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Abstract—A fair comparison of functionally equivalent digital
system designs targeting FPGAs is a challenging and time
consuming task. The results of the comparison depend on
the inherent properties of competing algorithms, as well as
on selected hardware architectures, implementation techniques,
FPGA families, languages and tools. In this paper, we introduce
an open-source environment, called ATHENa for fair, compre-
hensive, automated, and collaborative hardware benchmarking
of algorithms belonging to the same class. As our first goal,
we select the benchmarking of algorithms belonging to the area
of cryptography. Algorithms from this area have been shown
to achieve significant speed-ups and security gains compared to
software when implemented in FPGAs. The capabilities of our
environment are demonstrated using three examples: two differ-
ent hardware architectures of the current cryptographic hash
function standard, SHA-256, and one architecture of a candidate
for the new standard, Fugue. All source codes, testbenches, and
configuration files necessary to repeat experiments described in
this paper are made available through the project web site.

Index Terms—open-source; performance evaluation; bench-
mark tool;

I. INTRODUCTION

The difficulties associated with a fair comparison of digital
systems designed and modeled using hardware description
languages, and implemented using FPGAs, can be divided into

o Evaluation Pitfalls: Mistakes that can be quite easily

avoided if the person performing comparison is aware of
potential dangers, and exercises appropriate caution and
fairness; and

e General Objective Difficulties: Objective inherent diffi-

culties that must be comprehensively addressed before a
fair comparison is possible.

Examples of evaluation pitfalls include: Taking credit for
improvements in technology, choosing a convenient (but not
necessarily fair) performance measure, comparing designs
with different functionality, comparing designs optimized us-
ing a different optimization target (speed, area, cost, power,
balanced, etc.), comparing clock frequency after synthesis vs.
clock frequency after placing and routing, etc. These mistakes
can be most easily described using the phrase “comparing
apples and oranges.”

Objective difficulties are more challenging to overcome, and
include lack of standard interfaces, influence of tools and their
options, differences between a stand-alone performance vs.
performance as a part of a bigger system, the dependence of
the obtained results on the time spent for optimization, etc. [1].

Our project aims to address all aforementioned difficulties
by developing an open-source benchmarking environment
called ATHENa — Automated Tool for Hardware Evalua-
tioN [2]. The goal of our project is to spread knowledge and
awareness about good performance evaluation practices (and
this way eliminate or at least limit the evaluation pitfalls), and
to develop the methodology and tools required to overcome
objective difficulties.

The rest of the paper is organized as follows. In Section II,
we discuss in detail the motivation for our project and its
major goals. In Section III, we describe earlier work that
inspired our research and development effort. Section IV
gives an overview of our benchmarking environment, and
describe its major features. Section V shows the benefits of
our environment when applied to several case studies — the
analysis and optimization of the hardware implementation of
the cryptographic hash standard SHA-256, and four different
types of comparisons targeting respectively two different al-
gorithms, architectures, FPGA families, and versions of tools.
We conclude the paper with the description of future work
in Section VI, and the summary of major properties of our
environment in Section VII.

II. MOTIVATION AND GOALS

In almost every area of science and engineering, the same
task can be realized using multiple competing algorithms. This
statement is especially true in case of communications, digital
signal processing, and cryptography. The choice of a particular
algorithm depends strongly on its efficiency in software and
hardware. One of the primary goals of our environment is to
make the comparison of competing algorithms fairer and more
comprehensive, especially for the case where reconfigurable
hardware is a viable and advantages means of implementation.
Although our environment can be used for comparison of



algorithms belonging to different fields, it is beneficial to
focus first on algorithms belonging to one particular area:
cryptography.

The reason why this area is appropriate include

o well documented speed-ups and security gains of FPGA
implementations over software implementations,

« constantly evolving standards, due to the everlasting
struggle between designers of new algorithms and crypt-
analysts attempting to break them,

« strong need for fair evaluation associated with the way
new cryptographic standards are being developed, namely
through open competition of algorithms submitted by
groups from all over the world.

