
Comparative Analysis of the Hardware
Implementations of Hash Functions SHA-1 and SHA-512

Tim Grembowski1, Roar Lien1, Kris Gaj1, Nghi Nguyen1,
Peter Bellows2, Jaroslav Flidr2, Tom Lehman2, Brian Schott2

1Electrical and Computer Engineering, George Mason University, 4400 University Drive,
Fairfax, VA 22030

{ r l i en, kgaj , nnguyen1} @gmu. edu
2 University of Southern California - Information Sciences Institute

Arlington, VA 22203
{ pbel l ows, j f l i dr , t l ehman, bschot t } @east . i s i . edu

Abstract. Hash functions are among the most widespread cryptographic primi-
tives, and are currently used in multiple cryptographic schemes and security
protocols such as IPSec and SSL. In this paper, we compare and contrast hard-
ware implementations of the newly proposed draft hash standard SHA-512, and
the old standard, SHA-1. In our implementation based on Xilinx Virtex
FPGAs, the throughput of SHA-512 is equal to 670 Mbit/s, compared to 530
Mbit/s for SHA-1. Our analysis shows that the newly proposed hash standard is
not only orders of magnitude more secure, but also significantly faster than the
old standard. The basic iterative architectures of both hash functions are faster
than the basic iterative architectures of symmetric-key ciphers with equivalent
security.

1 Introduction

Hash functions are very common and important cryptographic primitives. Their pri-
mary application is their use together with public-key cryptosystems in the digital
signature schemes. They are also a basic building block of secret-key Message Au-
thentication Codes (MACs), including the American federal standard HMAC [8]. This
authentication scheme appears in two currently most widely deployed security proto-
cols, SSL and IPSec [12, 16]. Other popular applications of hash functions include
fast encryption, password storage and verification, computer virus detection, pseudo-
random number generation, and many others [13, 16].

Cryptographically strong, collision-free, hash functions are very difficult to design.
Tens of them have been proposed, and the majority of them have been broken. Only a
few hash functions have gained a wider acceptance, and even fewer have been stan-
dardized.

By far the most widely accepted hash function is SHA-1 (Secure Hash Algorithm-
1), a revised version of the American federal standard introduced in 1993 [4]. The
original version of this function, SHA, was developed by National Security Agency

(NSA), and revised in 1995 for increased security even before any weakness was
found in the open research.

SHA-1 was introduced as a federal standard about the same time as an 80-bit se-
cret-key encryption algorithm named Skipjack [5] and the Digital Signature Standard
(DSS) [6]. The security parameters of all these standards were chosen in such a way to
guarantee the similar level of security, in the range of 280 operations, as required by
the best currently known attack.

After introducing a new secret-key encryption standard, AES (Advanced Encryp-
tion Standard) [7], with three key sizes, 128, 192, and 256 bits, the security of SHA-1
does not any longer match the security guaranteed by the encryption standard. There-
fore, an effort was initiated by NSA to develop three new hash functions, with the
security matching the security of AES with 128, 192, and 256 bit key respectively.
This effort resulted in the publication of the draft Federal Information Processing
Standard, introducing three new hash functions referred to as SHA-256, SHA-384,
and SHA-512 [11].

The goal of the project described in this article was to implement the most complex
of these new hash functions, SHA-512, in reconfigurable hardware, and to compare its
implementation with the implementation of SHA-1, realized in the same technology.
Our comparative analysis sought, among the other, answers to the following questions:

• does the increased security of the SHA-512 hash function come at the cost of de-
creased speed, increased area, or decreased speed to area ratio of the hardware
implementations when compared to the SHA-1 hash function;

• how does the speed of the SHA-512 hash function compare to the speed of the
corresponding versions of the AES algorithm? Which transformation, encryption
or authentication, is faster in hardware? Which transformation requires less area?

Our investigation is a part of the larger project [10] aimed at implementing a hardware
accelerator for a new suite of cryptographic algorithms to be used in the IP security
protocol, IPSec. The target throughput of this accelerator is 1 Gbit/s for both encryp-
tion and authentication. Therefore we are also interested in studying the difficulty of
implementing SHA-1 and the newly proposed hash functions at the speed of 1 Gbit/s
using the current FPGA devices.

