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ABSTRACT
LowMC is a parameterizable block cipher developed for use in
Multi-Party Computation (MPC) and Fully Homomorphic Encryp-
tion (FHE). In these applications, linear operations are much less
expensive in terms of resource utilization compared to the non-
linear operations due to their low multiplicative complexity. In this
work, we implemented two versions of LowMC – unrolled and
lightweight. Both implementations are realized using RTL VHDL.
To the best of our knowledge, we report the first lightweight im-
plementation of LowMC and the first implementation protected
against side-channel analysis (SCA). For the SCA protection, we
used a hybrid 2/3 shares Threshold Implementation (TI) approach,
and for the evaluation, the Test Vector Leakage Assessment (TVLA)
method, also known as the T-test. Our unprotected implementa-
tions show information leakage at 10K traces, and after protection,
they could successfully pass the T-test for 1 million traces. The
Xilinx Vivado is used for the synthesis, implementation, functional
verification, timing analysis, and programming of the FPGA. The
target FPGA family is Artix-7, selected due to its widespread use in
multiple applications. Based on our results, the numbers of LUTs
are 867 and 3,328 for the lightweight and the unrolled architecture
with unrolling factor 𝑈 = 16, respectively. It takes 14.21 𝜇s for the
lightweight architecture and 1.29 𝜇s for the unrolled design with𝑈
= 16 to generate one 128-bit block of the ciphertext. The fully un-
rolled architecture beats the best previous implementation by Kales
et al. in terms of the number of LUTs by a factor of 4.5. However,
this advantage comes at the cost of having 2.9 higher latency.
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1 INTRODUCTION
Quantum computers could potentially become a serious threat to
modern public-key cryptography. Therefore, in recent years, multi-
ple novel public-key algorithms have been proposed to counter this
threat. In particular, a recently developed digital signature scheme
called Picnic has gained substantial interest due to its security char-
acteristics. This scheme has been recently selected as an alternate
Round 3 candidate in the NIST post-Quantum Cryptography stan-
dardization process. It has been mentioned in the proposed report
by NIST [18] that this block cipher has not been studied as much
as other block ciphers like AES. This statement highlights the im-
portance of the security evaluation of this block cipher. Picnic is
a public-key algorithm based on the underlying secret-key block
cipher. The LowMC encryption is used to establish a secure rela-
tionship between the private and public keys. A single block 𝑢 is
encrypted using the key 𝑥 . Then, the public verification key and the
private signing key are generated based on the obtained ciphertext.

LowMC is a good candidate for such a cipher due to its low
multiplicative complexity, which translates to a small number of
AND gates required to implement this cipher. For instance, for the
security level of 128 bits, LowMC requires 861 AND gates for full
security [13]. For comparison, Simon requires 4352 [3], Fantomas
2112 [11], and Kreyvium 1537 AND gates [5]. Moreover, there exists
a trade-off between the number of Sboxes and the number of rounds,
andwhile one is decreased, another onemust be increased. By doing
so, one can choose whether the design’s complexity comes from
non-linear or linear operations.

Apart from the classical and quantum computing attacks, cryp-
tographic cores are vulnerable to side-channel attacks. For instance,
Differential Power Analysis (DPA) [14] is a serious threat to the
hardware implementations of cryptographic cores. In DPA, the at-
tacker analyzes the power consumption of the targeted device and
non-invasively extracts cryptographic keys and other secret infor-
mation. The DPA countermeasure used in this paper is a Threshold
Implementation (TI), which is based on secret sharing and multi-
party computation (MPC).

This paper is organized as follows: the previous work is dis-
cussed in the next section. The LowMC algorithm is described in
Section 3. In Section 4, two unprotected architectures are intro-
duced and analyzed. In Section 5, the SCA countermeasures and the
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protected implementations are presented. In Section 6, the leakage
assessment results are discussed. As depicted in this section, the
protected implementations are substantially better in terms of their
information leakage. Power and energy estimation are provided
in the section 7, and finally, the conclusions are made in the last
section of the paper.

