
Implementation trade-offs of Triple DES in the SRC-6e Reconfigurable
Computing Environment

Osman Devrim Fidanci 1, Hatim Diab 1, Tarek El-Ghazawi 1, Kris Gaj 2 and Nikitas

Alexandridis 1
1 George Washington University

2 George Mason University

Abstract
In this paper, we overview the architecture and programming model of the SRC-6E Reconfigurable
Computing Environment, and demonstrate, using Triple-DES cryptographic application, the trade-offs
associated with the different possible implementations. In particular, using the SRC-6E high level
programming interface we show that the underlying model allows the programmer to easily manage the
tradeoffs between chip area and design speed. Impact of this high-level programming environment on the
time-to-solution as well as ease of use and level of hardware design knowledge for application developers
is assessed.

I. INTRODUCTION

The SRC-6E Reconfigurable Computing Environment is one of the first general-purpose
reconfigurable machines combining the flexibility of traditional microprocessors with the power of Field
Programmable Gate Arrays (FPGAs). In this environment, computations can be divided into those executed
in software, using instructions of microprocessors, and those executed in reconfigurable hardware, using
capabilities of modern FPGAs. The programming model is aimed at separating programmers from the
details of the hardware description, and allowing them to focus on an implemented function. This approach
allows the use of software programmers and mathematicians in the development of the code, and
substantially decreases the time to the solution.

Despite this approach of shielding a programmer from the details of the hardware description, the SRC
environment provides a programmer with the flexibility necessary to exploit various architectures that can
be used to implement the same function. The choice among these architectures can be done at the level of a
high-level language, such as Fortran, but it affects the way how function is implemented in hardware. In
this paper, we investigate the capabilities of the SRC environment to implement the same function in
several possible ways, with various tradeoffs among processing time and area of the circuit implemented
inside of FPGA.

The function we chose to implement is an encryption algorithm, called Triple DES, one of the three
standardized secret-key ciphers recommended for use in the U.S. government and in multiple commercial
applications.

II. SRC-6E GENERAL PURPOSE RECONFIGURABLE COMPUTER

A. Hardware Architecture

SRC-6e platform consists of two processor boards and one Multi-Adaptive Processor (MAPTM) board.
MAP board has two user logic Xilinx Virtex II XC2V 6000TM FPGAs. This way, SRC-6e system has 1:1
microprocessor – FPGA ratio. Processor boards are connected to MAP board through SNAP cards with
800MB/s transfer data rate. SNAP card plugs into DIMM Slot on microprocessor motherboard and
provides interconnect of MAP to microprocessor [1].

 800 MB/s

 Chain Ports

Intel
uPs

Intel
uPs

SNAP

MAP

SNAP

MAP

Figure 1: General Hardware Architecture of SRC-6E.

B. Programming Model

Compiling applications for the SRC-6E system involves more steps than the basic compilation model
of conventional computer system. The more complicated process provides the user with greater flexilibility
to control compilation, the ability to stop or interrupt the compilation, and opportunities to add custom-
logic or modifications into the compilation process. The compilation process includes compilation of the
code that will execute on the MAP, and loading of the separately compiled binary files to create a single
executable. The compilation system provides support for executing in the following modes; emulation
mode, simulation code, and directly on the MAP hardware.

As indicated in Figure 2, there are two files to be compiled. One is compiled targeting execution on the
Intel platform. The other files are compiled targeting execution on the MAP.

The file that contains the program that executes on the Intel processor and invokes routines that run on

the MAP is compiled with an Intel target compiler to produce a relocatable object (.o) file. The file
containing routines to execute on the MAP is compiled by the MAP Fortran compiler (mftn). mftn executes
several distinct steps that result in several relocatable object files. The object files resulting from both the
Intel and MAP compilation steps are then linked with the MAP runtime libraries into a single executable
file.

The resulting absolute binary file may then be executed on the Intel and MAP hardware , or run in the

emulation mode. Environment variables determine the mode of execution.

Application
Source

Microprocessor
Compiler

MAP
Compiler

Place &
Route

o. files o. files

Linker

Logic.bin

Application
Executable

Figure 2: Overview of the SRC-6E Compilation Process

HLL Source
(FORTRAN)

Application
Executable

Optimization

DFG Generation

Logic Partitioning

Verilog Generation

Synthesis, Place & Route

MAP
Macros

Customer
Macros

Run-time
Library

Figure 3: MAP Compilation Process

B.1 MAP Compilation Process

The MAP compiler translates procedures that have been modified for MAP execution into relocatable
object files. The translation process has several steps, each performed by a distinct component of the MAP
compiler.