Although multiple commercial and academic implementations of SHA-1 have been
reported and validated by NIST [15], we are not aware of any hardware implementa-
tion of SHA-512, or its comparison with the implementation of SHA-1 implemented
in the same technology, using the same optimization techniques. This article is aimed
at filling this gap.

2 Functional Compar ison

In Table 1, four investigated hash functions are compared from the point of view of
functional characteristics. The security of these hash functions is determined by the
size of their outputs, referred to as hash values, n. The best known attack against these
functions, the “birthday attack” , can find a pair of messages having the same hash
value with a work factor of approximately 2n/2. This complexity means that in order to

accomplish equivalent security, hash functions need to have an output twice as long as
the size of a key of the corresponding secret-key cipher.

SHA-1 and SHA-256 have many features in common. They both can process mes-
sages with the maximum length up to 264-1 bits, have a message block size of 512 bits,
and have internal structure based on processing 32-bit words. SHA-384 and SHA-512
have even more similarities. They process messages with the maximum length up to
2128-1 bits, have a message block size of 1024 bits, and have internal structure based
on processing 64-bit words. On top of that, the definition of SHA-384 is almost iden-
tical to the definition of SHA-512, with the exception of a different choice of the ini-
tialization vector, and a truncation of the final 512-bit result to 384 bits.

All functions have a very similar internal structure, and process each message block
using multiple rounds. The number of rounds is the same for SHA-1, SHA-384, and
SHA-512, and 20% smaller in SHA-256. The critical path in each round involves
multioperand addition. SHA-1 requires two fewer operands per addition than in the
remaining three functions.

A notation k+1 used in the table, means that the number of operands to be added is
k in all but last round, and k+1 in the last round. Alternatively, a number of operands
may be equal to k in all rounds, and an additional simplified round may be introduced
for the remaining single addition.

Table 1. Functional characteristics of four investigated hash functions

 SHA-1 SHA-256 SHA-384 SHA-512

Size of hash value 160 256 384 512
Complexity of the

best attack
280 2128 2192 2256

Equivalently secure
secret-key cipher

Skipjack AES-128 AES-192 AES-256

M essage size < 264 < 264 < 2128 < 2128
M essage block size 512 512 1024 1024

Word size 32 32 64 64
Number of words 5 8 8 8
Number of digest

rounds
80 64 80 80

Number of oper-
ands added in the

cr itical path

5+1 7+1 7+1 7+1

Number of con-
stants K t

4 64 80 80

Round-dependent
operations

ft None None None

The number of different constants is equal to four in SHA-1, and is the same as the
number of rounds in all remaining functions. As a result, implementations of SHA-
256, SHA-384, and SHA-512 must include a look-up table of constants, Kt, where
t=0..number of rounds. SHA-1 is also the only function that contains an operation
dependent on the round number t; in all remaining hash functions all rounds perform
exactly the same operations.

The following conclusions can be derived from this functional comparison. Hard-
ware implementations of SHA-384 and SHA-512 have exactly the same performance,
so only one of them needs to be implemented for the purpose of comparative analysis.
Notice that the size of the message block is twice as large in SHA-512 as compared to
SHA-1, the number of rounds is the same, and the critical path is only slightly longer
in SHA-512. Because of this, SHA-512 (the strongest function) is likely to be signifi-
cantly faster than SHA-1 (the weakest function), which would be a very positive result
if true. The throughput of SHA-256 is likely to be in the same range as a throughput of
SHA-1, and smaller than the throughput of SHA-512. Taking into account these esti-
mations, we have decided to implement two of the investigated hash functions, SHA-1
and SHA-512, which lay on the opposite ends of the spectrum in terms of both secu-
rity and speed, with SHA-1 being the weakest and slowest, and SHA-512 being the
strongest and fastest of the four investigated hash functions.