2 PREVIOUS WORK
2.1 Hardware Implementations of LowMC
To the best of our knowledge, two hardware implementations of the
LowMC block cipher have been reported to date [13]. One of these
implementations follows the cipher’s specification directly. The
second is based on the optimization introduced by Dinur et al. [9].
This optimization reduces the time complexity and the required
memory for the linear-layers from 𝑟 ·𝑛2 to 𝑟 ·𝑛2 − (𝑟 − 1) · (𝑛 − 𝑠)2,
where 𝑟 is the number of rounds, 𝑛 is a plaintext block size, and 𝑠 is
the number of bits processed by Sboxes. Both implementations have
targeted Xilinx Kintex-7 and Artix-7 FPGAs. Two security levels, L1
and L5, have been supported, and the results for the unoptimized
and optimized implementations have been compared with each
other.

2.2 Power Analysis Attack Countermeasures
Over the years, many countermeasure techniques have been pro-
posed to prevent power analysis attacks. As an example, the "hiding"
method is about making the power consumption of a device inde-
pendent of the intermediate values by either adding noise to the
signal [15] or designing a circuit that consumes the same amount of
power all the time [24]. This approach makes the attack harder, but
an adversary can still break the implementation with a sufficient
number of traces. Another class of countermeasures is "masking."
This method uses random variables called masks to reduce the cor-
relation between the secret key and the obtained leakage. Masking
may still leak some information in the presence of glitches [16], [17].

In 2006, Nikova et al. proposed a new countermeasure known as
Threshold Implementation (TI) [20]. TI is based on secret-sharing
and is secure even in the presence of glitches. There have been a lot
work targeting efficient implementation of TI, e.g., in PRESENT [21],
AES [4], and Simon [23]. Diehl et al. applied TI to multiple authenti-
cated ciphers and comprehensively compared their protection cost
in [6] and [7]. Recently, Jati et al. performed a detailed analysis and
design exploration using different TI techniques for GIFT [12].

3 LOWMC ALGORITHM
3.1 Introduction
LowMC is a block cipher first introduced in 2015 by Albrecht et al.
This block cipher is a good candidate for Multi-Party Computation
(MPC) and Fully Homomorphic Encryption (FHE), where non-linear
operations impose a higher penalty compared to linear operations.
An MPC protocol allows 𝑁 players to jointly compute a function
over inputs provided by every players. Each input is kept private
and thus unknown to other players. Still, all players are guaranteed
to generate the same output.

When used in such applications, LowMC offers low complexity
of non-linear operations and flexible design parameters. Since the

operations are defined over GF(2), specific metrics apply. First, Mul-
tiplicative Complexity (MC) is defined as the minimum number of
multiplications (2-input AND gates) that are necessary and suffi-
cient to implement a function using AND, XOR, and NOT gates.
The proof of knowledge is a method in which a prover tries to
convince a verifier that it knows a secret value without revealing
this value itself. Since in this method the prover and the verifier
interact, the proof can be lengthy. The number of AND gates in
the underlying block cipher has a direct effect on the proof size.
To minimize the non-linear complexity of the circuit, LowMC uses
many linear (XOR) operations over GF(2). This is the reason why
these linear layers are called dense layers. The non-linear part only
affects a small part of the state. Hence, the number of algorithm’s
rounds must be increased to increase the block cipher’s security.
From security perspective, the most difficult computations to mask
are the non-linear parts of the algorithm which are Sboxes in the
LowMC block cipher. Since this block cipher has a partial non-linear
operation, it requires a lower amount of randomness for protection,
which makes it of great interest for applications that require SCA
resistance [2, 10].

As mentioned before, LowMC has multiple parameters that the
designer can change to achieve the desired effect.

3.2 LowMC Parameters
LowMC provides multiple security levels depending on the selected
parameters. The algorithm’s parameters are (1) the block size in bits,
𝑛, (2) the number of rounds, 𝑟 , and (3) the number of bits affected
by a non-linear operation, 𝑠 .

