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Abstract. The common perception of public key cryptography is that
it is complex, slow and power hungry, and as such not at all suitable for
use in ultra-low power environments like wireless sensor networks. It is
therefore common practice to emulate the asymmetry of traditional pub-
lic key based cryptographic services through a set of protocols [1] using
symmetric key based message authentication codes (MACs). Although
the low computational complexity of MACs is advantageous, the proto-
col layer requires time synchronization between devices on the network
and a significant amount of overhead for communication and temporary
storage. The requirement for a general purpose CPU to implement these
protocols as well as their complexity makes them prone to vulnerabilities
and practically eliminates all the advantages of using symmetric key tech-
niques in the first place. In this paper we challenge the basic assumptions
about public key cryptography in sensor networks which are based on a
traditional software based approach. We propose a custom hardware as-
sisted approach for which we claim that it makes public key cryptography
feasible in such environments, provided we use the right selection of algo-
rithms and associated parameters, careful optimization, and low-power
design techniques. In order to validate our claim we present proof of con-
cept implementations of two different algorithms—Rabin’s Scheme and
NtruEncrypt—and analyze their architecture and performance accord-
ing to various established metrics like power consumption, area, delay,
throughput, level of security and energy per bit. Our implementation of
NtruEncrypt in ASIC standard cell logic uses no more than 3, 000 gates
with an average power consumption of less than 20 µW. We envision that
our public key core would be embedded into a light-weight sensor node
architecture.

1 Introduction

Wireless distributed sensor networks (DSN) are expected to be used in a wide
range of applications, from monitoring wildlife and collecting microclimate data
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[2–4] to a number of military applications like target tracking [5] and detection
of biological or chemical weapons. The current generation of wireless sensor
nodes is still relying on batteries as its source of power. The limited lifetime
of batteries, however, significantly impedes the usefulness of such devices since
maintenance accesses would become necessary whenever the battery is depleted.
Furthermore, the intention of having large amounts of tiny nodes scattered over a
large area would render maintenance impractical. Next generation sensor nodes
will therefore combine ultra-low power circuitry with so-called power scavengers,
which allow for maintenance-free operation of the nodes. This opens up a whole
new range of applications where the nodes can be placed in inaccessible locations.

Power scavengers are devices able to harvest small amounts of energy from
ambient sources such as light, heat or vibration. This energy is stored in a
capacitor and can be used to power the sensor node either continuously, for
small amounts of power, or in intervals if the demand is higher. At least 8µW
of power can be generated using MEMS-based power scavengers, as reported in
[6]. Other larger systems are able to generate much more power [7], but these
are typically not integrated on-chip with the actual sensor node. It is expected
that future MEMS-based scavengers will be able to deliver power up to 20µW
continuously.

Due to the sensitive nature of many of the anticipated applications of DSN,
a certain minimum level of secure communication between sensor nodes and
base station is required. This includes data confidentiality and integrity. Both
can be provided through encryption of the data. One of the biggest problems
in using secret key algorithms—apart from their size and scalability issues—is
the protection of the sensitive key material. Sensor nodes might be deployed
in an untrusted environment, e.g. for military applications. The capture of a
single node by an adversary should not jeopardize the integrity of the entire
network. In a setting where the sensor nodes send encrypted data to a base
station a public key scheme is of great advantage as here each node contains only
public key material not private. Previously proposed security protocols such as
SNEP and µTESLA [1] provide secure authentication using only symmetric key
techniques. In order to provide authentication to insecure nodes µTESLA has
to emulate asymmetry through a delayed disclosure of symmetric keys. While
Carman et al. acknowledge in [8] that symmetric key techniques are attractive
due to their energy efficiency, they also conclude that all symmetric key based
key exchange protocols analyzed by them exhibit limitations in their flexibility.
The emulation of an asymmetric cryptographic primitive requires that each node
is time synchronized with the base station and has key management functions
and ample storage. As the symmetric keys are revealed sequentially over time,
nodes might have to store multiple messages before they can be authenticated.
This broadcast authentication scheme also implies that the keys shared among
all nodes need to be updated in regular intervals, requiring broadcasts from the
base station to all nodes. As in many settings the base station can not directly
communicate with all nodes, these keys need to be forwarded from node to node.
This protocol overhead leads to increased energy consumption of the nodes as



keys and key management messages need to be transmitted frequently. Complex
key management and high storage requirements for multiple keys and messages
put a considerable burden on the power consumption of the nodes. The use of
public key cryptography would eliminate the need for complicated protocols and
at the same time would also increase the security of the entire system, since only
the public key of the base station would have to be embedded into the nodes.