3 Design Methodology

Our target FPGA device was the Xilinx Virtex XCV-1000-6. This device is composed
of 12,288 basic logic cells referred to as CLB (Configurable Logic Block) slices,
includes 32 4-kbit blocks of synchronous dual-ported RAM, and can achieve synchro-
nous system clock rates up to 200 MHz [17]. This device was chosen because of the
availability of a general purpose PCI board based on three FPGA devices of this type.
This board is described in detail in Section 5.

The design flow and tools used in our group for the implementation of crypto-
graphic modules in Xilinx FPGA devices are shown in Fig. 1. All algorithms were
first described in VHDL, and their description verified through the functional simula-
tion using Active HDL v. 5.1, from Aldec, Inc. Test vectors and intermediate results
from the reference software implementations based on the Crypto++ library [1] were
used for debugging and verification of VHDL codes. The revised VHDL code be-
came an input to the Xilinx integrated environment ISE 4.1i, performing the auto-
mated logic synthesis, mapping, placing, and routing. Tools included in this environ-
ment generated reports describing the area and speed of implementation, a netlist used
for timing simulation, and a bitstream used to configure an actual FPGA device. All
designs were fully verified through behavioral, post-synthesis, and timing simulations,
and experimentally tested using the procedure described in Section 5.

Functional simulation

Logic Synthesis,
Mapping,
Placing & Routing

Aldec, Active-HDL

Xilinx, ISE

Netlist with timing

Experimental Testing

Timing simulation

Bitstream

Xilinx, ISE
Aldec, Active-HDL

Code in VHDL

USC-ISI, SLAAC-1V

Functional simulation

Logic Synthesis,
Mapping,
Placing & Routing

Aldec, Active-HDL

Xilinx, ISE

Netlist with timing

Experimental Testing

Timing simulation

Bitstream

Xilinx, ISE
Aldec, Active-HDL

Code in VHDL Functional simulation

Logic Synthesis,
Mapping,
Placing & Routing

Aldec, Active-HDL

Xilinx, ISE

Netlist with timing

Experimental Testing

Timing simulation

Bitstream

Xilinx, ISE
Aldec, Active-HDL

Code in VHDL

USC-ISI, SLAAC-1V

Fig. 1. Design flow and tools used in the development of cryptographic modules

Message
Pre-

Processor
Message
Scheduler

Message Digest

Control
Logic

64 w w n

Mt Wt

Hash value

Fig. 2. General block diagram of SHA-1 and SHA-512. For SHA-1, w=32, n=160; for SHA-
512, w=64, n=512

4 Hardware Architectures

A general block diagram common for all four hash functions is shown in Fig. 2. Input
messages pass first through the preprocessing unit which performs padding and forms
message blocks of the fixed length, 512 or 1024 bits, depending on the hash function.
The preprocessing unit passes message blocks to the message scheduler unit. In our
architecture, message blocks are passed to the message scheduler unit a word at a
time, during the first 16 clock cycles used to process each message block. The mes-
sage digest unit performs the actual hashing. It uses one clock cycle per digest round.
In each round, the digest unit processes a new word Wt generated by the message
scheduler unit.

The internal structure of the message digests for SHA-1 and SHA-512 are shown in
Fig. 3ab. In both functions, input registers are initialized with the constant initializa-
tion vector, and are updated with the new value in each round. In SHA-1, four out of
five words (A, B, C, and D) remain almost unchanged by a single round. These words
are only shifted by one position down. The last word, E, undergoes a complicated
transformation equivalent to multioperand addition modulo 232, with five 32-bit oper-

A

B

D

C

E

ROTL5

ft

ROTL30

+ + ++

Kt Wt

A

B

D

C

E

32

32

32

32

32

+ + +

+

Kt Wt

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H+ + +

Σ0

Maj

Σ1

Ch

64

64

64

64

64

64

64

64

Fig. 3. Functional block diagram of the message digest unit of a) SHA-1, b) SHA-512

ands dependent on all input words, the round-dependent constant K t, and the message
dependent word Wt. The internal structure of the message digest of SHA-512 is simi-
lar. The primary differences are as follows: The number of words processed by each
round is 8, each word is 64 bits long, and the longest path is equivalent to addi-
tion of seven 64-bit operands modulo 264. These operands depend on seven out of
eight input words (all except D), the round-dependent constant Kt, and a message
dependent word Wt. Six out of eight input words remain unchanged by a single round.