Table 1: Parameters of the LowMC Block Cipher

Security Level Block Size (𝑛) # of Sboxes (𝑚) Key Size (𝑘) # of Rounds (𝑟 )
L1 128 10 128 20
L3 192 10 192 30
L5 256 10 256 38

Algorithm 1 Pseudocode of LowMC Encryption
1: 𝑘0 ← 𝐾0 · 𝑘
2: 𝑠0 ← 𝑝 + 𝑘0
3: for 𝑖 = 1 to 𝑟 do
4: 𝑠𝑖 ← 𝑆 (𝑠 (0)

𝑖−1) | | 𝑠
(1)
𝑖−1

5: 𝑠𝑖 ← 𝐿𝑖 · 𝑠𝑖
6: 𝑘𝑖 ← 𝐾𝑖 · 𝑘
7: 𝑠𝑖 ← 𝑠𝑖 + 𝑘𝑖
8: 𝑠𝑖 ← 𝑠𝑖 +𝐶𝑖
9: end for
10: 𝑐 ← 𝑠𝑟

The algorithm provides three different levels of security, L1, L3,
and L5. As shown in Table 1, each security level has its own param-
eters. For instance, for security level 1, the sizes of the plaintext and
Master Key are equal to 128 bits, the number of Sboxes is 10, and
the number of rounds is 20. Since all the operations are over GF(2),
addition is replaced by a bitwise XOR operation, and multiplication
is replaced by a bitwise AND operation.

Based on the pseudocode provided in Algorithm 1 and the nota-
tions described in Table 2, the steps are as follows:
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Table 2: Notation Used in the Algorithms 1 and 2

Symbol Description
𝑝 Plaintext
𝑘 Master Key
𝑘𝑖 Round Key
𝑠𝑖 Intermediate State
𝑟 Number of Rounds
𝑠
(0)
𝑖

𝑠 = 3𝑚 Least Significant Bits of the State
𝑠
(1)
𝑖

𝑛 − 𝑠 Most Significant Bits of the State
𝑆 () Substitution Box (Sbox) Operation
𝐾𝑖 Round-Key Matrix for Round 𝑖
𝐿𝑖 Linear-Layer Matrix for Round 𝑖
𝐶𝑖 Constant for Round 𝑖
| | Concatenation Operation
· Matrix-Vector Multiplication
+ XOR Operation
𝑐 Ciphertext

• Key Whitening 𝑝 + 𝑘0: The first RoundKey 𝑘0 is XORed
with the Plaintext 𝑝 .
• Sbox operation 𝑆 (𝑠 (0)

𝑖−1)||𝑠
(1)
𝑖−1: The substitution operation is

applied to 𝑠 = 3𝑚 least significant bits (LSBs) of the state.
Hence, for the security level L1, this step modifies 30 least sig-
nificant bits of the intermediate state, and 98most-significant
bits remain unchanged.
• Linear Operation 𝐿𝑖 · 𝑠𝑖 : The linear-layer matrix for the
round 𝑖 is multiplied by the state 𝑠𝑖 .
• Constant Addition 𝐶𝑖 : This step combined with the previ-
ous step forms the Affine layer. A value of each constant is
specific to each round.
• Addition of the next round key 𝑘𝑖 : The next round key
is added to the intermediate state. To generate 𝑘𝑖 , the round
key matrix 𝐾𝑖 is multiplied by the Master Key 𝑘 .

