
Job Management System Extension To Support SLAAC-1V Reconfigurable Hardware

Mohamed Taher1, Kris Gaj2, Tarek El-Ghazawi1, and Nikitas Alexandridis1

1 The George Washington University

2 George Mason University

Abstract

Reconfigurable Hardware resources or FPGA’s can
accelerate and improve the performance of a lot of
applications, but these resources are very expensive. Job
management systems (JMS) are used in resource management
and job scheduling. They allow users to execute jobs on a
non-dedicated cluster of workstations with a minimum impact
on owners of these workstations. By using JMS we can
Increase utilization of costly resources, and create a Unified
interface to all computing resources.

In our experiments we used LSF Job Management System
to manage and utilize the SLAAC-1V FPGA boards. In order
to extend LSF to support SLAAC-1V FPGA boards, we need
to develop an external resource monitor (External Load
Information Manager – ELIM).

We developed the external resource monitor (ELIM). This
system permits sharing these FPGA boards. The architecture
was verified experimentally for the case of LSF and SLAAC-
1V FPGA boards. The utilization of the idle boards was
demonstrated to reach up to 95% in our experimental setting
which include Linux and Windows NT workstations.

I. INTRODUCTION
This paper reports on a research effort to extend the LSF

job management system to support slaac1-v reconfigurable
boards [1-5]. The objective is to construct a system that can
leverage underutilized resources at a given time to serve other
users who currently have the needs, in a grid computing like
style. The targeted type of resources are workstations and
clusters that are equipped with Field Programmable Arrays
(FPGA) boards serving as reconfigurable coprocessors.

Our paper is organized as follows. In Section 2, and
section3 we give an introduction to Job Management Systems.
In Section 4, we describe our experimental work. Finally, in
Sections 5 we present experimental results, and we draw
conclusions.

2. JOB MANAGEMENT SYSTEMS

2.1. General architecture of a JMS
The objective of a JMS, investigated in this paper, is to let

users execute jobs in a non-dedicated cluster of workstations
with a minimum impact on owners of these workstations by
using computational resources that can be spared by the
owners. The system should be able to perform at least the
following tasks:

a. monitor all available resources,
b. accept jobs submitted by users together with resource

requirements for each job,
c. perform centralized job scheduling that matches all

available resources with all submitted jobs according to the
predefined policies,

d. allocate resources and initiate job execution,
e. monitor all jobs and collect accounting information.
To perform these basic tasks, a JMS must include at least

the following major functional units shown in Fig. 1:
1. User server – which lets user submit jobs and their

requirements to a JMS (task b), and additionally may allow
the user to inquire about the status and change the status of a
job (e.g., to suspend or terminate it).

2. Job scheduler – which performs job scheduling and
queuing based on the resource requirements, resource
availability, and scheduling policies (task c).

3. Resource manager, including
• Resource monitor – which collects information about all

available resources (tasks a and e), and
• Job dispatcher – which allocates resources and initiates

execution of jobs submitted to JMS (task d).

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

User job

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

User job
Figure 1. Major functional blocks of a Job
Management System

2.2. LSF Job Management Systems
LSF (Load Sharing Facility) is one of the most

commonly used commercial JMSs. The common feature of
LSF JMS is that it is based on a central Job Scheduler running
in a single computational node. LSF (Load Sharing Facility) is
a commercial JMS from Platform Computing Corp. It evolved
from the operating systems, job types, and features included in
the table.

The most important functional characteristics LSF are
presented and contrasted in Table 1. From this table, it can be
seen that LSF supports all operating systems, job types, and
features included in the table.

3. Extending a JMS to support reconfigurable

hardware

3.1. JMS features supporting extension

The specific features of Job Management Systems that

support extension to reconfigurable hardware include
o capability to define new dynamic resources,
o strong support for stage-in and stage-out in order to allow

an easy transfer of the FPGA configuration bitstreams,
data inputs, and results between the submission host and
the execution host with reconfigurable hardware;

Table 1. Features of LSF JMS

Feature Availability
Distribution commercial
Linux, Solaris Yes
Tru64 Yes
Windows NT Yes
Interactive jobs Yes
Parallel jobs Yes
Stage-in and stage-out Yes
Process migration Yes
Dynamic load balancing Yes
Checkpointing Yes
Daemon fault recovery master and execution hosts

o support for Windows NT and Linux, which are two

primary operating systems running on PCs that can be
extended with commercially available FPGA-based
accelerator boards with the PCI interface.

