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Abstract. Hash functions are among the most widespread cryptographic primi-
tives, and are currently used in multiple cryptographic schemes and security 
protocols such as IPSec and SSL. In this paper, we compare and contrast hard-
ware implementations of the newly proposed draft hash standard SHA-512, and 
the old standard, SHA-1.  In our implementation based on Xilinx Virtex 
FPGAs, the throughput of SHA-512 is equal to 670 Mbit/s, compared to 530 
Mbit/s for SHA-1. Our analysis shows that the newly proposed hash standard is 
not only orders of magnitude more secure, but also significantly faster than the 
old standard. The basic iterative architectures of both hash functions are faster 
than the basic iterative architectures of symmetric-key ciphers with equivalent 
security. 

1   Introduction 

Hash functions are very common and important cryptographic primitives. Their pri-
mary application is their use together with public-key cryptosystems in the digital 
signature schemes. They are also a basic building block of secret-key Message Au-
thentication Codes (MACs), including the American federal standard HMAC [8]. This 
authentication scheme appears in two currently most widely deployed security proto-
cols, SSL and IPSec [12, 16]. Other popular applications of hash functions include 
fast encryption, password storage and verification, computer virus detection, pseudo-
random number generation, and many others [13, 16]. 

Cryptographically strong, collision-free, hash functions are very difficult to design. 
Tens of them have been proposed, and the majority of them have been broken. Only a 
few hash functions have gained a wider acceptance, and even fewer have been stan-
dardized.  

By far the most widely accepted hash function is SHA-1 (Secure Hash Algorithm-
1), a revised version of the American federal standard introduced in 1993 [4].  The 
original version of this function, SHA, was developed by National Security Agency 



(NSA), and revised in 1995 for increased security even before any weakness was 
found in the open research. 

SHA-1 was introduced as a federal standard about the same time as an 80-bit se-
cret-key encryption algorithm named Skipjack [5] and the Digital Signature Standard 
(DSS) [6]. The security parameters of all these standards were chosen in such a way to 
guarantee the similar level of security, in the range of 280 operations, as required by 
the best currently known attack. 

After introducing a new secret-key encryption standard, AES (Advanced Encryp-
tion Standard) [7], with three key sizes, 128, 192, and 256 bits, the security of SHA-1 
does not any longer match the security guaranteed by the encryption standard. There-
fore, an effort was initiated by NSA to develop three new hash functions, with the 
security matching the security of AES with 128, 192, and 256 bit key respectively. 
This effort resulted in the publication of the draft Federal Information Processing 
Standard, introducing three new hash functions referred to as SHA-256, SHA-384, 
and SHA-512 [11]. 

The goal of the project described in this article was to implement the most complex 
of these new hash functions, SHA-512, in reconfigurable hardware, and to compare its 
implementation with the implementation of SHA-1, realized in the same technology. 
Our comparative analysis sought, among the other, answers to the following questions: 

• does the increased security of the SHA-512 hash function come at the cost of de-
creased speed, increased area, or decreased speed to area ratio of the hardware 
implementations when compared to the SHA-1 hash function; 

•  how does the speed of the SHA-512 hash function compare to the speed of the 
corresponding versions of the AES algorithm? Which transformation, encryption 
or authentication, is faster in hardware? Which transformation requires less area? 

Our investigation is a part of the larger project [10] aimed at implementing a hardware 
accelerator for a new suite of cryptographic algorithms to be used in the IP security 
protocol, IPSec. The target throughput of this accelerator is 1 Gbit/s for both encryp-
tion and authentication. Therefore we are also interested in studying the difficulty of 
implementing SHA-1 and the newly proposed hash functions at the speed of 1 Gbit/s 
using the current FPGA devices. 

Although multiple commercial and academic implementations of SHA-1 have been 
reported and validated by NIST [15], we are not aware of any hardware implementa-
tion of SHA-512, or its comparison with the implementation of SHA-1 implemented 
in the same technology, using the same optimization techniques. This article is aimed 
at filling this gap. 