The challenge is to overcome the considerable computational complexity of
standard public key encryption algorithms and make public key encryption pos-
sible in self powered sensor nodes. Traditional schemes like RSA or ElGamal
require considerable amounts of resources which in the past limited their use
to large-scale platforms like networked servers and personal computers. Mobile
equipment with less computational resources, such as cell phones, Personal Dig-
ital Assistants (PDAs) and pagers, therefore uses much more efficient elliptic
curve based algorithms such as EC-DH and EC-DSA which execute consid-
erably faster while preserving the same level of security [9]. The operands of
EC-cryptosystems are much shorter than those in traditional schemes. Unfortu-
nately the improved computational efficiency of ECC comes at the price of much
more complex arithmetic primitives and a large number of temporary operands,
whereas RSA or ElGamal require only one single arithmetic primitive and few
operands. The heterogenous structure and larger storage requirements of ECC
make it less scalable and in effect less attractive for energy efficient low-power
implementations.

In this paper we compare two architectures that implement two different
types of public key crypto-systems with promising characteristics. The first one,
Rabin’s Scheme [10], is a specialization of the well known RSA algorithm [11]
where the exponent is fixed to the value 2. As with RSA, the security of Ra-
bin’s scheme relies on the hard problem of factoring large integers. The second
algorithm, NtruEncrypt [12], was introduced in 1996 by Hoffstein, Pipher and
Silverman. NtruEncrypt is a public key cryptosystem where security is based on
the hardness of the Shortest Vector Problem (SVP) in a very high dimension lat-
tice. It still uses relatively large operands, but it reduces the overall asymptotic
complexity of the encryption operation to O(n2) compared to RSA’s O(n3). In
both cases we concentrate on the encryption operation only. The decryption of
the sensor data would be performed by the more powerful base station. We ana-
lyze the performance of these architectures by means of various established met-
rics in the field of computer organization, like power consumption, area, delay,
throughput and latency. We also include some that are not as commonly encoun-
tered, such as level of security and energy per bit encrypted. We demonstrate
that ultra-low power implementations of public key cryptography are feasible.
Our interest, however, is mainly focused on the computational aspects of the
underlying arithmetic primitives and as such we refrain from deeper discussion
of protocol issues and the cryptographic services that need to be provided by
these systems.

The remainder of the paper is structured as follows. After a brief description
of the cryptosystems in Section 2, and an introduction into low-power design



techniques 3, we will focus on their application for implementing the algorithms
in Section 4. In Section 5 a brief definition of the metrics of interest is followed
by an extensive comparative analysis of our two architectures. The final section
concludes our findings and points out directions for future work.

2 Preliminaries

Rabins’s Scheme and NtruEncrypt are two very different public key algorithms.
In this section we first describe the selection of the algorithm specific parameters
to make them comparable. Then we give a brief overview of their function.

2.1 Parameter Selection

In order to better compare these two algorithms of disparate properties and pa-
rameter sets, we chose system parameters of both algorithms to offer a closely
matching level of security. For definition of this level we refer to the widely rec-
ognized definition of equivalent security by Lenstra and Verheul [13]. Amongst
others they cover RSA as the principal example for cryptosystems where security
is based on the Integer Factorization Problem, which is also the basis for Ra-
bin’s Scheme. Their analysis, however, does not include a definition of equivalent
security for a lattice based scheme like NtruEncrypt. For our purposes we there-
fore refer to the analysis of Hoffstein, Silverman and Whyte [14], who present
a similar evaluation of NtruEncrypt’s security level, also in terms of equivalent
security.

While in practice certain classes of applications might require a higher level
of security than others, we regard our designs simply as a proof of concept and
hence chose to implement them at a comparatively low level of security. It should,
however, be relatively straightforward to estimate the cost of higher security level
implementations based on the analysis that we give at the end of this paper.
For Rabin’s Scheme we selected an operand size of 512 bits, which according
to Lenstra and Verheul [13] provides a security level of around 60 bits. In the
case of NtruEncrypt we chose the system parameters as (N, p, q) = (167, 3, 128),
based on findings in [14], offering a security level of 57 bits.