An ease of defining new dynamic resources appears to be a
minor factor in comparison. LSF seems to be easily
extendable with new dynamic resources without the need for
any changes in their source code. Stage-in and stage-out are
supported by LSF. LSF is fully supports Windows NT

3.2. General architecture of the extended system

General architecture of the extended system is shown in

Fig. 2. The primary component of this extension is an external
resource monitor that controls the status of an accelerator
board, and periodically communicates this status to a resource
monitor. The resource monitor transfers this information
periodically or by request to a Job scheduler, which uses this
information to match each job that requires acceleration with
an appropriate host. Job requirements regarding the new
reconfigurable resource are specified during a job submission
to a user server, and are enforced by a job scheduler the same
way as requirements regarding default built-in resources.

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

External
Resource
Monitor

FPGA
board

User job

FPGA Board APIs

Status of
the FPGA
board

jobs &
their requirements

User
Server

Job Scheduler
Resource
Monitor

available
resources

resource
requirements

scheduling
policies

Job
Dispatcherresource allocation

and job execution

Resource Manager

External
Resource
Monitor

FPGA
board

User job

FPGA Board APIs

Status of
the FPGA
board

Figure 2. Extension of a JMS to recognize, monitor, and schedule reconfigurable resources

3.3. Extending LSF
Capability of defining new dynamic resources can be

used to extend LSF to manage FPGA-based accelerator
boards. The new resource that needs to be added to a given
JMS represents the availability of the accelerator board for
JMS users.

o An external resource monitor (ELIM, External
Load Information Manager in LSF) needs to be
written according to the specification.

This daemon is started by a local resource manager
(LIM in LSF and communicates with the resource monitor
using standard output.

This ELIM tries to open the board in exclusive mode,
and if it succeed, this mean that the board is available, then
it closes it again and reports that the board is available, else
if fail this means that the board is not available and it
reports that the board is not available. The flow diagram of
ELIM is shown in Fig. 3.

Figure 3. Operation of ELIM

4. Experimental Work

4.1. Extending LSF to support reconfigurable
hardware

The general architecture of LSF is shown in Fig. 4.

Load Information Monitors (LIMs), running on all
execution hosts in the system, monitor and collect
information about the current status of all static and
dynamic resources available on the execution hosts. This
information is periodically forwarded from every LIM to
a single Master Load Information Monitor (MLIM)
residing on the master host. The combined report about
the current status of all system resources, collected by
MLIM, is used by the Master Batch Daemon (MBD) to
match available resources with resource requirements
specified during the job submission. When a job
waiting in the queue is

Submission host

Batch API

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RES

User job

LIM – Load Information Manager
MLIM – Master LIM
MBD – Master Batch Daemon
SBD – Slave Batch Daemon
RES – Remote Execution Server

queue

Load
information

other
hosts

other
hosts

bsub app

Submission host

Batch API

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RES

User job

LIM – Load Information Manager
MLIM – Master LIM
MBD – Master Batch Daemon
SBD – Slave Batch Daemon
RES – Remote Execution Server

queue

Load
information

other
hosts

other
hosts

bsub app

Figure 4. General architecture of LSF

Submission host

Batch API

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RES

User job
ELIM – External Load

Information Manager
FPGA API – FPGA Application

Programming
Interface

queue

Load
information

other
hosts

other
hosts

bsub app

ELIM

FPGA API

FPGA
board

Status
of the
board

Submission host

Batch API

Master host

MLIM

MBD

Execution host

SBD

Child SBD

LIM

RES

User job
ELIM – External Load

Information Manager
FPGA API – FPGA Application

Programming
Interface

queue

Load
information

other
hosts

other
hosts

bsub app

ELIM

FPGA API

FPGA
board

Status
of the
board

Figure 5. General architecture of LSF after
extension to support reconfigurable hardware

Linux RH7.0 – PIII

450 MHz, 512 MB RAM
Machine 2

Machine 1

Submitter Windows 2000 – PIV

1.3 GHz, 256 MB RAM

Windows 2000 – PIII

450 MHz, 128 MB RAM

Linux RH7.0 – PIII

450 MHz, 512 MB RAM
Machine 2

Machine 1

Submitter Windows 2000 – PIV

1.3 GHz, 256 MB RAM

Windows 2000 – PIII

450 MHz, 128 MB RAM

Figure 6. Experimental testbed

matched with an execution host containing the
required resources, this job is being dispatched by MBD
to the appropriate execution host. The job is prepared for
execution by the Slave Batch Daemon (SBD), and started
by the Remote Execution Server (RES). SBD is
responsible for enforcing local LSF policies and
maintaining the status of the job.