Our implementations of the message digests are shown in Figs. 4ab. The critical
path in each circuit is marked with a thick line. Both circuits use the carry save repre-
sentation of numbers to speed-up the multioperand addition, and minimize delays
associated with carry propagation. The number of operands that need to be processed
in each round has been minimized by precomputing the sum Kt +Wt in the preceding
clock cycle.

At the same time, the need for an additional round at the end of processing has been
eliminated by introducing a conditional addition of the initial value of registers H0-Hm
(m=4 for SHA1, and m=7 for SHA-512) inside of each round. These initial values are
added only in the last round of the message digest computations; in all previous
rounds zero is added instead. After these two optimizations, the maximum number of
operands to be added in each round is 5 for SHA-1 and 7 for SHA-512.

The straightforward use of carry save adders in case of five operand addition would
lead to three levels of 3-to-2 carry save adders, followed by a carry propagate adder as
shown in Fig. 5a. Instead, we have decided to use a 5-to-3 parallel counter (see Fig.
5b) [14], which reduces the number of binary digits at each position in the sum of five
operands from 5 to 3, and has approximately the same delay as a 3-to-2 carry save
adder. The operation of the 5-to-3 parallel counter is shown in Fig. 5c, using the dot
notation. In this notation, each dot represents a binary digit, 0 or 1 [14]. The 5-to-3

A

B
R

D

C

E

A
R

F

P
C

C
S

A

C
P

A

H
0

H
1

H
2

H
3

H
4

Kt
+

Wt

C
P

A
C

P
A

C
P

A
C

P
A

‘0’

‘0’

‘0’

‘0’

‘0’

f t

R
O

T
L

5

R
O

T
L

3
0

H0

H1

H2

H3

H4

H
0

'
H

1
'

H
2

'
H

3
'

H
4

'

C
P

A
C

P
A

C
P

A
C

P
A

M
a

j

C
P

A

Kt
+

Wt

A

B

C

D

E

F

G

H

H
1

H
2

H
0

H
3

H
4

H
5

H
6

H
7

C
S

A

P
C

C
P

A

‘0’

‘0’

‘0’ C
P

A

‘0’

C
S

A

P
C

C
P

A

C
P

A
P

C

‘0’

‘0’

Σ 0
Σ 1

C
h

‘0’

‘0’

H0

H1

H2

H3

H4

H5

H6

H7

Fig. 4. Our implementations of the message digest units of a) SHA-1, b) SHA-512

w w w w w

w

CSA

CSA

CSA

CPA

y=a+b+c+d+e mod 2w

a b c d e
w w w w w

w

PC

CSA

CPA

y=a+b+c+d+e mod 2w

a b c d ea) b)

c)
.
.
.
.
.

2i+2 2i+1 2i 2i-1 2i-2

.

.

.

d)
0 1 0 1 0
1 1 0 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 1 1

2i+2 2i+1 2i 2i-1 2i-2

0 1 1 1 0
1 1 0 0 0
0 1 1 0 1

a
b
c
d
e

a
b
c
d
e

s2 s1 s0

s0
s1
s2

s0
s1
s2

w w w w w

w

CSA

CSA

CSA

CPA

y=a+b+c+d+e mod 2w

a b c d e
w w w w w

w

PC

CSA

CPA

y=a+b+c+d+e mod 2w

a b c d ea) b)

c)
.
.
.
.
.

2i+2 2i+1 2i 2i-1 2i-2

.

.