Starting from the Advanced Encryption Standard (AES)
contest organized by NIST in 1997-2000 [3], open contests
have become a method of choice for selecting cryptographic
standards in the U.S. and over the world. The AES contest in
the U.S. was followed by the NESSIE competition in Europe
[4], CRYPTREC in Japan, and eSTREAM in Europe [5].

Four typical criteria taken into account in the evaluation of
candidates are: security, performance in software, performance
in hardware, and flexibility. While security is commonly
recognized as the most important evaluation criterion, it is
also a measure that is most difficult to evaluate and quantify,
especially during the relatively short period of time reserved
for the majority of contests. The typical outcome is that, after
eliminating a fraction of candidates based on security flaws, a
significant number of remaining candidates do not demonstrate
any easy to identify security weaknesses, and as a result are
judged to have adequate security.

For example, during the AES contest, all five final candi-
dates were identified by NIST, NSA, and cryptographic experts
worldwide as possessing at least adequate security [3]. As
a result, additional criteria were necessary to break the tie.
Performance in software and hardware are next in line to
clearly differentiate among the candidates for a cryptographic
standard. Both criteria are very convenient — they are relatively
easy to evaluate and quantify, objective, and of practical im-
portance for the commercial viability (in terms of cost, speed,
and energy consumption) of the end products incorporating
the standard.

Interestingly, the differences among the cryptographic al-
gorithms in terms of the hardware performance seem to be
particularly large, and often serve as a tiebreaker when other
criteria fail to identify a clear winner [3], [6].

At this point, the focus of attention of the entire crypto-
graphic community is on the SHA-3 contest for a new hash
function standard, organized by NIST [7]. The contest is now
at its early stages, and the evaluation of candidates is scheduled
to continue till the second quarter of 2012. Therefore, the
development of our environment is perfectly aligned with the
most important stages of the competition, when the results of
the hardware performance comparison may have the highest
possible impact.

Although facilitating a fair and comprehensive comparison
among competing cryptographic algorithms is probably the

easiest to identify goal of our project; this is not the only
important goal we have in mind.

Progress in the art and science of digital system design
requires the ability to fairly compare various ways of im-
plementing the same algorithm. In hardware these different
ways amount to different architectures (such as basic iter-
ative, unrolled, pipelined, quasi-pipelined, etc. ), different
optimization tricks (such as precomputation, table look-up,
etc.) and different ways of coding the same architecture using a
hardware description language. Different implementation-level
optimizations are presented at conferences and workshops,
and it is common for their authors to compare their results
with previous work. Unfortunately, the quality and fairness of
these comparisons is often seriously flawed. Our environment
is aimed at facilitating fair and comprehensive comparison of
functionally equivalent architectures and implementations, and
at exposing any evaluation pitfalls and unfair practices.

The third important goal of the performance evaluation is
the identification of an implementation platform which is most
suitable for a specific design of a given algorithm. Factors
to be taken into account include speed, cost, power and
energy consumption, physical dimensions, etc. In the most
general case, the designer must first choose between three
major semiconductor technologies: microprocessors (including
microcontrollers and DSPs), FPGAs, and ASICs. However, in
the most common scenario, the semiconductor technology is
predetermined by other factors, such as production volume,
non-recurring costs, physical size, security requirements, etc.,
and the remaining choice concerns the particular device within
a given class. In particular, in the case of FPGAs, the choice
concerns a preferred vendor, family, and device within a
family. This choice can be significantly facilitated by the use
of our environment.

Finally, the obtained results may be a strong function
of hardware description languages, tools, and tool versions.
Benchmarking such tools and languages is a fourth important
goal of our project. A comprehensive evaluation of equivalent
results obtained using different tools and languages for a wide
class of algorithms, such as cryptographic algorithms, will be
of great help for both hardware designers and tool developers.

In summary, our goal is to develop a methodology and a
computer environment that would allow for the comprehensive,
fair, reliable and practical software and hardware performance
comparison among various

o algorithms,

« implementation methods,
« platforms,

« languages and tools.