The Optimization phase of the compiler performs language syntax and semantic analysis followed by
classical scalar and loop optimization. At Design Flow Graph generation point in compilation, additional
analysis is performed to verify procedures written for MAP execution. The dataflow graph represents the
relationship between basic blocks of the procedure, with basic operations represented as nodes connected
by the data that is input to or output from the nodes. Additional nodes are inserted for connecting blocks of
graph and communicating data between blocks. Redundant nodes are pruned or optimized away[1].

The ComList Assembler creates a C function that contains the ComList template for the procedure

being compiled for the MAP. The template is completed at runtime when the MAP subprogram’s dummy
arguments become associated with the actual arguments of the calling subprogram. The ComList executes
on the MAPs control processor. It controls the execution of the subprogram on the MAP hardware, and
controls the transfer of data between the MAP’s On-board Memory (OBM) and System Common Memory
(SCM). A user may choose to define their own ComList instructions to be assembled and included in the
executable program.

The Verilog generator phase of compilation can be regarded as the “code generator” for the MAP. The

Verilog generator translates the dataflow graph into its own internal format. After this translation, Verilog
generator component produces synthesizable Verilog code.

Synthesis and Place & Route: Synplicity’s Synplify ProTM is the Verilog compiler being utilized in the
MAP compilation path. Synplify ProTM takes as input file synthesizable Verilog code generated by the
Verilog generator, and a project file that is used for batch execution mode by mftn. Synplify ProTM
produces the constraint file and .edf file that will be the input for the place and route tools.

The place and route tools (Xilinx Integrated Software EnvironmentTM) complete the bitstream

creation process for the MAP. This phase of compilation performs the place and route function on the file
output by the synthesis step, .edf file, including the binary files for macros invoked by procedure compiled
for MAP execution. SRC-6e supports only one valid FPGA bitstream for any executable program.

Configuration Integrator: The configuration integrator is a small program that takes as input FPGA

bitstream files. One file is a valid FPGA bitstream file, .bin file and the other is an indicator that the second
bitstream is empty. The bitstreams are loaded into static structures contained in a C function.

B.2 Intel Processor Compilation

After the configuration integrator has completed, the MAP compilation process is finished however at
this point there is no executable program generated that will be able to execute on the SRC-6e system. The
MAP compilation process has produced C code files that must be compiled into object files and linked with
the rest of the application, producing an application executable. Everything described in the previous
sections has specifically targeted the code that will eventually execute on the MAP hardware. This next part
of the compilation process takes as input the necessary C files from previous steps, which need to be
compiled, linked and loaded on the Intel processor so that the output is an Intel executable.

C. User Macro Integration

The MAP compiler translates the source code’s various basic operations into macro instantiations.

Here, macro can be defined as a piece of hardware logic designed to implement a certain function. Since
users often wish to extend the built-in set of operators, the compiler allow users to integrate their own
macros into the compilation process. The macro is invoked from within the Fortran subroutine by means of
a subroutine call. This call’s arguments must be specified so that all incoming values precede all outgoing
values [2].

In SRC-6E platform, macros can be categorized by various criteria, and the compiler treats them in
different ways based on their characteristics. In the MAP compiler, four characteristics are particularly
relevant:

A macro is “stateful” if the results it computes are dependent upon previous data it has computed or

seen. In contrast “Non-stateful” macro computes values using only its current inputs; it has no memory of
its past values [4]. A macro is “external” if it interacts with parts of the system beyond the code block in
which it lives [4].

“Latency” is the number of clock cycles required between the time when a macro is activated with data

until valid results appear. Since the pipelined inner loops generated by the MAP compiler use fixed delay
queues to balance the paths through the loop, all macros for inner loops must have a fixed latency [4].

A “pipelined” macro is able to accept new data values on its inputs in every clock cycle. Since the

MAP compiler produces pipelined inner loops, the macros that will be used in such loops must be capable
of pipelined operation [4].

Three types of user macros can be used by MAP compiler: Pure functional, Stateful, and External. The

chart below shows their characteristics:

Table 1: User macro characteristics

 Stateful External Latency Pipelined
Pure Functional No No Fixed Yes
Stateful Yes No Fixed Yes
External Yes or No Yes Variable Yes or No

III. TRIPLE DES MACRO IMPLEMENTATION

A. Triple DES Algorithm

In this paper, Triple DES has been chosen as an algorithm to be implemented in the SRC-6E
Reconfigurable Computing Environment, using three different implementation approaches. Actually, Triple
DES by itself can be defined in a number of ways. In this paper, we will use a Triple DES version proposed
by Tuchman that uses only two different keys [3]. This version follows an encryption-decryption-
encryption (EDE) sequence:

C = EK1[DK2[EK1[P]]]

There is no cryptographic benefit to use the decryption stage as the second stage. Nevertheless, it

provides users of Triple DES with flexibility of communicating with older single DES user.