The entire process is repeated until the last round of the algorithm
is completed. The number of rounds for the security levels L1, L3,
and L5 is 20, 30, and 38, respectively. For the security level L1, there
are 20 linear-layer matrices 𝐿𝑖 , each having the dimensions of 128
by 128 bits. Since there is one extra key whitening step, there are
21 round key matrices 𝐾𝑖 , and each of them has 128 rows and 128
bits in each row. Finally, there are 20 constants for each round of
the algorithm, and the bit width of each constant is 128-bits. The
round-key matrix 𝐾𝑖 and linear-layer matrix 𝐿𝑖 were selected in-
dependently and uniformly at random from all invertible matrices.
The round constants 𝐶𝑖 were selected at random as well. How-
ever, at this point, these values are fixed and treated as constants.
They can be found, for example, in the reference implementation
of Picnic. The choice of randomly generated invertible matrices
maximizes the amount of diffusion achieved by the linear layers. It
must be mentioned that it would be possible to use any sufficiently
random source to generate the matrices and constants. However,
no malicious sources should have an effect on these constants.
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Figure 1: Top-level block diagram of the lightweight imple-
mentation. All bus widths are 128 bits, unless specified oth-
erwise.

4 UNPROTECTED IMPLEMENTATIONS
4.1 Methodology
In this work, we have developed full hardware implementations
using Register-Transfer Level (RTL) methodology. Since one of
our targets is a lightweight implementation, the RTL methodol-
ogy gives designers maximum flexibility and efficiency during the
development time.

Each design is divided into the Datapath and Controller, and
then encoded in VHDL. Taking into account a large number of
constants used by LowMC, block memories (BRAMs) are employed.
Functional verification, synthesis, and implementation steps are
done using Xilinx Vivado. Our target FPGA family is Artix-7, which
has the lowest power and cost among the Xilinx 7 Series FPGAs.
The selected device is Artix-7 xc7a100tftg256-3. It has 63,400 LUTs,
126,800 flip flops, 15,850 slices, and 135 36-kbit BRAMs.

4.2 Lightweight Architecture
The lightweight architecture of LowMC is shown in Figure 1. The
round keymatrices𝐾𝑖 , linear-layer matrices 𝐿𝑖 , and round constants
𝐶𝑖 are stored in twomemories called KLC-ROM and KL-ROM. These
memories have 𝑛-bit words and the number of locations occupied
in these memories are given by (𝑟 +1) ·𝑛 for 𝐾𝑖 , 𝑟 ·𝑛 for 𝐿𝑖 , and 𝑟 for
𝐶𝑖 . The actual size of these memories are the smallest power of two
greater than or equal to the number of memory locations used. For
example, for the security level L1, the dimension of each 𝐾𝑖 matrix
is 128 by 128. Since we have 21 𝐾𝑖 matrices for the entire algorithm,
the number of rows for the round-key matrices is 21 × 128 = 2688.
Additionally, the number of rows for the linear-layer matrices is
20 × 128 = 2560, and the number of rows required for the round
constants is 20. We stored 𝐾0 to 𝐾15, all the round constants 𝐶𝑖 ,
and 𝐿1 to 𝐿15 in the first memory called KLC-ROM, and 𝐾16 to 𝐾20
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and 𝐿16 to 𝐿20 in the second memory called KL-ROM. By using this
memory structure, the number of unused locations in the memories,
and as a result, the number of BRAMs is minimized. Since the first
memory has 32 × 128 rows, it has a 12-bit address bus. The second
memory has a 11-bit address bus since the number of occupied
rows in the second memory is 10×128 = 1280 < 211. For increasing
the processing speed of the implementation, we used dual-port
BRAMs. As a result, each 128-row matrix is divided into two 64-
row parts processed in parallel. In Artix-7, one 36-kbit BRAM can
be configured to implement 8k x 4 bits ROM. The 4𝑘 × 128 bits
KL-ROM requires 16 BRAMs and 2𝑘 × 128 bits KLC-ROM requires
8 BRAMs. As a result, the total numbers of required BRAMs is at
most 24. Taking into account the synthesis tool’s optimizations, the
final number of BRAMs appeared to be 22.