III. PREVIOUS WORK

FPGA vendors by themselves have recently started the
development of tools for the exploration of implementation
options. A good example is ExploreAhead [8] from Xilinx,
which is a part of the high-level optimization tool called
PlanAhead. Similarly to ATHENa, ExploreAhead allows ex-
ecuting multiple implementation runs based on user defined



strategies or predefined strategies shipped together with the
tool. Each strategy corresponds to a certain set of options of
the Xilinx mapping, placing and routing tools. Based on these
strategies, a user can execute multiple implementation runs,
each corresponding to a different optimization strategy. These
runs can be parallelized to take advantage of multi-core CPU
machines.

Compared to ExploreAhead, which focuses exclusively on
Xilinx devices, ATHENa is intended to provide similar ca-
pabilities for designers and scientists interested in exploring
FPGA devices from several vendors. In terms of optimization,
ATHENa is aimed at achieving the best possible perfor-
mance, rather than a target performance, defined by any actual
system specification. Additionally, the optimization strategies
developed within ATHENa will be more closely related to a
particular class of digital systems, starting from (but certainly
not limited to) the cryptographic hash functions, selected as
our immediate exploration target because of the on-going
SHA-3 competition [7].

In the specific area of performance evaluation of crypto-
graphic algorithms, our inspiration comes from the eBACS
project, started by Daniel J. Bernstein and Tanja Lange in
2006 [9]. Within this project, a special tool called SUPER-
COP was developed in order to facilitate comparison of soft-
ware implementations of cryptographic algorithms. This open-
source tool supports the choice of best compilation options
from among over 1200 different combinations. It also allows
the actual execution time measurements to be performed
on multiple computer systems of various kinds. The project
supports multiple classes of cryptographic algorithms (such
as secret key block ciphers, stream ciphers, hash functions,
etc.), and for each of them defines a standardized Application
Programming Interface (API) (an equivalent of the hardware
interface in digital system design). The eBACS project calls
for and facilitates the separation of designers of cryptographic
algorithms from evaluators responsible for their benchmarking.
We believe that in spite of clear and significant differences
between software and hardware benchmarking (such as compi-
lation/implementation time, ways of determining the execution
time, management of memory hierarchy, etc.), the major ideas
and benefits of the eBACS project can be applied to the realm
of FPGAs.

IV. ENVIRONMENT
A. Overview

We have developed a prototype of ATHENa: Automated
Tool for Hardware EvaluatioN [2]. At the heart of our tool is a
set of scripts written in Perl aimed at an automated generation
of optimized results for multiple hardware platforms.

The only software required to run the tool is an interpreter
of Perl, which is available for free. The tool also assumes
that FPGA design environments are already installed on the
system executing the scripts. The users can use either free,
educational, or commercial versions of these FPGA design
environments.

The general idea of our hardware evaluation environment is
shown in Fig. 1.

The ATHENA Server is a focal point of the environment. It
hosts the project web site [2], and repository of project scripts
and sample configuration files. In the near future, this server
is intended to host a large database of results. Each algorithm
will be initially represented in the project database by several
entries, including algorithm specification (e.g., Federal Infor-
mation Processing Standard, FIPS) reference implementation
in C (or other programming language), and test vectors. In
the next step, we will develop and store for each of these
algorithms one or more proposed standard hardware interfaces,
and the corresponding testbenches.

A hardware designer can download the aforementioned
entries to his local machine, and use them to develop his/her
implementation of a given algorithm in the form of Hard-
ware Description Language (HDL) code. The designer can
also choose his own interface and develop the corresponding
testbench by himself. In this case, the initial download of
information from the server is not necessary. After the HDL
code is ready, and its functionality verified through simulation,
the actual performance evaluation process can begin.

At this point, the user downloads our scripts and sample
configuration files to his local machine. He/she modifies
configuration files, so they contain proper information about
the location of HDL source files, location of tools, target
hardware platforms (e.g. Xilinx Virtex 5 and Altera Cyclone
IIl), and other parameters required by the scripts. The user
then starts the scripts that run the FPGA implementation in
the batch mode, and generate the result summary in the form
of text files suitable for the designer’s review.