2   Functional Compar ison 

In Table 1, four investigated hash functions are compared from the point of view of 
functional characteristics. The security of these hash functions is determined by the 
size of their outputs, referred to as hash values, n. The best known attack against these 
functions, the “birthday attack” , can find a pair of messages having the same hash 
value with a work factor of approximately 2n/2. This complexity means that in order to 



accomplish equivalent security, hash functions need to have an output twice as long as 
the size of a key of the corresponding secret-key cipher. 

SHA-1 and SHA-256 have many features in common. They both can process mes-
sages with the maximum length up to 264-1 bits, have a message block size of 512 bits, 
and have internal structure based on processing 32-bit words. SHA-384 and SHA-512 
have even more similarities. They process messages with the maximum length up to 
2128-1 bits, have a message block size of 1024 bits, and have internal structure based 
on processing 64-bit words. On top of that, the definition of SHA-384 is almost iden-
tical to the definition of SHA-512, with the exception of a different choice of the ini-
tialization vector, and a truncation of the final 512-bit result to 384  bits. 

All functions have a very similar internal structure, and process each message block 
using multiple rounds. The number of rounds is the same for SHA-1, SHA-384, and 
SHA-512, and 20% smaller in SHA-256. The critical path in each round involves 
multioperand addition. SHA-1 requires two fewer operands per addition than in the 
remaining three functions. 

A notation k+1 used in the table, means that the number of operands to be added is 
k in all but last round, and k+1 in the last round. Alternatively, a number of operands 
may be equal to k in all rounds, and an additional simplified round may be introduced 
for the remaining single addition. 
 

 
Table 1.  Functional characteristics of four investigated hash functions 

 
 SHA-1 SHA-256 SHA-384 SHA-512 

Size of hash value 160 256 384 512 
Complexity of the 

best attack 
280 2128 2192 2256 

Equivalently secure 
secret-key cipher  

Skipjack AES-128 AES-192 AES-256 

M essage size < 264 < 264 < 2128 < 2128 
M essage block size 512 512 1024 1024 

Word size 32 32 64 64 
Number  of words 5 8 8 8 
Number  of  digest 

rounds 
80 64 80 80 

Number  of oper-
ands added in the 

cr itical path 

5+1 7+1 7+1 7+1 

Number  of con-
stants K t 

4 64 80 80 

Round-dependent 
operations 

ft None None None 

 
 
 
 



The number of different constants is equal to four in SHA-1, and is the same as the 
number of rounds in all remaining functions. As a result, implementations of SHA-
256, SHA-384, and SHA-512 must include a look-up table of constants, Kt, where 
t=0..number of rounds. SHA-1 is also the only function that contains an operation 
dependent on the round number t; in all remaining hash functions all rounds perform 
exactly the same operations. 

The following conclusions can be derived from this functional comparison. Hard-
ware implementations of SHA-384 and SHA-512 have exactly the same performance, 
so only one of them needs to be implemented for the purpose of comparative analysis. 
Notice that the size of the message block is twice as large in SHA-512 as compared to 
SHA-1, the number of rounds is the same, and the critical path is only slightly longer 
in SHA-512.  Because of this, SHA-512 (the strongest function) is likely to be signifi-
cantly faster than SHA-1 (the weakest function), which would be a very positive result 
if true. The throughput of SHA-256 is likely to be in the same range as a throughput of 
SHA-1, and smaller than the throughput of SHA-512. Taking into account these esti-
mations, we have decided to implement two of the investigated hash functions, SHA-1 
and SHA-512, which lay on the opposite ends of the spectrum in terms of both secu-
rity and speed, with SHA-1 being the weakest and slowest, and SHA-512 being the 
strongest and fastest of the four investigated hash functions. 