C = EK1[DK1[EK1[P]]] = EK1[P]

Triple DES with two keys is stronger and more reliable alternative to single DES. Triple DES is used

in very popular Internet applications like PGP and S/MIME. Triple DES has also been adopted for use in
key management standards ANS X9.17 and ISO 8732.

Figure 4: Block diagram for Triple DES algorithm with two keys

B. DES Encryption and Decryption Structure

DES encryption takes 64-bit plaintext (data) and 64-bit key (including 8 bits of parity) as inputs and
generates 64-bit ciphertext (encrypted data).

As shown in Figure 5, as a first step, 64-bit plaintext passes through the Initial Permutation block,

which re-arranges input bits. Then, data goes down through 16 identical blocks (rounds) with the different
sub-keys (round keys) used in each round. Two 32-bit outputs from the sixteenth round are swapped. In the
end, the output of the Swap transformation passes through the inverse of Initial permutation.

Initial Permutation

32-bit Swap

Inverse In. Perm.

Round 2

Round 16

Round 1

Permuted Choice 2

Permuted Choice 2

Permuted Choice 2

Permuted Choice 1

Left Circ. Shift

Left Circ. Shift

Left Circ. Shift
K1

K2

K16

64-bit Plaintext

64-bit Ciphertext

64-bit Key

Figure 5 General architecture of DES algorithm

DES Decryption: DES decryption uses the same algorithm as DES encryption except that the round keys
are used in the reversed order.

IV. POSSIBLE DIFFERENT IMPLEMENTATIONS OF TRIPLE DES IN SRC-6E

In this paper, three different possible implementations of Triple DES, named Case 1, Case 2, and Case
3 are examined.

In Case 1, Main Fortran file calls subroutine1.mf file three times. Subroutine1.mf file calls user-

defined macro, which is provided as a DES.v Verilog file, only once.

In Case 2, Main Fortran file calls subroutine2.mf file only once from the main Fortran code. But,

Subroutine1.mf file calls user-defined macro (DES.v) three times.

In Case 3, Main Fortran file calls subroutine3.mf file 3 times from the main Fortran code.
Subroutine1.mf file calls just once user-defined macro named TriDES.v. that consists of three DES macro
instantiated in the top level module called TriDES.v.

As shown in Figure 6, user can call user-defined macro hierarchically. According to these different

programming schemes, MAP compiler maps different hardware architectures in the FPGAs and get
different job execution durations. The result of these three different implementations is given in the
following section considering area, speed, and job execution duration.

Main.f90

Subroutine1.mf

Subroutine2.mf

Subroutine3.mf

TriDES.v

3 times

3 times

DES.v DES.v

Case 1 Case 3Case 2

Figure 6: Three different ways of calling DES/Tri-DES macro from Fortran HLL

A. Implied Architectures

At each implementation, we also get different hardware mapped into target FPGAs. As given in the
Figure 7, in Case 1; only one DES hardware block are implemented and it communicates with both OBM
(On -Board Memory) and CM (Common Memory) for each macro call. In Case 2, entire Triple DES
hardware that has consists of three DES sub-blocks implemented into FPGA. In Case 3, user Triple DES
macro implemented as single block, which handles entire Triple DES function.

According to these different hardware implementations into FPGAs, user can get quite different area,

speed and job execution time values. These different outputs are given in the next section.

 DES

DES

DES

DES

Triple
DES

OBM

FPGA FPGA

3 times

17-clock cycle

51-clock cycle 51-clock cycle

OBM OBM

CM

FPGA

Figure 7: Implied arch

Table 2 indicates
and macro processing

Although the max

is 101.8 MHz, the sys
there is no difference b

The total equivale

area point of view, Cas

Total processing

blocks. Case 2 and Ca
time as can be seen in

T

Case 1 Case 2 Case 3

itecture for Triple DES macro

V. IMPLEMENTATION RESULTS

maximum clock speed of user macro, CLB slice count (total equivalent gate count)
(job execution time) of three possible implementation of Triple DES macro.

imum clock speed for Case 1 is 102.3 MHz, for Case 2 is 100.8 MHz and for Case 3
tem clock frequency is only 100 MHz and all macros run at 100 MHz. As a result,
etween Case 1, Case 2 and Case 3 from the clock frequency point of view.

nt gate counts for Case 2 and Case 3 are similar and larger than in Case 1. From the
e 2 and Case 3 consume more than double of Case 1 does.

times (macro execution time) given in the table are calculated for 91 encryption
se 3 have the same macro processing time. Case 1 has the longest macro processing
Table 2.

able 2: Implementation results for area, speed, processing time.