2.2 Rabin’s Scheme

Rabin’s Scheme was introduced in 1979 in [10]. It is based on the factorization
problem of large numbers and is therefore similar to the security of RSA with the
same sized modulus. Rabin’s Scheme has asymmetric computational cost. The
encryption operation is extremely fast, however decryption times are comparable
to RSA of the same modulus. This asymmetry makes Rabin’s Scheme especially
interesting for our application. Here is a brief description of the Rabin’s Scheme.
For a more detailed description and the mathematical proofs see [10][15].



Key Generation

1. Choose two large random strong prime numbers.
2. Compute n = p · q.
3. Pick a random number b for which 0 ≤ b < n.
4. The public key is (n, b), the private key is (p, q).

Encryption

1. Represent the message as an integer x for which 0 ≤ x < n
2. Compute the ciphertext En,b(x) ≡ x(x + b) mod n, as defined in [10]

Only the public key n, b is required for encryption. If we fix b to 0 then En,b(x) be-
comes a simple squaring operation En(x) = x2 mod n. Rabin’s Scheme requires
only one squaring, whereas RSA requires several squarings and multiplications
for encryption. Therefore encryption with Rabin’s Scheme is several hundreds of
times faster than RSA [11].

Decryption involves finding the four square roots x1, x2, x3, and x4 of c =
En(x) ≡ x2 mod n. Certain simplifications are possible if p ≡ q ≡ 3 mod 4.
We would like to point the interested reader to [15] for a complete description
of these algorithms. A hardware implementation of the decryption function is
certainly feasible but beyond the scope of this paper.

2.3 The NtruEncrypt Public Key Cryptosystem

NtruEncrypt is a relatively new cryptosystem that claims to be highly efficient
and particularly suitable for embedded applications such as smart cards or RFID
tags, while providing a level of security comparable to that of other established
schemes, in particular RSA. While it has not yet received the same level of
scrutiny for establishing its resistance to cryptanalysis, there is evidence for
efficiency in the simplicity of its underlying arithmetic. In this section we briefly
describe the basic setup of NtruEncrypt and its operations. For more in-depth
descriptions of the mathematical properties of NtruEncrypt we refer to [12, 16].

NtruEncrypt is based on arithmetic in a polynomial ring R = Z(x)/((xN −
1), q) set up by the parameter set (N, p, q) with the following properties:

– All elements of the ring are polynomials of degree at most N − 1, where N
is prime.

– Polynomial coefficients are reduced either mod p or mod q, where p and q
are relatively prime integers or polynomials.

– p is considerably smaller than q, which lies between N/2 and N .
– All polynomials are univariate over the variable x.

Multiplication in the ring R is sometimes referred to as ”Star Multiplication”
based on use of an asterisk ~ as the operator symbol. It can be best described



as the discrete convolution product of two vectors, where the coefficients of the
polynomials form vectors in the following way:

a(x) = a0 + a1x + a2x
2 + . . . + aN−1x

N−1

= (a0, a1, a2, . . . , aN−1)

Then the coefficients ck of c(x) = a(x) ~ b(x) mod q, p are each computed as
the summation of partial products aibj with i + j ≡ k mod N . The modulus for
reduction of each coefficient ck of the resulting polynomial is either q for Key
Generation and Encryption, or p for Decryption, as briefly described below. A
thorough description of these procedures along with an initial security analysis
can be found in [12].

Key Generation The following steps generate the private key f(x):

1. Choose a random polynomial F (x) from the ring R. F (x) should have small
coefficients, i.e. either binary from the set {0, 1} (if p = 2) or ternary from
{−1, 0, 1} (if p = 3 or p = x + 2 [16, 17]).

2. Let f(x) = 1 + pF (x) 1.

The public key h(x) is derived from f(x) in the following way:

1. As before, choose a random polynomial g(x) from R.
2. Compute the inverse f−1(x) (mod q).
3. Compute the public key as h(x) = g(x) ~ f−1(x) (mod q).

Encryption

1. Encode the plaintext message into a polynomial m(x) with coefficients from
either {0, 1} or {−1, 0, 1}.

2. Choose a random polynomial φ(x) from R as above.
3. Compute the ciphertext polynomial c(x) = pφ(x) ~ h(x) + m(x) (mod q).

Decryption

1. Use the private key f(x) to compute the message polynomial m′(x) = c(x)~
f(x) (mod p).

2. Map the coefficients of the message polynomial to plaintext bits.

3 Low-Power Design

This section provides a brief introduction to Low-Power Design. The power dis-
sipation in CMOS devices can be summarized by the following equation [18]:

P =
(

1
2
· C · V 2

dd + Qsc · Vdd

)
· f ·N

︸ ︷︷ ︸
Pdyn

+ Ileak · Vdd︸ ︷︷ ︸
Pleak

(1)

1 It is not strictly necessary to construct f(x) in this way, but it is recommended in
order to decrease the decryption failure rate. It is important, however, that f(x) be
invertible (modp) and (modq).