In the near future, our environment will be extended with
the database of results. The ATHENa scripts will generate
the necessary database entries automatically. The designer
will be in position to first review the human-friendly result
summary, and only afterwards to decide whether to submit
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the corresponding database entries to the project database.

The important feature of our approach is that all computa-
tions are performed on a local machine of the designer, and
thus the HDL code never leaves this machine, and is never a
subject to interception by any third party, including the project
server administrators.

On the other hand, the user must have all FPGA tools and
libraries necessary for the evaluation installed on his/her own
machine.

B. Features

The main features of our environment include:

1) Running all steps of synthesis, implementation, and tim-
ing analysis in batch mode: This is a very important property,
as it allows running time-consuming optimizations, without
any user supervision, over long periods of time, such as nights,
days, or even weeks.

2) Support for devices and tools of two major FPGA
vendors: Xilinx and Altera: Xilinx and Altera account for
about 90% of the FPGA market. Their FPGA devices differ
considerably in terms of the structure of a basic building block:
configurable logic block (CLB) for Xilinx, and logic element
(LE) for Altera. They also differ in terms of dedicated hard-
wired units, such as blocks of memory, multipliers, DSP units,
etc. As a result, the ranking of algorithms or architectures
obtained using devices of one FPGA vendor may not carry to
the devices of another vendor.

3) Generation of results for multiple FPGA families of a
given vendor, e.g. Xilinx: Spartan 3, Virtex 5; Altera: Cyclone
III, Aria II, Stratix IV: Our tool allows specifying as target
platforms multiple families of FPGA devices of each of the
two major vendors.

Every vendor supports over time two or three classes of
families, which are optimized respectively for performance,
cost and power consumption, and performance to cost ratio.
Families belonging to different classes differ significantly,
and therefore may produce substantially different results and
rankings. Families belonging to the same class also gradually
evolve over time. Our tool allows an easy and comprehensive
investigation of the dependence of results and rankings on the
FPGA families.

4) Automated choice of a device within a given family of
FPGAs assuming that the resource utilization does not exceed
a certain limit, e.g. 80% of CLB slices or 50% of BRAMs:
A maximum clock frequency of a circuit implemented using
an FPGA is a function of device resource utilization. When
the device utilization reaches 80%-100% in terms of one
of the critical resources, such as configurable logic blocks
or Block RAMs, the performance degrades. This effect is
caused mostly by the difficulties associated with routing in
congested circuits. The utilization threshold at which the
performance degradation begins is a function of an FPGA
family and the implemented circuit. ATHENa supports first
determining these thresholds separately for each family of
FPGAs and each class of digital circuits. Our environment
includes special library files characterizing all devices of a

given FPGA family in terms of available resources. The tool
is then able to match information from these library files, with
the maximum percentage of resources permitted to be used
without performance degradation, and select an FPGA device
within a given family automatically.

5) Automated optimization of results aimed at one of the
three optimization criteria: speed, area, and ratio speed to
area: Results generated by the FPGA tools depend highly on
the choice of multiple options and the contents of constraint
files. Variation of results obtained by changing just a single
option may easily exceed 25%.

At this point, ATHENa contains two design space explo-
ration functions: Placement Search and Exhaustive Search.

Placement Search permits the exploration of result depen-
dencies on the starting point of placement. This starting point
is determined by the options of the FPGA implementation
tools called: Cost Table in Xilinx tools, and Seed in Altera
tools. Cost Table can take any integer value between 1 and
100, and Seed any value between 1 and 232. Both parameters
are by default set to 1. Exploring the full range of these
parameters may be computationally prohibitive, especially in
case of Altera, so a representative subset of the full range
needs to be selected.

Exhaustive Search is a superset of Placement Search and
extends the set of options to be explored by other options, such
as: optimization target (area, speed, or balanced), optimization
level, maximum fanout, multiple target clock frequencies, etc.
All options are divided into two levels. Level 1 options are
changed first, while keeping Level 2 options at their default
values. Afterwards, two (or more) sets of Level 1 options are
selected and kept constant while Level 2 options are explored.