3   Design Methodology 

Our target FPGA device was the Xilinx Virtex XCV-1000-6. This device is composed 
of 12,288 basic logic cells referred to as CLB (Configurable Logic Block) slices, 
includes 32 4-kbit blocks of synchronous dual-ported RAM, and can achieve synchro-
nous system clock rates up to 200 MHz [17]. This device was chosen because of the 
availability of a general purpose PCI board based on three FPGA devices of this type. 
This board is described in detail in Section  5. 

The design flow and tools used in our group for the implementation of crypto-
graphic modules in Xilinx FPGA devices are shown in Fig. 1. All algorithms were 
first described in VHDL, and their description verified through the functional simula-
tion using Active HDL v. 5.1, from Aldec, Inc. Test vectors  and intermediate results 
from the reference software implementations based on the Crypto++ library [1] were 
used  for debugging and verification of VHDL codes. The revised VHDL code be-
came an input to the Xilinx integrated environment ISE 4.1i, performing the auto-
mated logic synthesis, mapping, placing, and routing. Tools included in this environ-
ment generated reports describing the area and speed of implementation, a netlist used 
for timing simulation, and a bitstream used to configure an actual FPGA device. All 
designs were fully verified through behavioral, post-synthesis, and timing simulations, 
and experimentally tested using the procedure described in Section 5. 
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Fig. 1. Design flow and tools used in the development of cryptographic modules 
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Fig. 2. General block diagram of SHA-1 and SHA-512. For SHA-1, w=32, n=160; for SHA-
512, w=64, n=512 

4   Hardware Architectures 

A general block diagram common for all four hash functions is shown in Fig. 2. Input 
messages pass first through the preprocessing unit which performs padding and forms 
message blocks of the fixed length, 512 or 1024 bits, depending on the hash function. 
The preprocessing unit passes message blocks to the message scheduler unit. In our 
architecture, message blocks are passed to the message scheduler unit a word at a 
time, during the first 16 clock cycles used to process each message block. The mes-
sage digest unit performs the actual hashing. It uses one clock cycle per digest round. 
In each round, the digest unit processes a new word Wt generated by the message 
scheduler unit. 

The internal structure of the message digests for SHA-1 and SHA-512 are shown in 
Fig. 3ab. In both functions, input registers are initialized with the constant initializa-
tion vector, and are updated with the new value in each round. In SHA-1, four out of 
five words (A, B, C, and D) remain almost unchanged by a single round. These words 
are only shifted by one position down. The last word, E, undergoes a complicated 
transformation  equivalent  to multioperand addition modulo 232, with five 32-bit oper- 
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Fig. 3. Functional block diagram of the message digest unit of a) SHA-1, b) SHA-512 
 
ands dependent on all input words, the round-dependent constant K t, and the message 
dependent word Wt. The internal structure of the message digest of SHA-512 is simi-
lar. The primary differences are as follows: The number of words processed by each 
round is 8, each word is 64 bits long,  and  the  longest  path  is  equivalent  to  addi-
tion  of  seven  64-bit  operands  modulo 264. These operands depend on seven out of 
eight input words (all except D), the round-dependent constant Kt, and a message 
dependent word Wt. Six out of eight input words remain unchanged by a single round. 

Our implementations of the message digests are shown in Figs. 4ab. The critical 
path in each circuit is marked with a thick line. Both circuits use the carry save repre-
sentation of numbers to speed-up the multioperand addition, and minimize delays 
associated with carry propagation. The number of operands that need to be processed 
in each round has been minimized by precomputing the sum Kt +Wt in the preceding 
clock cycle. 

At the same time, the need for an additional round at the end of processing has been 
eliminated by introducing a conditional addition of the initial value of registers H0-Hm 
(m=4 for SHA1, and m=7 for SHA-512) inside of each round. These initial values are 
added only in the last round of the message digest computations; in all previous 
rounds zero is added instead. After these two optimizations, the maximum number of 
operands to be added in each round is 5 for SHA-1 and 7 for SHA-512. 