.

d)
0 1 0 1 0
1 1 0 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 1 1

2i+2 2i+1 2i 2i-1 2i-2

0 1 1 1 0
1 1 0 0 0
0 1 1 0 1

a
b
c
d
e

a
b
c
d
e

s2 s1 s0

s0
s1
s2

s0
s1
s2

Fig. 5. Using 5-to-3 Parallel Counter. a) adding five w-bit numbers using a tree of 3-to-2 carry-
save adders, b) adding five w-bit numbers using 5-to-3 parallel counter followed by a 3-to-2
carry save adder, c) operation of the 5-to-3 parallel counter in the dot notation, d) example of

the operation of the 5-to-3 parallel counter

S0

S1

S2

‘0’

e

LUT F

d
c

a

b

d
c

a

b
LUT G

Fig. 6. Using internal structure of a single CLB slice of the Xilinx Virtex FPGA device to
implement a bit-slice of a 5-to-3 Parallel Counter (PC)

parallel counter adds five binary digits with the same weight, 2i, and represents the
result using three binary digits with three subsequent weights, 2i, 2i+1, and 2i+2. An
example of the operation of this counter is shown in Fig. 5d. The speed-up comes
from the fact that the operation of the parallel counter can be realized in Virtex
FPGAs using resources of a single CLB slice as shown in Fig. 6.

In SHA-512, a cascade of two 5-to-3 parallel counters is used to reduce the number
of operands from seven to three (see Fig. 4b). As a result, the critical path is longer
than in SHA-1 only by two levels of CLB slices (one level for the parallel counter, and
one for the

�
1 operation).

Further optimization of the critical path in both circuits has been accomplished by
reducing the delays of interconnects. The primary optimization technique used for that
purpose was the reduction of the fan-out of control signals by using buffers, duplicat-
ing portions of control logic, and placing control logic close to the controlled parts of
the execution unit.

The block diagrams of the message scheduling units in SHA-1 and SHA-512 are
shown in Fig. 7. Both units generate 80 message dependent words, Wt, t=0..79. The
first 16 of these words, W0..W15, is simply the first 16 words of the input message
block, M0..M15; the remaining words are computed using a simple feedback function,
based on rotations, shifts, and XOR operations. The actual implementation of both
functions is given in Fig. 8. Our implementations have been optimized for minimum
area, using a shift register mode of CLB slices available in the Xilinx Virtex FPGA
devices. Using this mode, a cascade of several one-bit registers, each taking normally
a single CLB slice, can be reduced to a single CLB slice implementing the multi-stage
shift register with up to 16 stages.

5 Testing Procedure

The experimental testing of our cryptographic modules was performed using the
SLAAC-1V hardware accelerator board. The logical architecture of SLAAC-1V is
shown in Fig. 9. The three Virtex 1000 FPGAs (denoted as X0, X1, and X2) are the
primary processing elements.

About 20% of the resources in the X0 FPGA are devoted to the PCI interface and
the board control module. The remaining logic of this device, as well as the entire X1
and X2 FPGAs, can be used by the application developer. The board control module
implemented in X0 provides high-speed DMA (Direct Memory Access), data buffer-
ing, clock control (including single-stepping and frequency synthesis from 1 to 200
MHz), etc. The current 32 bit 33 MHz control module has obtained DMA transfer
rates of over 1 Gbit/s (125 MB/s) between X0 and the host memory, very near the PCI
theoretical maximum.

In all our experiments, the X1 FPGA was configured to contain cryptographic mod-
ules, while X0 and X2 were used only to facilitate the transfer of data between X1 and
the memory of the host computer running Linux.

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

X
O

R

R
O

T
L

1

Message word, Mt

Wt

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16
σ0 +

+

+

σ1

Message word, Mt

Wt

Fig. 7. Functional block diagrams of the message scheduler unit of a) SHA-1, b) SHA-512

R1

LUT
Shift

A

LUT
Shift

B

LUT
SHIFT

C

LUT
SHIFT

D

X
O

R

R
O

T
L1

CPA

Rkw

Kt + Wt

Kt+1 Wt+1

Message word, Mt

R2

R3

LUT
SHIFT

A

LUT
SHIFT

B

CPA

Rkw

σ0

R1

CPA

CSA

σ1

R15

R16

CSA

Message word, Mt

Kt + Wt

Kt+1 Wt+1

Fig. 8. Our implementations of the message scheduler unit of a) SHA-1, b) SHA-512