To support reconfigurable resources, such as FPGA-
based accelerator boards, the LSF system needs to be
extended with two extra components: External Load
Information Monitor (ELIM) and an FPGA Board
Application Programming Interface (API), as shown in
Fig. 5. ELIM is a program or script that must be run on
each execution host that contains a non-standard dynamic
resource, such as an FPGA board. The task of ELIM is to
monitor the availability of the FPGA board and to report
this availability in the predefined format to LIM. To
perform this task, ELIM uses functions of the FPGA
Board API. These functions communicate with the FPGA
board driver in order to determine whether the board is
currently occupied by any job. If this is the case, ELIM
reports through LIM to Master LIM (MLIM) that the
FPGA board is temporarily unavailable. Otherwise, the
information about the availability of the FPGA board is
passed to MLIM.

Each user job that makes use of reconfigurable
resources needs at the beginning of its execution check
the availability of the board. If the board is unavailable,
the job exits with an error code, and is resubmitted by
LSF at a later time. If the board is available, the job
reserves the board for exclusive use, and then configures
the board using the configuration bitstream residing on
the execution host or downloaded from the submission
host using the stage-in capability of LSF. As soon as the
board is configured, its clock is started and the FPGA

circuit starts communicating with the job running on the
execution host. Inputs are sent to the board, and outputs
generated by the FPGA circuit are sent back to the job.
After the FPGA circuit completes execution, it
communicates this fact to the job, which makes final
postcomputations, frees the board for use by other jobs,
and finishes execution. All described above operations
are facilitated by the FPGA board APIs.

4.2 Experimental setup

Our testbed consists of two Windows machines

configured as execution hosts, and one Linux machine
configured as a job submitter as shown in Fig. 5. Both
execution hosts are extended with the SLAAC1-V FPGA
accelerator board from the USC-Information Sciences
Institute [8, 9].

 The benchmark used in our experiments is a hardware
implementation of an exhaustive key search attack against
Data Encryption Standard (DES). Exhaustive key
search is an attack aimed at breaking a cipher by checking
all possible keys one by one. To be able to perform this
attack, an opponent must know a short fragment of the
message and a corresponding fragment of the ciphertext
(encrypted message). By decrypting a fragment of the
ciphertext with a given key, and comparing the result
with a known fragment of the message, a single key can
be verified. By repeating the same operation with all
possible key values, one is guaranteed to find the correct
key. The number of all possible keys in DES is 256 ≈ 7.2 ⋅
1016. This large number of repetitions calls for
parallelization of computations. Additionally, since DES
was designed to be efficient in hardware rather than in
software, an FPGA based hardware accelerator can speed
up the required computations by orders of magnitude
compared to the purely software parallel implementation.

The inputs to each benchmark are the message block,
the ciphertext block, the beginning of the key range, and
the key range size. The output is the number and the list
of matching keys. The time of the benchmark execution
can be set to an arbitrary value, since it is directly
proportional to the key range size, and almost
independent of other parameters. In our experiments, key
range was set to values that guaranteed the execution
times listed in Table 2.

Our implementation consists of two parts. Hardware
part was written in VHDL, and was transformed into the
FPGA configuration bitstream using Xilinx tools.
Software part is responsible for reserving an FPGA board
for an exclusive use, downloading the configuration
bitstream to the board, transferring input parameters to
the hardware part, collecting results generated by the

board, and releasing the board. During the majority of the
time, the program is idle and its only function is to wait
for a board to complete execution. This way, the only
resource of the execution hosts which is fully utilized
during the benchmark execution is the time of the FPGA-
based accelerator.

Table 2 Features and parameters of performed

experiments

Exp.
No.

No. of
execution

hosts

Number
and execution
times of jobs

Delay
between job
submissions

1 2 40 x 20 s 5 s
2 2 8 x 20 s,

8 x 30 s,
8 x 40 s,
8 x 50 s,
8 x 60 s

5 s

3 2 40 x 120 s 5 s
4 2 40 x 300 s 5 s
5 2 3 x 20 s

3 x 40 s
3 x 60 s
3 x 80 s

3 x 100 s
3 x 120 s
3 x 140 s
3 x 160 s
3 x 180 s
3 x 200 s
3 x 220 s
3 x 240 s
3 x 260 s
3 x 280 s
3 x 300 s

5 s

Each experiment consisted of running N jobs chosen from the

given set of benchmarks, and submitted one at a time to LSF in the
pseudorandom time intervals. All jobs were submitted from the
same Linux machine, and belonged to a single user of the system.
The rate of the job submissions was chosen to have a Poisson
distribution. The submission rate was relatively high with an
average interval between consecutive job submissions equal to 5
seconds.