The symbol of an AND gate represents 128 AND gates working
in parallel. They execute concurrently 128 multiplications in GF(2).
These multiplications are used to calculate the bitwise product of
the Key and a row of the Matrix 𝐾𝑖 , and the bitwise product of the
State and a row of the matrix 𝐿𝑖 . The Parity function calculates
the parity of the obtained product, which is a 128-bit vector. The
parity is one if an odd number of bits in a vector is equal to 1. This
function is equivalent to a 128-input XOR. In Artix-7, the 128-bit
Parity function can be implemented using three levels of 6-input
LUTs. After level 1, the number of intermediate values is equal to
⌈128/6⌉ = 22. After level 2, it becomes ⌈22/6⌉ = 4. The final 4-bit
XOR requires just 1 LUT. Thus, the total number of LUTs required
is 22 + 4 + 1 = 27. One-bit outputs of Parity functions are inputs
to two 1-to-64-bit Serial-In Parallel-Out (SIPO) units. Each 64-bit
vector represents one half of a matrix by vector product. The final
128-bit value is formed using the concatenation operation.

The middle part of the circuit is responsible for the operations
such as 𝑠𝑖 ← 𝑆 (𝑠 (0)

𝑖−1)||𝑠
(1)
𝑖−1, 𝑠𝑖 ← 𝐿𝑖 ·𝑠𝑖 , 𝑠𝑖 ← 𝑠𝑖 +𝑘𝑖 , and 𝑠𝑖 ← 𝑠𝑖 +𝐶𝑖 .

Sboxes form the non-linear part of the algorithm and they only
apply to 3 ·𝑚 bits of the intermediate state. This number is equal
to 30 for all security levels summarized in Table 1.

The K port is an input for the Master Key, and the Pt port is used
to enter Plaintext. The encryption starts when an external circuit
activates the input Go. When the encryption of one 128-bit block
of data is completed, the Ciphertext block is released at the output
Ct, and the Ready signal becomes equal to one.

We used Xilinx Vivado for timing analysis of our design, and
based on its report, the critical path of our design starts at the
outputs of the synchronous-read KLC-ROM and ends at the input
of each Serial-In Parallel-Out (SIPO) unit. This path includes two
main components – a two-input AND gate and the Parity unit.
Since we use a dual-port memory in this architecture, we have two
copies of this path present in Figure 1.

4.3 Unrolled Architecture
One of the main drawbacks of the lightweight architecture is its
large cycle count. As shown in Table 3, it takesmore than 2,600 clock
cycles to encrypt a single plaintext block. This number of clock
cycles has been reduced substantially in the unrolled architecture
shown in Figure 2.

This design can be generalized by unrolling logic𝑈 times, where
𝑈 = 2, 4, 8, and 16. By using the notation 𝑢 = log2𝑈 , each memory
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Figure 2: Generalized top-level block diagram of the un-
rolled implementation. All bus widths are 128 bits, unless
specified otherwise.

has ≤ 213−𝑢 words and the address width becomes 13 − 𝑢 bits. For
𝑈 = 16 (𝑢 = 4), each memory has 213−4 = 29 words→ 4× (1𝑘 × 32)
= 4 BRAMs. Thus, total number of BRAMs is equal to 16×4 BRAMs
= 64 BRAMs. Based on the value of 𝑢, the bus width after SIPOs is
26−𝑢 , and after the concatenation operation, it is 27−𝑢 .

The main idea is to perform computations simultaneously on
2 ·𝑈 rows of matrices 𝐾𝑖 and 𝐿𝑖 . In order to do that, the memories
storing 𝐾𝑖 and 𝐿𝑖 have been divided into 𝑈 equal parts. Each part
contains 128/𝑈 consecutive rows of the mentioned above matrices.
Thus, the size of each ROM becomes 213/2𝑢 = 213−𝑢 words. Each
ROM is a dual-port ROM, and thus, two rows with indices 𝑗 and
𝑗+64/𝑈 can be accessed simultaneously.We use 20 unused locations
in ROM(0) to store the round constants 𝐶𝑖 . Therefore, the leftmost
memory is denoted in Figure 2 as KLC-ROM(0), and all remaining
ones as KL-ROM( 𝑗 ), with 𝑗=1..𝑈 − 1.