User programmed part

Standard interface
(PCI interface +
control module)

Xilinx FPGA devices SRAM

72-bit ring bus
(64 bit data
+ 8 bit control)

64/66 PCI

X0

X1 X2

�
IF

X0

72

72 72

72

X XX

60

72-bit shared bus

configuration
control device

User programmed part

Standard interface
(PCI interface +
control module)

Xilinx FPGA devices SRAM

72-bit ring bus
(64 bit data
+ 8 bit control)

64/66 PCI

X0

X1 X2

�
IF

X0

72

72 72

72

X XX

60

72-bit shared bus

configuration
control device

Fig. 9. SLAAC-1V Architecture

The test program written in used the SLAAC-1V APIs and the SLAAC-1V driver to
communicate with the board.

Our testing procedure is composed of three groups of tests. The first group attempts
to verify the circuit functionality at a single clock frequency. The goal of the second
group is to determine the maximum clock frequency at which the circuit operates
correctly. Finally, the purpose of the third group is to determine the limit on the
maximum encryption and decryption throughput, taking into account the limitations of
the PCI interface.

Our first group of tests is based on the NIST recommendations provided in [2].
These recommendations describe the comprehensive suite of three functional tests for
SHA-1.

The second test is aimed at determining the maximum clock frequency of the hash
function modules. Three megabytes of pseudorandomly generated data are sent to the
board for hashing, the result is transferred back to the host and compared with the
corresponding output obtained using software implementation of the given hash func-
tion based on the Crypto++ library [1]. This procedure is repeated 30 times using the
same clock frequency to minimize the effect of input data values on the results of
analysis. The next clock frequency is chosen based on the rules of the binary search,
i.e., in the middle between two closest earlier identified frequencies giving different
test results. The test is repeated until the difference between these two frequencies is
smaller than the required accuracy of the measurement (< 0.1 MHz in our tests). The
highest investigated clock frequency at which no single processing error is detected is
considered the maximum clock frequency. In our experiments, this test was automati-
cally repeated 10 times with consistent results in all iterations.

The third group of tests is an extension of the second group. After determining the
maximum clock frequency, we measure multiple times and average the amount of time
necessary to process 3 MB of data, taking into account the delay contribution of the
32 bit/33 MHz PCI interface.

6 Results

In Fig. 10, the minimum clock periods of SHA-1 and SHA-512 obtained using static
timing analysis and experiment are given. For clock periods determined through static
timing analysis, the percentage of the critical path delay used by logic and routing
respectively is shown.

Based on the knowledge of the minimum clock period, the maximum data through-
put has been computed according to the equation:

Throughput = Message_block_size / (Clock period * Number_of_rounds)

Throughput values calculated based on the minimum clock periods obtained using

static timing analysis and experiment are shown in Fig. 11. In the same figure, these

0

5

10

15

20

25

13.2

19.8

52%

48%
51%

49%

SHA-1 SHA-512

Minimum clock per iod [ns]

logic

routing

logic

routing

Static
timing analysis

Static
timing analysis

Exper iment Exper iment

11.5

18.0

0

5

10

15

20

25

13.2

19.8

52%

48%
51%

49%

SHA-1 SHA-512

Minimum clock per iod [ns]

logic

routing

logic

routing

Static
timing analysis

Static
timing analysis

Exper iment Exper iment

11.5

18.0

Fig. 10. Minimum clock period of SHA-1 and SHA-512: a) obtained using static timing analy-
sis, b) determined experimentally

0

100

200

300

400

500

600

700

800

462

530 530

616

676 670

Maximum Throughput [Mbit/s]

SHA-1 SHA-512

Based on
static timing
analysis

Based on max.
exper imental
frequency

Exper imentally
measured

a b c a b c

0

100

200

300

400

500

600

700

800

462

530 530

616

676 670

Maximum Throughput [Mbit/s]