6) Automated verification of a design through functional
simulation, run in batch mode: Our tool has an additional
capability of simulating designs in the batch mode in order to
verify their correct functionality. The verification is based on
a testbench utilizing test vectors stored in a file, and providing
a binary answer whether the circuit operates correctly or not.

Sample testbenches and hardware interfaces will be pro-
vided for the most common cryptographic algorithms (in-
cluding all NIST standards). One such testbench has already
been published at the ATHENa web site. This testbench
can be used for the verification of implementations of 14
round-two candidates for the new SHA-3 standard, as well
as implementations of current standards SHA-1 and SHA-2.

Designers themselves will be responsible for designing
testbenches for any new algorithms, based on generic template
files and coding guidelines made available through the project
web site. The advantage of simulation in batch mode is that
it can be run without any supervision for a long time.

V. CASE STUDIES

For our case studies, illustrating characteristic features and
capabilities of ATHENa, we have selected two implemen-
tations of the current cryptographic hash function standard,
SHA-256, and one implementation of an alternative algorithm,
called Fugue-256, competing in the contest for the new hash



function standard SHA-3 [7]. SHA-256 has been developed by
NSA, and it was standardized by NIST in 2002 [10], Fugue
was developed by IBM in 2008-2009, in response to the NIST
call for SHA-3 candidates. Out of several hardware architec-
tures of SHA-256, we have selected architectures referred to
as basic loop and architecture with rescheduling. The former
is the most straightforward sequential implementation of the
algorithm, the latter is an optimized architecture, developed
by Chaves et al. [11], optimized for the maximum throughput
to area ratio.

Efficient implementations of all three designs have been
developed by our group in VHDL. These implementations
follow a generic interface suitable for the majority of modern
cryptographic hash functions, including SHA-1, SHA-2, and
SHA-3 candidates. The implementations were verified using a
generic testbench, in which only an external test vector file is
specific to a given hash function algorithm. The synthesizable
source codes, the testbench, and the specification of the generic
interface are all available at the ATHENa project web site [2].

Our first case study aims at developing a heuristic optimiza-
tion strategy offering an acceptable trade-off between time
spent on optimization, and the quality of the obtained results.
This study was performed independently for each of the three
described above designs. Below, we present the results for
a single selected design: SHA-256 in the architecture with
rescheduling. The results obtained for the remaining two
designs were quite comparable.

In order to optimize the choice of an FPGA device within a
given family, we have first determined the dependence of the
maximum clock frequency on the CLB slice utilization. In or-
der to do that, we have built a parameterized circuit comprised
of a cascade of N SHA-256 units, separated by registers.
We have then selected a Spartan 3 device, xc3s4000fg1156-5,
for which one unit of SHA-256 takes about 3.33% of CLB
slices. This way by changing parameter N, we are able to
determine the maximum clock frequency of our circuit for the
CLB slice utilization ranging from 3.33% to 96.67%. All clock
frequencies have been obtained using Exhaustive Search with
48 sets of Level 1 parameters described below. Based on the
dependence shown in Fig. 2, we have selected a threshold of
80%, as a value beyond which the maximum clock frequency
deteriorates by a factor larger than 10%.

In the next step, we have run ATHENa in the sin-
gle_run best_match mode with the value of the parameter
MAX_SLICE_UTILIZATION set to 80%. In the result, the
smallest Spartan 3 device, for which the CLB slice utilization
does not exceed 80% was determined to be xc3s200£t256-5.

In order to optimize the circuit for the maximum throughput
to area ratio, the Exhaustive Search function of ATHENa was
employed. The following parameters have been changed in
Phase 1 of Exhaustive Search:

o optimization target for synthesis: area, speed

« maximum fanout: 50, 100, 500

o optimization target for mapping: area, speed

« optimization effort level for mapping: medium, high

« optimization effort level for placing and routing: medium,
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Fig. 3: Results of the Exhaustive Search for 48 sets of Level 1 parameters.