The term Pdyn represents the dynamic power dissipated during circuit ac-
tivity. Circuit capacitance C, short-circuit charge Qsc and supply voltage Vdd

are technology dependent parameters [18] outside of our influence. The switch-
ing activity N and operating frequency f , however, can be influenced, and thus
minimized, by architectural decisions. The second term Pleak represents the static
power dissipation due to the leakage current Ileak. The leakage current is directly
determined by the number of gates and the process technology. For more infor-
mation about low-power design see [19]. Since we are using a standard cell based
design flow, transistor level circuit optimizations are outside of the scope of this
paper. In order to minimize the power consumption, we optimized our gate level
design according to the following rules:

– The number of transitions (‘0’ to ‘1’ and ‘1’ to ‘0’) has to be minimal.
– The circuit size should be minimized.
– Glitches cause unnecessary transitions and therefore should be avoided.

Our work is focused on the architectural aspects of low-power design, not
on any specific VLSI techniques. Our architectures are implemented using a
common CMOS standard cell design flow: circuit specification in structural
VHDL, functional RT level simulation (ModelSim), synthesis (DesignCompiler
Ultra, TSMC 0.13µm standard cell library), power optimization using anno-
tated switching activity and delay information (DesignCompiler, PowerCompiler
and ModelSim), and power analysis (PrimePower, back-annotated wire capaci-
tances).

The TSMC library we use is fully characterized for timing and power con-
sumption and includes several different wireload models for worst case estimation
of interconnect capacitances. We would like to stress at this point that, although
we use a low-voltage library, it is not in any way optimized for low-power designs.

4 Implementation

In order to provide a common ground for both implementations we had to make
certain assumptions about the application scenario, which we state in the follow-
ing paragraphs. Subsequently we describe the specifics of both implementations.

4.1 Assumptions

Sensor networks typically consist of a number of tiny nodes communicating with
a base station [1]. The base station collects the data from the sensors and com-
municates with the outside world. The sensor nodes have only limited power
and can therefore only communicate directly with nodes in close vicinity. They
establish a routing tree with the base station at its root. The base station is
assumed to have sufficient power for all computations and communications with
the nodes and the outside world. Based on this setting we made the following
assumptions:



– As stated in the introduction, we only consider the encryption operation of
both systems. The purpose of this paper is to show that public key cryptog-
raphy is computationally feasible in this environment.

– Depending on the exact application scenario it might be possible to fix the
public key to a constant value. This is extremely beneficial for ultra-low
power implementation, since the key can be embedded statically and does
not require costly storage elements. In our implementations the public key
is either hardwired or realized as a look-up table in combinational logic.

– Power consumption and energy efficiency are two different things. Depending
on the actual application scenario one might want to trade off the two metrics
differently over one another.

4.2 Rabin’s Scheme

We have shown in Section 2.2 that the basic function for encryption in Rabin’s
Scheme is a simple squaring operation En(x) = x2 mod n, if we set b = 0.
Squarers are a special form of multiplier. While any multiplier can be used
to compute the square of a number, special-purpose squarers usually require
significantly less hardware and are faster [20] by exploiting the symmetry of the
squaring operation.

Squarers can be implemented in many ways. As our main concern is to con-
serve power we chose a bit-serial approach. The main advantage of a bit-serial
design is that it minimizes the number of gates and reduces wire lengths—all
factors that are of concern with regards to the circuit’s power consumption. The
bit-serial approach is ideal for modular reduction. Using the most significant bit
(MSB) first method, modular reduction can be performed elegantly after each
partial product addition. The generation of the partial product sequence, how-
ever, requires an extra 512-bit register. This is very expensive in terms of area
and leakage power as each flip-flop is the equivalent of 6 gates. Therefore, we
implemented the squarer as a bit serial modular multiplier where multiplicand
and multiplier are hard-wired to the same input. All 512 bits of input are avail-
able in parallel at the same time. As a multiplier does not take advantage of the
symmetry in squaring we expect it to consume more switching power. However,
due to its smaller footprint the leakage power is also greatly reduced. At the
low clock frequencies commonly encountered in sensor nodes, the influence of
leakage power is the dominant part. An additional advantage of this approach is
that this unit can easily be converted to a full multiplier for an implementation
of RSA or a similar algorithm.