In Artix-7 FPGAs, each 36-kbit BRAM, when configured as a dual-
port ROM, has the maximum word width of 36 bits. The number of
required BRAMs is a function of 𝑈 . As shown in Table 3, it varies
between 22 and 32 for 𝑈 between 1 and 8. Then, it doubles with
each subsequent doubling the value of 𝑈 .

Algorithm 2 Unrolled LowMC Pseudocode
1: 𝑘0 ← 𝐾0 · 𝑘
2: 𝑠0 ← 𝑆 ((𝑝 + 𝑘0) (0) ) | | (𝑝 + 𝑘0) (1)
3: for 𝑖 = 1 to 𝑟 − 1 do
4: 𝑠𝑖 ← (𝐿𝑖 · 𝑠𝑖−1) +𝐶𝑖
5: 𝑘𝑖 ← 𝐾𝑖 · 𝑘
6: 𝑠𝑖 ← 𝑆 ((𝑠𝑖 + 𝑘𝑖 ) (0) ) | | (𝑠𝑖 + 𝑘𝑖 ) (1)
7: end for
8: 𝑠𝑟 ← (𝐿𝑟 · 𝑠𝑟−1) +𝐶𝑟
9: 𝑘𝑟 ← 𝐾𝑟 · 𝑘
10: 𝑐 ← 𝑠𝑟 + 𝑘𝑟
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The middle part of the circuit has also been slightly changed
compared to the lightweight architecture to reduce the number of
clock cycles by 2 · 𝑟 . This reduction is accomplished by performing
a) the round key addition and the Sbox operation in the same clock
cycle, b) 𝑠𝑖 ← (𝐿𝑖 · 𝑠𝑖−1) +𝐶𝑖 in a single clock cycle, when 𝐿𝑖 · 𝑠𝑖−1 is
already available at the outputs of the circuit SIPOs. The modified
pseudocode, reflecting this change is shown above as Algorithm 2.

Further decreasing the number of clock cycles would require
doubling the number of BRAMs, which would make them highly
underutilized. Instead, matrices 𝐾𝑖 and 𝐿𝑖 , as well as constants
𝐶𝑖 , could be stored in distributed memory located in LUTs. How-
ever, doing that would dramatically increase the number of LUTs
required by the implementation. A similar approach, with some
additional optimizations is reported in [13].

4.4 Analysis of Results
In Table 3, we summarize the results for the lightweight and un-
rolled architectures for different values of the unrolling factor 𝑈 ,
implemented using Artix-7 FPGAs. The provided ratios are over
the lightweight implementation (𝑈 = 1). The unrolled architecture
with 𝑈 = 16 has over 11 times smaller cycle count at the cost of
increasing the number of LUTs by a factor of 3.84, slices by a factor
of 2.89, and BRAMs by a factor of 2.91. The number of flip-flops
remains almost the same, and the maximum clock frequency goes
down by 7%. As a result, the throughput increases by a factor of
11.05.

In Table 4, we compare results for our fastest unrolled archi-
tecture with the results for the optimized high-speed architecture
reported in [13]. Since only the results for Kintex-7 are reported
in [13], we regenerated our results targeting the same device of the
same family. At the cost of allowing the use of 64 vs. 0 BRAMs, our
architecture uses 4.5 times less LUTs, and 2.4 times fewer slices. The
maximum clock frequency almost doubles. However, the through-
put and latency are worse by a factor of approximately 2.92. Thus,
our fully unrolled architecture is particularly suitable for applica-
tions with medium speed requirements, in which LowMC shares
resources with functions using a bigger percentage of the FPGA
slices than FPGA BRAMs.

In [13], LowMC is used as an One-Way Function (OWF) within
the post-quantum cryptography (PQC) digital signature scheme
Picnic. Considering that three instances of LowMC are required to
implement Picnic, it is quite important to reduce and balance the
number of required FPGA resources. We believe that our unrolled
architecture with unrolling factor 𝑈 = 16 accomplishes this goal,
while still maintaining very high speed.