The straightforward use of carry save adders in case of five operand addition would 
lead to three levels of 3-to-2 carry save adders, followed by a carry propagate adder as 
shown in Fig. 5a. Instead, we have decided to use a 5-to-3 parallel counter (see Fig. 
5b) [14], which reduces the number of binary digits at each position in the sum of five 
operands from 5 to 3, and has approximately the same delay as a 3-to-2 carry save 
adder. The operation of the 5-to-3 parallel counter is shown in Fig. 5c, using the dot 
notation.  In this notation,  each  dot  represents  a  binary digit, 0 or 1 [14]. The 5-to-3  
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Fig. 4. Our implementations of the message digest units of a) SHA-1, b) SHA-512 
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Fig. 5. Using 5-to-3 Parallel Counter. a) adding five w-bit numbers using a tree of 3-to-2 carry-
save adders, b) adding five w-bit numbers using 5-to-3 parallel counter followed by a 3-to-2 
carry save adder, c) operation of the 5-to-3 parallel counter in the dot notation, d) example of 

the operation of the 5-to-3 parallel counter 
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Fig. 6.  Using internal structure of a single CLB slice of the Xilinx Virtex FPGA device to 
implement a bit-slice of a 5-to-3 Parallel Counter (PC) 



 
parallel counter adds five binary digits with the same weight, 2i, and represents the 
result using three binary digits with three subsequent weights, 2i, 2i+1, and 2i+2. An 
example of the operation of this counter is shown in Fig. 5d. The speed-up comes 
from the fact that the operation of the parallel counter can be realized in Virtex 
FPGAs using resources of a single CLB slice as shown in Fig. 6. 

In SHA-512, a cascade of two 5-to-3 parallel counters is used to reduce the number 
of operands from seven to three (see Fig. 4b).  As a result, the critical path is longer 
than in SHA-1 only by two levels of CLB slices (one level for the parallel counter, and 
one for the 

�
1 operation). 

Further optimization of the critical path in both circuits has been accomplished by 
reducing the delays of interconnects. The primary optimization technique used for that 
purpose was the reduction of the fan-out of control signals by using buffers, duplicat-
ing portions of control logic, and placing control logic close to the controlled parts of 
the execution unit.    

The block diagrams of the message scheduling units in SHA-1 and SHA-512 are 
shown in Fig. 7. Both units generate 80 message dependent words, Wt, t=0..79. The 
first 16 of these words, W0..W15, is simply the first 16 words of the input message 
block, M0..M15; the remaining words are computed using a simple feedback function, 
based on rotations, shifts, and XOR operations. The actual implementation of both 
functions is given in Fig. 8. Our implementations have been optimized for minimum 
area, using a shift register mode of CLB slices available in the Xilinx Virtex FPGA 
devices. Using this mode, a cascade of several one-bit registers, each taking normally 
a single CLB slice, can be reduced to a single CLB slice implementing the multi-stage 
shift register with up to 16 stages.   

5   Testing Procedure 

The experimental testing of our cryptographic modules was performed using the 
SLAAC-1V hardware accelerator board. The logical architecture of SLAAC-1V is 
shown in Fig. 9. The three Virtex 1000 FPGAs (denoted as X0, X1, and X2) are the 
primary processing elements.  

About 20% of the resources in the X0 FPGA are devoted to the PCI interface and 
the board control module. The remaining logic of this device, as well as the entire X1 
and X2 FPGAs, can be used by the application developer.  The board control module 
implemented in X0 provides high-speed DMA (Direct Memory Access), data buffer-
ing, clock control (including single-stepping and frequency synthesis from 1 to 200 
MHz), etc. The current 32 bit 33 MHz control module has obtained DMA transfer 
rates of over 1 Gbit/s (125 MB/s) between X0 and the host memory, very near the PCI 
theoretical maximum.  