The total number of parameter sets tested was 2% x 3 = 48,
The target clock frequency was set to default. The results
of this parameter space exploration are shown in Fig. 3.
Out of 48 parameter sets, we have chosen one, with the
best ratio of the maximum clock frequency to the CLB slice
utilization for further processing. This set corresponds to the:
optimization target for synthesis = area, maximum fanout =
100, optimization target for mapping = area, optimization
effort level for mapping = medium, and optimization effort
level for placing and routing = medium. The total execution
time of this phase was equal to about 1.5 hr on the 2.66 GHz
Intel Core 2 Duo VPro.

For this set of Level 1 options, we have run the synthesis
and implementation with 100 different values of the parameter
Cost Table, determining the starting point of placement. In Fig.
4, we show the distribution of the maximum clock frequencies
obtained using these 100 values of Cost Table. Each bar in
the diagram represents the number of Cost Table values, for
which the maximum clock frequency falls within a given 1
MHz range. A black mark on the bar, represents the default



Cost Table value equal to 1. The grey marks on the bars
represent the number of Cost Table values from the reduced set
{21, 41, 61, 81} falling within the same range. Together with
the black bar, these bars represent a reduced-time exhaustive
search taking only 5% of time used for the full-time exhaustive
search.

In Figs. 5, 6, 7 and 8, we demonstrate that the obtained de-
pendencies are a strong function of the target clock frequency.
In particular, when the target clock frequency is either set to
default, or is much higher than the achievable clock frequency,
the spread of the actual clock frequencies is quite large.
Requesting a target clock frequency that is realistic causes
that the spread becomes narrower, as shown in Fig. 6. When
the target clock frequency is smaller than the frequency that
can be easily achieved by the tools, the distribution becomes
very narrow, and the actual clock frequency only marginally
exceeds the target value (see Fig. 5). In all the aforementioned
diagrams, green bars denote clock frequencies higher than the
target clock frequency, and red bars denote frequencies lower
than the target clock frequency.

The best actual clock frequencies were achieved for the case
of the target clock frequency equal to 90 MHz, as shown in
Fig. 7. In this case, the maximum clock frequencies found
using full-time exhaustive search, reduced-time exhaustive
search, and single_run, were equal respectively to: 90 MHz, 88
MHz, and 83 MHz. Thus, the reduced-time exhaustive search
gives results falling within approximately 2% from the best
value obtained using full-time search, and it outperforms the
single_run by 5 MHz (approximately 6%).
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Fig. 4: Distribution of the actual clock frequencies for the default target clock
frequency with 100 values of the cost table.

Overall, the obtained improvement of the maximum clock
frequency compared to the Single Run with the default values
of all parameters, (including Level 1 parameters) was equal to
12.5% (from 80 MHz to 90 MHz) for the full-time exhaustive
search (taking about 5 hrs on the 2.66 GHz Intel Core 2 Duo
VPro), and 10% (from 80 MHz to 88 MHz) for the reduced-
time exhaustive search (taking about 2 hrs). This improvement
is a strong function of an FPGA family and a particular circuit.

In general, our experiments demonstrated that the Exhaus-
tive Search of ATHENa is a viable option for improving the
implementation results at least for medium size circuits. The
execution time of this search can be substantially reduced, us-
ing heuristic algorithms, at the cost of only minor degradation
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in the values of optimized results.
The similar experiment was repeated for Altera Cyclone II.



The most important finding was that the results after placing
and routing were a very weak function of the requested
implementation frequency. As a result, we have decided to
follow different heuristic optimization strategies for FPGA
devices from Xilinx and Altera.

For Xilinx FPGAs, we first search for the best target clock
frequency. This search involves several single runs of tools,
with the target clock frequency first set to the default value,
and then gradually changed using the binary search algorithm,
based on the corresponding actual clock frequency obtained
from a given run. For the best target clock frequency obtained
this way, we run exhaustive search, with the number of option
sets reduced from 48 to 8 compared to our original experiment.
Finally, for the best set of options returned by exhaustive
search, we run placement search, with the number of initial
placement positions reduced from 100 to 5 compared to the
initial experiment. The total number of runs required by this
strategy is in the range from 15 to 20.

For Altera, we apply directly exhaustive search, with the
number of tested option sets equal to 12. We follow with the
placement search, with 5 initial placement positions. The total
number of runs is thus always equal to 17.