Figure 2 shows the architecture of our squarer. It is a standard bit serial mul-
tiplier design comprised of a Left Shift Register, a Bit Multiplier, a Left Shift unit,
and the main units Adder and Sum Register. In order to perform modular multi-
plication we added two multiplexers which toggle the input of the adder between
the next partial product and the 2’s complement of the modulus n (reduction).
The control logic determines whether a reduction operation is necessary after an
addition. Since we are using the same adder for both functions, the number of
clock cycles needed for one squaring is data dependent and at most 1024.



The most complex part of the squarer is the Adder. There are two basic adder
designs that are suitable for a low power implementation, namely carry-save adder
and ripple-carry adder. A ripple-carry adder uses fewer gates and hence consumes
the least amount of leakage power, but as the worst case carry chain is the
longest, this adder also has the longest delay. The propagation of carries causes
glitches which in turn cause a very high dynamic power consumption. A carry-
save adder on the other hand propagates carries only by one position, hence there
are no glitches, resulting in insignificant amounts of delay and dynamic power
consumption. Its disadvantage is that the result is kept in redundant carry-save
representation which requires 512 additional flip-flops. This in turn causes a
higher consumption of leakage power. Since partial products and complements
of the modulus can be accumulated in redundant form, the final non-redundant
result needs to be computed only at the very end of the multiplication which
takes 512 additional clock cycles.

Neither of both approaches seems optimal for this implementation, so we
tried to strike a balance between power and speed. For our adder we are using a
ripple-carry adder and insert a carry-save bit on every 8th bit position. Hence the
carries ripple for a maximum of 8 bits causing some glitching but significantly
less than a full ripple-carry adder would. The dynamic power consumption is
therefore much lower than for a full ripple-carry adder. This adder also needs
only 64 additional flip-flops to store the carry bits, which is 448 flip-flops less
than necessary for a full carry-save adder. This approach, however, introduces
a new difficulty. After adding a partial product to the sum, the result has to
be shifted. This would misalign the saved carry bits 2. Hence, carry bits need
to be re-aligned before shifting the sum. This is done by adding the carry bits
to the sum in the appropriate position and saving the carry bits at the new
position. The cost for this is a 512 bit multiplexer, 512 additional clock cycles
and a slightly more complex control logic.

The Control logic is comprised of two state machines and one counter. The
counter is implemented as a Linear Feedback Shift Register (LFSR) and “counts”
up to 512. LFSRs have reduced switching activity and are faster than regular
counters, hence reducing the effects on the critical path delay. Furthermore it is
clock gated and can be reset. The counter is used to count all the multiplication
steps and also to count the worst case number of steps necessary to ripple all
64 carry-save flip-flops. The main state machine of this control logic keeps track
of the overall operation of the circuit. The second state machine takes care of
arithmetic operations of the circuit. Furthermore it is responsible for the clock
gating of the counter and the left shift register (see Figure 2).

4.3 NtruEncrypt

The basis for our ultra-low power NtruEncrypt architecture is the multiplication
operation in the ring R, a cyclic convolution of two polynomials of the same

2 This problem does not occur when a full carry-save adder is being used as there is
one carry bit associated with every bit position



degree N . Considering a scenario, in which a sensor node encrypts a message and
sends it to the base station, allows us to make the following observations which
are helpful in creating an ultra-low power architecture. Similar observations can
also be made for the case of decryption, but these are omitted here due to space
restrictions.

– As mentioned at the beginning of this section, the public key of the node
h(x) is constant and embedded in the device. Since p is also constant, we
can store a pre-scaled version of the public key h′(x) = ph(x) mod q. Thus
we only need to compute c(x) = φ(x) ~ h′(x) + m(x) mod q.

– Coefficients of the public key h(x) are computed modulo q and therefore
occupy the larger of two wordsizes, while those of the random polynomial
φ(x) are reduced modulo p. For our choice of p = 3 each coefficients of φ(x)
is encoded as two bits. Since the public key is constant and realized as a
look-up table, only 2N bits of storage are required as opposed to Ndlog2 qe.

– We assume that we have a good source of random bits available for generation
of the random polynomial φ(x). In this paper we focus on the computational
aspects of NtruEncrypt only, and therefore random number generation falls
outside of the scope of this paper. For information on a compact implemen-
tation of an RNG based on digital artefacts requiring only a few hundred
gates we refer to [21].