SHA-1 SHA-512

Based on
static timing
analysis

Based on max.
exper imental
frequency

Exper imentally
measured

a b c a b c

Fig. 11. Maximum throughputs of SHA-1 and SHA-512: a) obtained using static timing analy-
sis, b) calculated based on the experimentally measured maximum clock frequency, c) experi-

mentally measured, including the contributions of the PCI interface

0
10
20
30
40
50
60
70
80
90
100

12%

18%

28%

Block RAMs

Percentage of FPGA Resources

CLB slices in I /O

CLB slices without I /O

SHA-1 SHA-512

23%
6%

0
10
20
30
40
50
60
70
80
90
100

12%

18%

28%

Block RAMs

Percentage of FPGA Resources

CLB slices in I /O

CLB slices without I /O

SHA-1 SHA-512

23%
6%

Fig. 12. Percentage of the FPGA resources used by each implementation

0

100

200

300

400

500

600

700

SHA-1 Skipjack 3DES SHA-512 AES-256

462

616

27
91

382

Throughput [Mbit/s]

0

100

200

300

400

500

600

700

SHA-1 Skipjack 3DES SHA-512 AES-256

462

616

27
91

382

Throughput [Mbit/s]

Fig. 13. Comparison of throughputs for the basic iterative architectures of old and new stan-
dards in the area of hash functions and symmetric-key ciphers

results are compared with the experimentally measured data throughputs that take into
account the delay contributions of the PCI interface. This comparison demonstrates
that the PCI interface provides a constant uninterrupted flow of data and has a negligi-
ble influence on the data throughput.

Our results confirm our earlier predictions that the design of strong hash functions
does not involve any major trade-off between security and performance. To the con-
trary, the most secure function, SHA-512, is also the fastest of four investigated hash
functions.

The percentage of the FPGA resources (CLB slices and Block RAMs) used by im-
plementations of SHA-1 and SHA-512, are shown in Fig. 12. The difference in the
number of CLB slices is primarily caused by the difference in the size of input and
output registers in the message digest units of both functions (512 bits vs. 160 bits),
and the width of the multioperand adders in the critical path of these units (64 bits vs.
32 bits). In SHA-512, two 4 kbit block RAMs are used to store 80 64-bit constants Kt.

7 Possible Extensions

The analysis of our results, reveals a potential for further optimizations. Since a large
percentage of the critical path delay (48% in SHA-1 and 51% in SHA-512) is contrib-
uted by delays of interconnects, a substantial gain can be accomplished by manual
floorplaning and routing. Since these optimizations are specific for a given type of the
device, and are not easily transferable to another family of FPGA devices, they have
not been attempted at this point.

A further radical improvement of the circuit speed can be achieved by using an un-
rolled architecture of the message digest unit, in which m (m=2, 4, 5, or 8) digest
rounds are implemented as combinational logic and executed in the same clock cycle.
As a result, the total number of clock cycles necessary to compute a digest for a single
message block is reduced by a factor of m, at the cost of a significantly smaller in-
crease in the delay of the critical path. The preliminary study of this extended architec-
ture for SHA-1 and m=5 indicates that the delay of logic in the critical path increases
by a factor smaller than 2.5, leading to the overall increase in the circuit throughput by
a factor of 2. This preliminary result needs to be verified, taking into account the de-
lays of interconnects, and will be reported in a future article together with results of a
similar optimization of SHA-512.

Another popular way of speeding up the hardware implementations of crypto-
graphic transformations is parallel processing, using either several independent execu-
tion units or pipelining. Even taking into account limitations imposed by the area of
FPGA devices, pipelining was shown to permit speeding up the implementations of
AES and other secret key ciphers by at least an order of magnitude [3, 9]. Taking into
account the relatively smaller area required by the basic implementations of SHA-1
and SHA-512, a potential speed-up is even greater in case of hash functions.