We then apply these heuristic optimization strategies to four
different types of evaluations described earlier in Section II. In
these evaluations, we compare respectively algorithms (SHA-
256 vs. Fugue-256), architectures (basic loop vs. reschedul-
ing), FPGA families from various vendors (Xilinx Spartan 3
vs. Altera Cyclone II), and tool versions (Xilinx ISE v. 9.1
vs. V. 11.1). The results of these comparisons are summarized
in Tables I-IV. In each table we present first the results after
single run of the tools (column “Single”) and then results after
optimization (column “Opt.). We also calculate the ratio of
each result after optimization to the result before optimization
(column “Ratio”). The last parameter listed in each table is the
Optimization Time (denoted by ”Opt. Time”) given in minutes.
It should be noted that this optimization time is typically
smaller than one hour, which is typically a small fraction of
the total development time.

From Table I, we can see that Fugue outperforms SHA-
256 in terms of throughput, but is inferior in terms of area
and the throughput to area ratio. Additionally, the optimization
of SHA-256 improves area and throughput almost equally,
while in Fugue, it affects practically only throughput. From
Table II, after optimization, the architecture with rescheduling
outperforms basic loop in terms of all performance measures.
From Table III, Cyclone II outperforms Spartan 3 in terms of
throughput and the throughput to area ratio, with the difference
between both FPGA families decreasing after optimization.
Finally, based on Table IV, somewhat surprisingly, the newer
versions of tools give worse throughput and worse area after
optimization. At the same time, they offer slightly better or
comparable results after a single run.

All four tables demonstrate a potential for generating inter-
esting, non-trivial, and sometimes unexpected results regarding
the properties of various algorithms, architectures, FPGA
families, and FPGA tools.

TABLE I: Comparison of two cryptographic hash function algorithms:
SHA-256 and Fugue-256 using Xilinx Spartan 3

SHA-256 Fugue-256
Single Opt. Ratio Single Opt. Ratio
Frequency [MHz] 79.46 88.22 1.11 34.38 40.10 1.17
Area [CLB slices] 1020 883 0.87 3987 3873 0.97
Throughput [Mbit/s] 6259 | 6949 1.11 1100.2 | 12832 | 1.17
Throughput/Area 0.61 0.79 1.30 0.28 0.33 1.18
Opt. Time [min] 2.15 42.30 18.89 5.16 105.23 | 20.08

TABLE II: Comparison of two different hardware architectures of SHA-256
using Altera Cyclone II

Basic Loop Rescheduling
Single Opt. Ratio Single Opt. Ratio
Frequency [MHz] 106.47 | 108.49 | 1.02 105.50 | 110.69 | 1.05
Area [LE] 2291 2216 0.97 2019 2015 1.00
Throughput [Mbit/s] 838.7 | 854.6 1.02 831.0 | 871.8 1.05
Throughput/Area 0.366 | 0.386 1.05 0412 | 0433 1.05
Opt. Time [min] 0.42 13.02 18.61 0.41 12.58 19.07

VI. FUTURE WORK
A. New Features

Several new features of our environment are currently under
active development, and are likely to become available during
2010. The release schedule can be found on the Athena
webpage [2]. These features include:

1) Additional FPGA vendors: In the near future our en-
vironment will be extended to support other FPGA vendors,
such as Actel and Lattice Semiconductor.

2) Support for Windows and Linux: The majority of FPGA
design environments (including those from Xilinx and Altera)
operate under both Windows and Linux. After the initial
development of our tool under Windows, its operation will
be extended into Linux.

3) Graphical User Interface (GUI): In the current version
of the ATHENa environment, the preparation of each evalua-
tion run is done by editing sample configuration files using an
arbitrary text editor. In the second phase, a GUI tool will be
developed to facilitate the preparation of configuration files,
and display of generated results.

TABLE III: Comparison of two different target hardware platforms: Xilinx
Spartan 3 and Altera Cyclone II for SHA-256 (architecture with rescheduling).
Area for Xilinx Spartan 3 is given in Logic Cells (LC), which are a half of a

CLB slice, in order to make this parameter comparable to area for Altera
expressed in Logic Elements (LE).