The algorithm consists of two nested loops: The outer loop iterates over all N
coefficients of the result. The inner loop computes the coefficient by accumulat-
ing products of the form aibj , with index i increasing and j decreasing modN .
The three major building blocks comprising the data path of the circuit—public
key LUT, arithmetic units and circular buffer—are illustrated in Figure 3. The
public key look-up table is realized in combinational logic that lends itself to
optimization through the synthesis tool. The circular buffer consists of 2N bits
of storage elements containing the coefficients of the random polynomial φ(x).
Data enters the buffer through a multiplexer which connects the two ends of
the buffer and forms a ring. Both, public key LUT and circular buffer, feed into
the arithmetic units (AUs) which multiply and accumulate the operands. The
smallest version of the circuit implements only a single AU. Yet, the architec-
ture allows the implementor to scale up the number k of parallel AUs relatively
easily, with minimal impact on the other elements of the design. Section 5.4 elab-
orates further on NtruEncrypt’s inherent scalability. An AU consists of a partial
product generator, a carry-save adder and a register. For any long operand a
and short operand b the partial product generator will compute ab mod q. By
choosing p = 3 and q = 128 the modular reduction of the intermediate result
c =

∑
aibj mod q comes essentially for free through simple truncation of bits at

positions ≥ log2 q = 7.
The control logic is designed to be as simple as possible in order to avoid being

the bottleneck in terms of power consumption. The two nested counters needed
for keeping track of coefficients in the inner and outer loop of the algorithm are
implemented as Linear Feedback Shift Registers (LFSR) for reduced switching



activity. Furthermore, clock gating is used extensively whenever possible, to
avoid any unnecessary switching activity and reduce parasitic wire capacitance.

In the case of only a single AU each round of computation takes N + 8
clock cycles to complete, with one coefficient per round. The eight additional
clock cycles are necessary for addition of the message coefficient and propagation
of carries in the carry-save adder. The total number of clock cycles for a full
polynomial multiplication of N coefficients therefore takes 29, 225 clock cycles
(N = 167). If k AUs are computing coefficients in parallel, the rounds overlap
partially and the number of clock cycles amounts to (N +8)(dN/ke)+k−1. For
a high degree of parallelization k the number of clock cycles can thus be reduced
dramatically, i.e. to only 433 cycles for k = 84.

5 Analysis

In this section we analyze the proposed architectures according to various metrics
of interest to ultra low-power applications such as sensor nodes. Since both
architectures and algorithms are distinctly different from each other a direct
comparison is difficult. We alleviate this situation by fixing system parameters
to values that match security levels of both systems as closely as possible, as
mentioned in Section 2.1.

5.1 Definition of Metrics

Chip Area The number of equivalent gates (2-input NAND gate) used by the
circuit. This metric is independent of the process technology, and correlates
well with the actual area of the physical layout.

Power Consumption This is the total power consumption of the circuit, cate-
gorized into static and dynamic power. This metric is highly dependent on
the process technology. In this context, however, both architectures use the
same target library so that differences in power consumption are a direct
consequence of differences in the architecture.

Throughput Specifies the number of plaintext bits that are encrypted per second.
This metric is independent of any message expansion properties of a given
system.

Energy per Bit Encrypted Amount of energy necessary to encrypt a single bit
of the message. This metric can be used to compare the energy efficiency of
cryptosystems with a roughly equivalent level of security. It is independent
of the actual operand length.

Scalability refers to the possibility of scaling an algorithm between bit serial
and highly parallelized realizations in an efficient manner. A closely related
concept is modularity, which is an indicator of how easily simple processing
elements can be replicated for a higher degree of parallelization of a task in
performance critical settings.



5.2 Rabin’s Scheme

The main concern driving our low-power implementation of Rabin’s Scheme is
its storage requirement. Many well known techniques for optimizing a modular
squarer require either more circuitry or more storage elements. At our targeted
clock frequency of 500 kHz the static power consumption is dominant and there-
fore has to be minimized. Hence, we built a squarer as a bit-serial multiplier,
operating on the entire width of the 512 bit multiplicand and on a single bit of
the multiplier at a time. In order to conserve area we use the same adder for
accumulating the partial products, modulo reducing the results, and re-aligning
the carry bits before each shift. This approach consumes a chip area of less than
17, 000 gates with its accompanying static power consumption of 117.5µW . The
dynamic power consumption at 500 kHz is 30.68µW resulting in a total average
power consumption of 148.18µW (Table 1). It increases linearly with the operat-
ing frequency as shown in Figure 1. A breakdown of the power consumption by
functional blocks reveals that the adder consumes 40% of the power and all stor-
age elements combined consume 38%. The power consumption of the complex
control logic for this circuit is negligible at 2%.

