  Basic iterative architecture
•  GMU AEAD Hardware API
•  Implementations developed in parallel using RTL and HLS

methodology
•  2-3 RTL implementations per student, all HLS implementations

developed by a single student (Ice)
•  Starting point: Informal specifications and reference software

implementations in C provided by the algorithm authors
•  Post P&R results generated for

 - Xilinx Virtex 6 using Xilinx ISE + ATHENa, and
 - Virtex 7 and Zynq 7000 using Xilinx Vivado with 26 default
 option optimization strategies

•  No use of BRAMs or DSP Units in AEAD Core

Our Test Case 2

52

Parameters of Authenticated Ciphers
Algorithm Key size Nonce size Tag size Basic Primitive

Block Cipher Based
AES-COPA 128 128 128 AES
AES-GCM 128 96 128 AES
CLOC 128 96 128 AES
POET 128 128 128 AES
SCREAM 128 96 128 TLS

Permutation Based
ICEPOLE 128 128 128 Keccak-like
Keyak 128 128 128 Keccak-f
PRIMATEs-
GIBBON

120 120 120 PRIMATE

PRIMATEs-
HANUMAN

120 120 120 PRIMATE

53

Parameters of Ciphers & GMU Implementations
Algorithm Word

Size, w
Block
Size, b

#Rounds Cycles/Block
RTL

Cycles/Block
HLS

Block-cipher Based
AES-COPA 32 128 10 11 12
AES-GCM 32 128 10 11 12
CLOC 32 128 10 11 12
POET 32 128 10 11 12
SCREAM 32 128 10 11 12

Permutation Based
ICEPOLE 256 1024 6 6 8
Keyak 128 1344 12 12 14
PRIMATEs-
GIBBON

40 40 6 7 8

PRIMATEs-
HANUMAN

40 40 12 13 14

54

Datapath vs. Control Unit

Datapath Control
Unit

Data Inputs

Data Outputs

Control Inputs

Control Outputs

Control
Signals

Status
Signals

Determines
•  Area
•  Clock Frequency

Determines
•  Number of clock cycles

55

Control Unit suboptimal
•  Difficulty in inferring an overlap between completing the last

round and reading the next input block
•  One additional clock cycle used for initialization of the state at

the beginning of each round
•  The formulas for throughput:

HLS: Throughput = Block_size / ((#Rounds+2) * TCLK)

RTL: Throughput = Block_size / (#Rounds+C * TCLK)
 C=0, 1 depending on the algorithm

Encountered Problems

56

RTL vs. HLS Clock Frequency in Zynq 7000

57

RTL vs. HLS Throughput in Zynq 7000

58

RTL vs. HLS Ratios in Zynq 7000

Clock Frequency Throughput

59

RTL vs. HLS #LUTs in Zynq 7000

60

RTL vs. HLS Throughput/#LUTs in Zynq 7000

61

RTL vs. HLS Ratios in Zynq 7000

#LUTs Throughput/#LUTs

62

Throughput vs. LUTs in Zynq 7000

RTL HLS

63

RTL vs. HLS Throughput

64

RTL vs. HLS #LUTs

65

RTL vs. HLS Throughput/#LUTs

66

•  Available at
 http://cryptography.gmu.edu/athena

•  Developed by John Pham, a Master’s-level student of
Jens-Peter Kaps

•  Results can be entered by designers themselves.
If you would like to do that, please contact me regarding
an account.

•  The ATHENa Option Optimization Tool supports automatic
generation of results suitable for uploading to the database

ATHENa Database of Results for Authenticated Ciphers

67	

Ordered Listing with a Single-Best
(Unique) Result per Each Algorithm

68	

69	

70	

71	

72

Database of Results

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel

Ranking View:
Supports the choice of
 I. Hardware API (e.g., GMU_AEAD_Core_API_v1, GMU_AEAD_API_v1,

GMU_CipherCore_API_v1)
 II. Family (e.g., Virtex 6 (default), Virtex 7, Zynq 7000)
 III. Operation (Authenticated Encryption (default), Authenticated

Decryption, Authentication Only)
 IV. Unit of Area (for Xilinx FPGAs: LUTs vs. Slices)
 V. Ranking criteria (Throughput/Area (default), Throughput, Area)

Table View:
•  more flexibility in terms of filtering, reviewing, ranking, searching

for, and comparing results with one another

73

Uniform Hardware API

74

GMU Hardware API

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel

•  Complete Hardware API for authenticated ciphers developed,
including

•  Interface
•  Communication Protocol

•  Design with the GMU hardware API facilitated by
•  Detailed specification
•  Universal testbench and Automated Test Vector Generation
•  PreProcessor and PostProcessor Units for high-speed implementations
•  Universal wrappers for generating results
•  AES and Keccak-F Permutation source codes
•  Ease of recording and comparing results using ATHENa database
•  Full example of use in Zynq 7000 based on Xilinx AXI4 IPs

•  GMU proposal open for discussion and possible improvements through
•  Better specification
•  Better implementation of supporting codes

75	

Future Work

76

–  Open-source HLS Tool

•  Developed at the University of Toronto
•  Faculty supervisors: Jason H. Anderson and Stephen Brown
•  FPL Community Award 2014

–  High-Level Synthesis from C to Verilog
–  Targets Altera FPGAs (extension to Xilinx relatively simple)
–  Two flows

•  Pure Hardware
•  Hardware/Software Hybrid
 = Tiger MIPS + hardware accelerator(s) + Avalon bus +
 shared on-chip and off-chip memory

LegUp – Academic Tool for HLS

77

–  Domain specific language for cryptology: Cryptol

•  High-level programming language similar to Haskell
•  Developed by Galois Inc. based in Portland, USA

–  High-Level Synthesis from Cryptol to efficient Software and
Hardware

Cryptol – New Language for Cryptology

Modified
C

SW benchmarking HW benchmarking SW benchmarking HW benchmarking

Cryptol Reference
C

Optimized
C

HLS SW HLS HW HLS

HDL HDL Optimized
C

78

•  High-level synthesis offers a potential to facilitate hardware
benchmarking during the design of cryptographic algorithms and
at the early stages of cryptographic contests

•  Our case studies demonstrated correct ranking for majority of

candidates using all major performance metrics

•  More research needed to overcome remaining difficulties

•  Suboptimal control unit
•  Wide range of RTL to HLS performance metric ratios
•  Efficient and reliable generation of HLS-ready C codes

Conclusions

Comments?

Thank you!

79

Questions?

Suggestions?
ATHENa: http:/cryptography.gmu.edu/athena

CERG: http://cryptography.gmu.edu