In all our experiments, the X1 FPGA was configured to contain cryptographic mod-
ules, while X0 and X2 were used only to facilitate the transfer of data between X1 and 
the memory of the host computer running Linux. 
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Fig. 7. Functional block diagrams of the message scheduler unit of a) SHA-1, b) SHA-512 
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Fig. 8. Our implementations of the message scheduler unit of a) SHA-1, b) SHA-512 
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Fig. 9. SLAAC-1V Architecture 
 
The test program written in used the SLAAC-1V APIs and the SLAAC-1V driver to 
communicate with the board. 

Our testing procedure is composed of three groups of tests. The first group attempts 
to verify the circuit functionality at a single clock frequency. The goal of the second 
group is to determine the maximum clock frequency at which the circuit operates 
correctly. Finally, the purpose of the third group is to determine the limit on the 
maximum encryption and decryption throughput, taking into account the limitations of 
the PCI interface. 

Our first group of tests is based on the NIST recommendations provided in [2]. 
These recommendations describe the comprehensive suite of three functional tests for 
SHA-1. 

The second test is aimed at determining the maximum clock frequency of the hash 
function modules. Three megabytes of pseudorandomly generated data are sent to the 
board for hashing, the result is transferred back to the host and compared with the 
corresponding output obtained using software implementation of the given hash func-
tion based on the Crypto++ library [1]. This procedure is repeated 30 times using the 
same clock frequency to minimize the effect of input data values on the results of 
analysis. The next clock frequency is chosen based on the rules of the binary search, 
i.e., in the middle between two closest earlier identified frequencies giving different 
test results. The test is repeated until the difference between these two frequencies is 
smaller than the required accuracy of the measurement (< 0.1 MHz in our tests). The 
highest investigated clock frequency at which no single processing error is detected is 
considered the maximum clock frequency. In our experiments, this test was automati-
cally repeated 10 times with consistent results in all iterations.  

The third group of tests is an extension of the second group. After determining the 
maximum clock frequency, we measure multiple times and average the amount of time 
necessary to process 3 MB of data, taking into account the delay contribution of the 
32 bit/33 MHz PCI interface. 



6   Results 

In Fig. 10, the minimum clock periods of SHA-1 and SHA-512 obtained using static 
timing analysis and experiment are given. For clock periods determined through static 
timing analysis, the percentage of the critical path delay used by logic and routing 
respectively is shown. 

Based on the knowledge of the minimum clock period, the maximum data through-
put has been computed according to the equation: 

 
Throughput = Message_block_size / (Clock period *  Number_of_rounds)  
 
Throughput values calculated based on the minimum clock periods obtained using 

static  timing  analysis  and  experiment are shown in Fig. 11. In the same figure, these  
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Fig. 10. Minimum clock period of SHA-1 and SHA-512: a) obtained using static timing analy-
sis, b) determined experimentally 
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Fig. 11. Maximum throughputs of SHA-1 and SHA-512: a) obtained using static timing analy-
sis, b) calculated based on the experimentally measured maximum clock frequency, c) experi-

mentally measured, including the contributions of the PCI interface 
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Fig. 12. Percentage of the FPGA resources used by each implementation 
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Fig. 13. Comparison of throughputs for the basic iterative architectures of old and new stan-
dards in the area of hash functions and symmetric-key ciphers 
 
results are compared with the experimentally measured data throughputs that take into 
account the delay contributions of the PCI interface. This comparison demonstrates 
that the PCI interface provides a constant uninterrupted flow of data and has a negligi-
ble influence on the data throughput. 

Our results confirm our earlier predictions that the design of strong hash functions 
does not involve any major trade-off between security and performance. To the con-
trary, the most secure function, SHA-512, is also the fastest of four investigated hash 
functions. 