5.3 NtruEncrypt

The hardware friendly arithmetic underlying the NTRU system lends itself very
well to highly scalable and low-power implementations, since the computation
of each individual coefficient is independent from one another. At the same time
we can reorder the computation in a way that facilitates parallel computation of
multiple coefficients. This can be achieved by simply replicating arithmetic units
and slightly adjusting the control logic. The circular buffer allows parallel access
to multiple coefficients in sequential order as illustrated in Figure 3, Section 4,
thereby avoiding memory access bottlenecks.

A breakdown of the power consumption by functional blocks reveals that
the most significant contribution is made by the circular buffer (77%), while an
arithmetic unit contributes the least amount (6%). The cost for an implemen-
tation with only a single arithmetic unit is therefore relatively high compared
to a more parallelized variant. The small cost of adding arithmetic units, on the
other hand, allows for a high degree of parallelization. This level of scalability
is advantageous when it comes to achieving optimal energy efficiency. In the
following analysis we therefore also consider performance estimates for a highly
parallelized (k = 84) variant of our NtruEncrypt architecture, based on data
obtained from simulation of the digit serial implementation (k = 1).

Our smallest implementation of NtruEncrypt with a single arithmetic unit
takes up a chip area of less than 3000 equivalent gates, including the circular
buffer and the combinational look-up table of the public key. Gate level power
simulation indicates an average power consumption of less than 20µW at a clock
frequency of 500kHz, close to the amount of static leakage power (see Table 1).
As before with Rabin’s Scheme we see dynamic power consumption beginning
to dominate at faster clock speeds as it increases linearly with the frequency
(Fig. 1). This is in agreement with our expectation from (1).
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5.4 Comparison

Table 1 shows a direct comparison between Rabin’s Scheme and both variants of
NtruEncrypt in the metrics defined above. The architectures of Rabin’s Scheme
and the simple variant of NtruEncrypt were both intended to achieve the least
possible power consumption given the available standard cell library, without
necessarily reaching optimal energy efficiency. The results are summarized in
the first two columns. After an initial analysis of the architectural differences
we decided to include estimates for a highly parallelized variant of NtruEncrypt
in the third column of the comparison. The degree of parallelization k = 84
was chosen in a way that the area footprint roughly matches that of Rabin’s
Scheme, and secondly that dN/ke−N/k is as small as possible. This is to divide
the number of coefficients N in a way that utilization of the AUs is high during
the last round of computation.

Rabin’s Scheme takes up almost six times the area of simple NtruEncrypt
with a single AU. On the other hand it also has the advantage of performing
almost forty times better. This is to be expected due to its large operands and
full-word arithmetic. If, however, the absolute area and power requirements are
the limiting factor, it might not be flexible enough. Also, our estimates for the
parallelized variant of NtruEncrypt indicate that it outperforms Rabin’s Scheme
by nearly factor two using the same area footprint. From the figures in Table 1
it is evident that static leakage power is the main culprit for the relatively high
energy consumption of both implementations. We would like to stress the fact
that leakage power is highly technology dependent and that the ASIC stan-
dard cell library we use is not optimized for low power design. The dynamic
power consumption of an architecture, on the other hand, is proportional to its
switching activity. It therefore makes sense to differentiate between these two



Table 1. Summary of comparison between Rabin’s Scheme and NtruEncrypt

Rabin Ntru (k = 1) Ntru (k = 84)

Equivalent security 60 bits 57 bits 57 bits

Area [eqv. gates] 16,726 2,850 16,200
- combinational 8,875 523 7,000
- storage elements 7,851 2,327 9,200

Delay (avg. # cycles) 1,440 29,225 433

Avg. power @ 500kHz 148.18 µW 19.13 µW 118.7 µW
- static (%) 117.5 µW (79.3%) 15.10 µW (78.9%) 103.06 µW (86.8%)
- dynamic (%) 30.68 µW (20.7%) 4.03 µW (21.1%) 15.64 µW (13.2%)
- peak power 169.8 µW 20.22 µW n/a

Energy 426.76 nJ 1,118.15 nJ 102.79 nJ
- per bit encrypted 833.5 pJ (512 bits) 4,235.41 pJ (264 bits) 389.4 pJ (264 bits)

Throughput 177.8 kbits/s 4.52 kbits/s 304.85 kbits/s

influences if we want to compare the relative merits of one architecture over the
other, independently of the process technology. It turns out that dynamic power
consumption in Rabin’s Scheme is nearly twice as high as in NtruEncrypt’s case,
despite the same area and the fact that leakage power differs by only 12%.