Xilinx Spartan 3 Altera Cyclone II
Single Opt. Ratio Single Opt. Ratio
Frequency [MHz] 79.46 88.22 1.11 105.50 | 110.64 | 1.05
Area [LC or LE] 2040 1776 0.87 2019 2015 1.00
Throughput [Mbit/s] 625.9 | 694.9 1.11 831.0 | 871.8 1.05
Throughput/Area 0.312 | 0.391 1.28 0.412 | 0.433 1.05
Opt. Time [min] 2.15 42.30 18.89 0.51 14.20 17.27

TABLE IV: Comparison of two different versions of tools: Xilinx ISE Design
Suite v.11.1 vs. v. 9.1 for SHA-256 (architecture with rescheduling)

Xilinx ISE v. 9.1 Xilinx ISE v. 11.1
Single Opt. Ratio Single Opt. Ratio
Frequency [MHz] 77.87 92.58 1.19 79.46 88.22 1.11
Area [CLB Slices] 1020 873 1.17 1020 883 0.87
Throughput [Mbit/s] 6134 | 729.2 1.19 6259 | 694.9 1.11
Throughput/Area 0.601 0.835 1.39 0.614 | 0.787 1.28
Opt. Time [min] 2.17 4220 18.24 2.15 42.30 18.89




4) Adapting to Other Domains: Additionally, ATHENa can
be easily applied to domains different than cryptography,
such as digital signal processing or communications. In such
case, new heuristic optimization algorithms may need to be
developed to better match features of these new classes of
applications. In the longer term, our environment can be
extended to cover ASICs (Application Specific Integrated
Circuits).

VII. CONCLUSIONS

We have proposed and substantially advanced the devel-
opment of an open-source tool, called ATHENa, for a fair,
comprehensive, reliable, and practical benchmarking of digital
systems using FPGAs from various vendors.

The most important features characterizing our environment
are as follows:

o Comprehensive: The environment supports evaluation us-
ing multiple FPGA devices from several vendors.

o Automated: All tools run in batch mode, without the need
for any user supervision.

o Collaborative: The environment allows and facilitates
benchmarking by hundreds of designers from all over the
world. As a result the effort on development, debugging,
and optimization of codes is shared by a large number of
designers, each of which can specialize in a single type
of implementation platform and a single set of tools.

e Practical: Our environment supports but does not require
revealing the source codes; as a result it can be safely
used by a wide range of designers from academia, in-
dustry, and government unable to place their codes in
public domain because of intellectual property or export
restrictions issues.

o Distributed: The majority of the most time consuming
computations (including all phases of hardware design
and optimization) are performed on local machines of in-
dividual designers using tools they already have licenses
for, and are familiar with.

e Optimized: Our scripts will make the best effort to
select the best options of tools used for synthesis and
implementation in FPGAs. In order to create such scripts,
a comprehensive set of computationally intensive exper-
iments will be performed during this project in order to
select the best optimization strategy for each available
tool and implementation platform.

o With single point of contact: Our project server will
work as a single point of contact, and will contain all
information necessary to perform benchmarking, and to
share, look up, and compare the results.

The first big test of our environment will be its application
to the evaluation of candidates submitted to the SHA-3 contest
for a new hash function standard, organized and co-ordinated
by NIST. At the time of writing, 14 candidates remain in the
competition.

The environment will continue to serve the cryptographic
and FPGA community for years to come, providing compre-
hensive and easy to locate results for multiple cryptographic

standards and other classes of algorithms. Researchers all over
the world will benefit from the capability of fairly, compre-
hensively, and automatically comparing their new algorithms,
hardware architectures, and optimization methods against any
previously reported work. The designers will benefit from
the capability of comparing results of implementing the same
algorithm using multiple FPGAs from several major vendors,
and will be able to make an informed decision about the
choice of the implementation platform most suitable for their
particular application. Finally, the developers and users of
tools will benefit from the comprehensive comparison done
across tools from various vendors, and from the optimization
methodologies developed and comprehensively tested as a part
of this project.
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