The percentage of the FPGA resources (CLB slices and Block RAMs) used by im-
plementations of SHA-1 and SHA-512, are shown in Fig. 12. The difference in the 
number of CLB slices is primarily caused by the difference in the size of input and 
output registers in the message digest units of both functions (512 bits vs. 160 bits), 
and the width of the multioperand adders in the critical path of these units (64 bits vs. 
32 bits). In SHA-512, two 4 kbit block RAMs are used to store 80 64-bit constants Kt. 



7   Possible Extensions 

The analysis of our results, reveals a potential for further optimizations. Since a large 
percentage of the critical path delay (48% in SHA-1 and 51% in SHA-512) is contrib-
uted by delays of interconnects, a substantial gain can be accomplished by manual 
floorplaning and routing. Since these optimizations are specific for a given type of the 
device, and are not easily transferable to another family of FPGA devices, they have 
not been attempted at this point.  

A further radical improvement of the circuit speed can be achieved by using an un-
rolled architecture of the message digest unit, in which m (m=2, 4, 5, or 8) digest 
rounds are implemented as combinational logic and executed in the same clock cycle. 
As a result, the total number of clock cycles necessary to compute a digest for a single 
message block is reduced by a factor of m, at the cost of a significantly smaller in-
crease in the delay of the critical path. The preliminary study of this extended architec-
ture for SHA-1 and m=5 indicates that the delay of logic in the critical path increases 
by a factor smaller than 2.5, leading to the overall increase in the circuit throughput by 
a factor of 2. This preliminary result needs to be verified, taking into account the de-
lays of interconnects, and will be reported in a future article together with results of a 
similar optimization of SHA-512. 

Another popular way of speeding up the hardware implementations of crypto-
graphic transformations is parallel processing, using either several independent execu-
tion units or pipelining. Even taking into account limitations imposed by the area of 
FPGA devices, pipelining was shown to permit speeding up the implementations of 
AES and other secret key ciphers by at least an order of magnitude [3, 9]. Taking into 
account the relatively smaller area required by the basic implementations of SHA-1 
and SHA-512, a potential speed-up is even greater in case of hash functions. 

Unfortunately, applying parallel processing to hash functions is limited by the fact 
that only input blocks belonging to different messages may be processed in parallel. In 
this respect, hashing is similar to encryption in the CBC (Cipher Block Chaining) 
mode and other feedback modes of secret-key block ciphers. The processing of the 
next message block cannot start before the processing of the previous block is fully 
completed.  Additionally, hash functions do not possess any non-feedback modes of 
operation, such as ECB (Electronic CodeBook) or counter mode. Therefore, pipelin-
ing, although possible, is limited by the availability of multiple independent messages 
that could be processed in parallel. This availability is application specific and may 
strongly depend on the characteristic of the network traffic, e.g., an average size of 
packets exchanged in the given communication protocol. 

8   Summary 

An FPGA implementation of the newly proposed draft hash standard SHA-512 has 
been developed and compared with the implementation of the old hash standard SHA-
1. An effort was made to use exactly the same technology and identical design and 
optimization techniques. Our implementations based on Xilinx XCV-1000-6 demon-



strate that SHA-512 is 33% faster than the equivalent implementation of SHA-1 ac-
cording to the static timing analysis, and 26% faster according to the experiment. At 
the same time, without taking into account an input/output interface, SHA-512 takes 
almost twice as many CLB slices as SHA-1, and requires two additional 4 kbit Block 
RAMs. These results have been verified experimentally using the PCI FPGA Board, 
SLAAC-1V, based on three Xilinx FPGA devices Virtex 1000. Our results prove that 
the design of a strong hash function does not necessarily involve a trade-off between 
the hardware speed and cryptographic security. At the same time, the more secure 
hash function may require substantially more hardware resources. 

Further optimizations of both implementations based on loop unrolling are possible 
and will be reported in a future article. Our research is a part of a larger effort aimed 
at implementing the newly proposed cryptographic algorithms of IPSec in the form of 
a giga-bit rate hardware accelerator  on a Xilinx FPGA-based PCI card [10]. 
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