The throughput that either architecture can achieve at a given clock fre-
quency depends on the number of clock cycles for an encryption and the number
of plaintext bits per block. In Rabin’s Scheme the plaintext is up to 512 bits
long. At a clock frequency of 500 kHz and an average of 1440 cycles per oper-
ation this translates into a maximum theoretical throughput of 177.8 kbits/s.
Since NtruEncrypt uses N ternary coefficients we can determine its throughput
in terms of kbits/s by first converting the capacity of the message polynomial
m(x) into bits. N = 167 ternary coefficients can hold information equivalent to
bN log2 3c = 264 bits. The entire encryption operation takes 29225 clock cycles
for NtruEncrypt with a single AU, and 443 cycles with 84 AUs. Operating at
the same clock frequency, the simple variant compares unfavorably to Rabin’s
Scheme at only 4.52 kbits/s throughput, almost 40 times less. The estimates for
the highly parallelized variant, however, indicate a performance level of 304.85
kbits/s, nearly twice the throughput of Rabin’s Scheme.

For any cryptographic scheme there is a multitude of possible design choices
by which power consumption can be traded off against performance and vice
versa. Ultimately, however, we would like to know the amount of energy that
is necessary for an elementary encryption operation, i.e. the cost of encrypting
a bit of data at a certain level of security. The amount of energy for the entire
operation is the product of average power consumption and the time it takes to
complete that operation. Considering the amount of plaintext data that can be
encrypted in one operation, we determine the amount of energy per bit encrypted
as

Ebit =
Pavg · ncycles

fclock · lop



where lop is the operand length in bits, i.e. 512 for Rabin’s Scheme and 264 for
NtruEncrypt. As we have discussed earlier, Rabin’s Scheme uses more power
than NtruEncrypt with a single AU, but it also takes much fewer clock cycles to
complete. We can make a similar observation by looking at the energy per bit
metric. The amount of energy necessary to encrypt a single bit with NtruEn-
crypt is about five times higher than with Rabin’s Scheme. The picture changes
yet again when we consider NtruEncrypt’s parallelized variant. Our estimates
suggest that the amount of energy per bit drops by nearly factor 11 and is thus
less than half the amount of Rabin’s Scheme.

To put our results into perspective, we compare them to estimates reported in
[8] that were obtained from simulation of various public key algorithms on exist-
ing general purpose processor architectures. An implementation of the emerging
scheme XTR on the ARC3 processor suggests an energy consumption of around
130 µJ at a security level that is comparable to RSA-1024 or 72 bits of equivalent
security. Despite the difference in security levels, this is still between factor 100
and 1000 more energy than what our architectures require, proving the strength
of customized application specific architectures.

6 Conclusions

We have demonstrated in this paper that it is possible to design public key
encryption architectures with power consumption of less than 20µW using the
right selection of algorithms and associated parameters, optimization and low-
power techniques. In spite of the common perception of public key cryptography,
it is possible to achieve a level of power consumption low enough to allow its
use even in self-powered sensor nodes. Our implementation is based on a regular
ASIC standard cell library that is not specifically optimized for low-power. It is
thus possible to achieve even better results than ours, although that is not the
point we are trying to make here. The use of public key schemes facilitates much
simpler security protocols than those currently in use with the sensor network
community, and has a potential impact on a much wider range of applications.
RFIDs and contactless smart cards are further examples of ubiquitous computing
applications requiring energy efficient cryptographic functions. So far public key
cryptography has not even been considered for these devices due to its perceived
complexity.

Our findings show further that a traditional modular arithmetic based scheme,
such as Rabin’s, does have a significant disadvantage compared to new and
emerging schemes represented here by NtruEncrypt. The use of arithmetic in
a polynomial ring allows for a very compact, yet scalable implementation in
hardware. Additionally, NtruEncrypt’s decryption operation—although not fur-
ther considered in this paper—is based on the same arithmetic operation. This
opens up the possibility for realization of two way key exchange protocols, while
this is more difficult with Rabin’s Scheme, due to its asymmetric properties of
encryption and decryption.



Further research into energy efficient cryptographic primitives is necessary,
but our findings give us the confidence that public key cryptography in ubiqui-
tous computing applications is possible and that it can be done efficiently using
customized hardware architectures.
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