At the same time, a lightweight implementation of Picnic can be
based on our lightweight implementation of LowMC, which is the
first such an implementation reported in the literature to date.

5 THRESHOLD IMPLEMENTATIONS
5.1 TI Protection Methodology
Threshold Implementation (TI) is an algorithmic countermeasure
against power analysis side-channel attacks. This method is based
on the secret-sharing and Multi-Party Computation (MPC) con-
cepts. The attacker cannot steal secret information by looking at
any individual shares. In traditional Boolean masking, the protected

implementations are vulnerable when the circuit is not glitch-free.
This is because in the CMOS technology, the power changes dur-
ing switching activities arising from glitches in the circuit. These
transitions are relatively large compared to the normal activity of
the circuit. As a result, they make the circuit susceptible to attacks.
Three properties of a secure threshold implementation are:
• Non-completeness: Every function is independent of at
least one share of each of the input variables.
• Correctness: The sum of the output shares gives the desired
output.
• Uniformity: The output distribution preserves the input
distribution.

A non-linear function of algebraic degree 2, such as a 2-input AND
gate, can be shared using three TI shares since 𝑑 + 1 shares are re-
quired to share a function of the degree 𝑑 . However, achieving the
TI uniformity property is not trivial. In this paper, we achieve this
property by supplying fresh random bits (e.g., “resharing” or “re-
masking” randomness, used in [19]), coming from a Pseudorandom
Number Generator (PRNG).

In LowMC, all operations except Sboxes are linear, or in other
words, have degree 1. Hence, we apply a 2-share implementation
to them. The original – without protection using Threshold Imple-
mentation (TI) – structure of the Sboxes used in this algorithm is
shown in Figure 3. This structure is used to process the first 3 ·𝑚
least significant bits (LSBs) of the intermediate 𝑆𝑡𝑎𝑡𝑒 . We apply a
3-share TI to AND gates, while having 2-share TI for the linear
XOR gates. Since almost all parts of the circuit have 2-share TI, the
inputs of the AND gates must be reshared from 2-share into 3-share.
The original 2-share input of the AND gates is: 𝑥𝑎 , 𝑥𝑏 (two shares of
𝑥 input) and 𝑦𝑎 , 𝑦𝑏 (two shares of 𝑦 input). For generating different
shares in this method, different random numbers – 𝑅1, 𝑅2, and 𝑅3 –
should be generated using PRNG. Resharing step, described in [22],
is as follows:

𝑥1 ← 𝑥𝑎 ⊕ 𝑅2,
𝑥2 ← 𝑥𝑏 ,

𝑥3 ← 𝑅2
𝑦1 ← 𝑦𝑎 ⊕ 𝑅1,
𝑦2 ← 𝑦𝑏 ,

𝑦3 ← 𝑅1

To satisfy property 3, random masks𝑀1,𝑀2, and𝑀3 should be
generated such that𝑀1 ⊕ 𝑀2 ⊕ 𝑀3 = 0.

b

c
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x
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ac

bc

Figure 3: Substitution Box (Sbox) in the LowMC

Session 2: Side Channels: Attacks & Defences ASHES '20, November 13, 2020, Virtual Event, USA

49



Table 3: Results for the unprotected implementations on Artix-7

Metric Lightweight
(U=1)

Unrolled
(U = 2)

Ratio
(U = 2)

Unrolled
(U = 4)

Ratio
(U = 4)

Unrollel
(U = 8)

Ratio
(U = 8)

Unrolled
(U = 16)

Ratio
(U = 16)

LUTs 867 848 0.98 1,075 1.24 1,560 1.80 3,328 3.84
Flip Flops 658 667 1.01 665 1.01 663 1.01 661 1.00
Slices 470 400 0.85 549 1.17 765 1.63 1,356 2.89
Block RAMs 22 29 1.32 30 1.36 32 1.45 64 2.91
Max. Freq. (MHz) 189 198 1.05 187 0.99 181 0.96 175 0.93
Cycle Count 2,685 1,373 0.51 717 0.27 389 0.14 225 0.08
Latency (us) 14.21 6.93 0.49 3.83 0.27 2.15 0.15 1.29 0.09
Throughput (Mbits/s) 9.01 18.46 2.05 33.38 3.71 59.56 6.61 99.56 11.05