11,786
(359,635)

13,269
(382,927)

6,177
(163,835)

CLB Slices
(Tot. equiv.
Gate count)

1820

1820

4440

Total
Processing
Time (91
blocks of

data)

101.8

100.8

102.3

Maximum
Clock Speed

(MHz)

Experiment
(3)

Experiment
(2)

Experiment
(1)

A. Timing Measurement and Calculation

A.1 Timing Measurement with “Timer Macro”

SRC-6E provides a system macro called “timer macro”. Whenever the timer macro is compiled to the
MAP, there is some invariant verilog code that is always included along with the code that is specific to the
program being compiled. The invariant code contains a free running counter that starts up as soon as the bit
stream has been loaded into the FPGA. The counter is being clocked by the same 100 MHz system clock as
the rest of the user logic, so each count represents 10 ns of time.

There are two macro calls that access this counter. The first is 'start_timer', which simply resets the

count to zero. The second is 'read_timer', which returns the current value of the counter. It is not necessary
to call 'start_timer' at all if you use the approach of reading the timer before and after an event of interest,
and taking the difference between the two counts.

Timer macro outputs are given in Table 2. Timing estimations/calculations are given in Table 3. As

reader can easily see these values perfectly match.

Timing Estimation/Calculation: The macro processing time is estimated as given in Table 3. Pipelines

stages, number of data blocks (n), Load/Store time and clock period are given. Using the parametric
approach, user can calculate the estimated value of macro processing time for each individual case.

Table 3: Timing calculations for three different applications of Triple DES

Pipeline stage: 51
Data blocks: 91
Load/Store time: 41
Clock period: 10ns
n = 91

Estimated # of clock
cycles for the execution:
[(51 + (n – 1)) + 41] =
182

Estimated total time:
182 x 10 = 1820 ns

Pipeline stage: 51
Data blocks: 91
Load/Store time: 41
Clock period: 10ns
n = 91

Estimated # of clock
cycles for the execution:
[(51 + (n - 1)) + 41] =
182

Estimated total time:
182 x 10 = 1820 ns

Pipeline stage: 17
Data blocks: 91
Load/Store time: 41
Clock period: 10ns
n = 91

Estimated # of clock
cycles for the execution:
[(17 + (n - 1)) + 41] x 3 =
444

Estimated total time:
444 x 10 = 4440 ns

Case 3 Case 2 Case 1

I/O overhead can be defined the ratio of the total Load/Store time to total macro processing time.
Based on this definition, Table 4 indicates how I/O overheads get smaller and almost equal for all three
cases when the number of data blocks increases.

Table 4: I/O overhead for three different implementation of Triple DES.

6.9 % 6.9 % 7.3 % 501 data blocks

0.4 % 0.4 % 0.4 % 10001 data blocks

3.7 % 3.7 % 3.8 % 1001 data blocks

22.5 % 22.5 % 27.7 %91 data blocks

Case 3 Case 2Case 1

VI. CONCLUSIONS

Three different possible implementations of Triple DES on the SRC-6E platform give different results
and provide user/programmer with the capability of trading speed for area.

According to the outcomes we obtain from three different implementations of Triple DES macro, Case

2, i.e., calling DES macro three times from the Fortran subroutine, and Case 3, i.e., calling Triple DES
macro once from the Fortran subroutine are almost equivalent with the same execution time and 13% larger
area for Case 2 because of the default interface between single DES modules.

Case 1, i.e., calling DES macro three times from the Fortran main file, and Cases 2 and 3 are very
different with approximately two times smaller area for Case 1 and longer execution time caused by larger
I/O overhead (communication between FPGA and on-board memory) and smaller utilization of the
pipeline.

As a general conclusion, SRC Programming Model enables flexible choice of the hardware

architecture used to implement required function. Implied architecture depends on the function
(granularity) of the hardware description language macro and placement of macro calls in a high-level
language program. Common features of all implemented architectures are deep pipelining and operational
system clock frequency of 100 MHz. Overhead associated with the run-time communication between
FPGA (User Chip) and on-board memory can be made negligible for processing of large amounts of data.

REFERENCES

[1] SRC-6E Programming Environment Guide, SRC Computers, Inc. 2002

[2] William Stallings, Cryptography and Network Security, Prentice Hall, 1999

[3] Tuchman, W. “Hellman Presents No Shortcut Solutions to DES.” IEEE Spectrum, July 1979

[4] Macro Integrator’s Manual v1.0, SRC Computers, Inc. 2002

	B. Programming Model
	B.2 Intel Processor Compilation
	C. User Macro Integration
	III. Triple DES Macro Implementation
	
	A. Triple DES Algorithm
	B. DES Encryption and Decryption Structure
	A. Implied Architectures
	A. Timing Measurement and Calculation
	A.1 Timing Measurement with “Timer Macro”

	VI. Conclusions
	
	REFERENCES