All jobs on the lists were the instances of the
exhaustive key search benchmark, and differed only with
values of input parameters. All these jobs required
acceleration by the SLAAC1-V board. The same Linux
machine was used as the submission host and the master
host. The primary job requirement specified during the

job submission was an availability of the specific type of
the FPGA board. The second parameter specified during
the job submission was the estimated execution time of
the job.

The total number of jobs submitted to a system, N,
was chosen based on the expected total time of the
experiment, the average execution time of jobs from the
given list, and the number of machines in our testbed.

5. Experimental Results

The behavior and performance of the extended Job

Management System is shown in Figs. 7-10 and Table 3.
For each execution host (Machine 1 and Machine 2) three
timing traces are presented. The bottom trace shows
timing intervals when jobs dispatched to the given
execution host are executed. The numbers above these
intervals are the numbers of jobs in the order of their
submission. The middle trace shows time intervals when
ELIM reports to LIM that the FPGA board is free for use
by another job. The top timing trail represents intervals
when MLIM is aware that the board is available for use
by another job waiting in the queue. The very bottom
trace in each figure is common for the entire system, and
shows points in time when jobs were being submitted to
LSF from the submission host.

In all experiments, all jobs are being submitted to JMS
shortly after the beginning of the experiment, and as a

result spend most of the time waiting in the queue for
their turn to execute. At the beginning of every
experiment both ELIM and MLIM report that all FPGA-
boards are available for scheduling. As soon as a job is
dispatched to the given machine for execution, ELIM
running on the same machine becomes aware that the
FPGA board is not any longer available. Similarly, as
soon as any job completes its execution, ELIM reports to
LIM that the board is available for use by another job.
FPGA board utilization is summarized in Table 3.

Table 3. Results of experiments

Experiment
No.

Utilization
[%]

 iteration
1

iteration
2

iteration
3

1 65.9 78.7 62.8

2 75.6 86.4 84.4

3 90.8 91.6 92.3

4 95 93.6 94

5 91.9 96.2 93.9

Figure. 7 Utilization of machines in Experiment 1, Iteration 1

Figure. 8 Utilization of machines in Experiment 2, Iteration 1

Figure. 9 Utilization of machines in Experiment 3, Iteration 1

Figure. 10 Utilization of machines in Experiment 4, Iteration 1

6. Conclusions

An extension of LSF, supporting SLAAC-1V FPGA

accelerator boards was developed and experimentally
tested in a testbed consisting of Windows and Linux
workstations. The utilization of the extended system has
been improved to reach up to 96%.

References

[1] M. A. Baker, G. C. Fox, and H. W. Yau, “Cluster
Computing Review,” Northeast Parallel
Architectures Center, Syracuse University, Nov.
1995.

[2] J. P. Jones, “Evaluation of Job Queuing/Scheduling
Software: Phase 1 Report,” NAS Technical Report,
NAS-96-009, September 1996 available at
http://www.nas.nasa.gov/Research/Reports/Techrep
orts/1996/nas-96-009-abstract.html

[3] K. Hwang, Z. Xu, Scalable Parallel Computing:
Technology, Architecture, Programming, McGraw-
Hill 1998.

[4] O. Hassaine, "Issues in Selecting a Job
Management Systems (JMS)," Proc. SUPerG,
Tokyo, April 2001.

[5] T. El-Ghazawi, et al., Conceptual Comparative

Study of Job Management Systems, Technical
Report, February 2001, available at

http://ece.gmu.edu/lucite/reports.html.
[6] T. El-Ghazawi, et al., Experimental Comparative

Study of Job Management Systems, Technical
Report, July 2001, available at

 http://ece.gmu.edu/lucite/reports.html.
[7] A. V. Staicu, J. R. Radzikowski, K Gaj, N.

Alexandridis, and T. El-Ghazawi, "Effective Use of
Networked Reconfigurable Resources," Proc. 2001
MAPLD Int. Conf., Laurel, Maryland, Sep. 2001

[8] M. Jones, P. Athanas et al. "Implementing an API
for Distributed Adaptive Computing Systems," in
IEEE Workshop on Field-Programmable Custom
Computing Machines, pages 222-230, Napa Valley,
CA, April 1999.

[9] B. Schott, S. Crago, et al. "Reconfigurable Architectures
for System-Level Applications of Adaptive Computing,"
In VLSI Design: Special Issue on Reconfigurable
Computing, pages 265-280, Volume 10, Number 3, 2000

	Figure 2. Extension of a JMS to recognize, monitor, and sche
	Figure 3. Operation of ELIM
	Table 3. Results of experiments