Unfortunately, applying parallel processing to hash functions is limited by the fact
that only input blocks belonging to different messages may be processed in parallel. In
this respect, hashing is similar to encryption in the CBC (Cipher Block Chaining)
mode and other feedback modes of secret-key block ciphers. The processing of the
next message block cannot start before the processing of the previous block is fully
completed. Additionally, hash functions do not possess any non-feedback modes of
operation, such as ECB (Electronic CodeBook) or counter mode. Therefore, pipelin-
ing, although possible, is limited by the availability of multiple independent messages
that could be processed in parallel. This availability is application specific and may
strongly depend on the characteristic of the network traffic, e.g., an average size of
packets exchanged in the given communication protocol.

8 Summary

An FPGA implementation of the newly proposed draft hash standard SHA-512 has
been developed and compared with the implementation of the old hash standard SHA-
1. An effort was made to use exactly the same technology and identical design and
optimization techniques. Our implementations based on Xilinx XCV-1000-6 demon-

strate that SHA-512 is 33% faster than the equivalent implementation of SHA-1 ac-
cording to the static timing analysis, and 26% faster according to the experiment. At
the same time, without taking into account an input/output interface, SHA-512 takes
almost twice as many CLB slices as SHA-1, and requires two additional 4 kbit Block
RAMs. These results have been verified experimentally using the PCI FPGA Board,
SLAAC-1V, based on three Xilinx FPGA devices Virtex 1000. Our results prove that
the design of a strong hash function does not necessarily involve a trade-off between
the hardware speed and cryptographic security. At the same time, the more secure
hash function may require substantially more hardware resources.

Further optimizations of both implementations based on loop unrolling are possible
and will be reported in a future article. Our research is a part of a larger effort aimed
at implementing the newly proposed cryptographic algorithms of IPSec in the form of
a giga-bit rate hardware accelerator on a Xilinx FPGA-based PCI card [10].

References

1. Crypto++, free C++ class library of cryptographic schemes, available at
http://www.eskimo.com/~weidai/cryptlib.html.

2. Digital Signature Standard Validation System (DSSVS) User’s Guide available at
 http://csrc.nist.gov/cryptval/shs.html
3. Elbirt, A. J., Yip, W., Chetwynd, B., Paar, C.: An FPGA implementation and Performance

Evaluation of the AES Block Cipher Candidate Algorithm Finalists. Proc. 3rd Advanced En-
cryption Standard (AES) Candidate Conference, New York, April 13-14, 2000.

4. http://www.itl.nist.gov/fipspubs/fip180-1.htm
5. FIPS 185, Escrowed Encryption Standard (EES), February 1994.
6. FIPS 186-2, Digital Signature Standard (DSS), February 2000, available at
 http://csrc.nist.gov/encryption/tkdigsigs.html
7. NIST, FIPS Publication 197, Specification for the Advanced Encryption Standard (AES),

November 26, 2001, available at http://csrc.nist.gov/encryption/aes/.
8. FIPS 198, HMAC - Keyed-Hash Message Authentication Code, available at
 http://csrc.nist.gov/encryption/tkmac.html
9. Gaj, K., and Chodowiec, P.: Fast Implementation and Fair Comparison of the Final Candi-

dates for Advanced Encryption Standard Using Field Programmable Gate Arrays, Proc.
RSA Security Conference - Cryptographer's Track, April 2001.

10. GRIP (Gigabit Rate IP Security) project page, available at
 http://www.east.isi.edu/projects/GRIP/
11. NIST Cryptographic Toolkit, Secure Hashing, available at
 http://csrc.nist.gov/encryption/tkhash.html
12. IP Security Protocol (ipsec) Charter - Latest RFCs and Internet Drafts for IPSec,

http://ietf.org/html.charters/ipsec-charter.html
13. Menezes, A. J., van Oorschot P. C., and Vanstone S. A.: Handbook of Applied Cryptogra-

phy, CRC Press, Inc., Boca Raton, 1996.
14. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Design, Oxford University

Press, 2000.
15. SHS Validation List, available at http://csrc.nist.gov/cryptval/shs/shaval.htm.
16. Stallings, W.: Cryptography and Network Security, 1999 Prentice-Hall, Inc., Upper Saddle

River, New Jersey. 2nd Edition.
17. Xilinx, Inc.: Virtex 2.5 V Field Programmable Gate Arrays, available at www.xilinx.com.