Table 4: Results for the unprotected unrolled implementa-
tions with (U=16) on Kintex-7

Metric Unrolled
(U = 16)

Kales et al.
[13] Ratio

LUTs 3,003 13,558 4.51
Flip Flops 661 504 0.76
Slices 1,601 3,838 2.40
Block RAMs 64 0 0.00
Max. Freq. (MHz) 241 125 0.52
Cycle Count 225 40 0.18
Latency (us) 0.93 0.32 0.34
Throughput (Mbits/s) 137 400 2.92
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Figure 4: 3-share threshold implementation of the Sbox in
the LowMC

𝑀1 ← 𝑅1𝑅3 ⊕ 𝑅2𝑅3 ⊕ 𝑅3,
𝑀2 ← 𝑅1𝑅3 ⊕ 𝑅2𝑅3,
𝑀3 ← 𝑅3

The shared outputs are computed as follows:
𝑧1 ← 𝑥2𝑦3 ⊕ 𝑥3𝑦2 ⊕ 𝑥2𝑦2 ⊕ 𝑀1,
𝑧2 ← 𝑥3𝑦1 ⊕ 𝑥1𝑦3 ⊕ 𝑥3𝑦3 ⊕ 𝑀2,
𝑧3 ← 𝑥1𝑦2 ⊕ 𝑥2𝑦1 ⊕ 𝑥1𝑦1 ⊕ 𝑀3

Finally, the output with three shares should be converted back
to two shares using the following equations:

𝑜1← 𝑧1 ⊕ 𝑧2,
𝑜2← 𝑧3,

After applying these changes to the Sboxes in the LowMC, we
used it in the protected versions of our implementations. The inter-
nal structure of Sboxes after this modification is shown in Figure 4.
The conventional AND gates were replaced by the protected AND
gates, and the number of XOR gates was doubled to support two
output shares.

For evaluation, we first investigated the information leakage of
the unprotected lightweight and the unprotected unrolled imple-
mentations using TVLA with 10,000 fixed-versus-random traces.
Afterward, we modified the implementations in a way that make
them protected against side-channel attacks.

5.2 FOBOS Platform
The Flexible Open-source workBench fOr Side-channel analysis
(FOBOS) is an SCA platform suitable for data acquisition and anal-
ysis [1, 25, 26]. This platform consists of a data acquisition module
used to collect power traces and an analysis module used to mount
side-channel attacks and perform leakage assessment. In this work,
we specifically use FOBOS2 with the Digilent Basys 3 control board,
and the Picoscope 5000 USB-based oscilloscope. FOBOS2 is com-
patible with the NewAE CW305 (an Artix-7 FPGA target board),
which we use to instantiate the Design-Under-Test (DUT).

The overall operation of FOBOS2 is described below. All test
vectors are generated using Python scripts on the control PC. The
control PC passes the test vectors one at a time to the control
board using a USB interface. The control board forwards the test
vectors to the DUT board, which runs cryptographic operations and
returns results to the control board and to the PC. While the DUT is
performing the operations, the control PC collects the instantaneous
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power consumption of the DUT using the oscilloscope. The control
board handles the DUT clock and the oscilloscope trigger, among
other functions.

At the DUT side, FOBOS2 provides a simple wrapper that re-
ceives data from the control board and distributes it into three
FIFOs. (1) The Public Data Input (PDI) FIFO (2) The Secret Data
Input (SDI) FIFO (3) The Random Data Input (RDI) FIFO. The PDI
FIFO is used to store plaintext, the SDI FIFO is used for the key,
and the RDI FIFO is used to store random data used by protected
implementations. Once the data is stored by the wrapper into the
FIFOs, the DUT is allowed to run, and its output is accumulated
in the Data Output (DO) FIFO. This data is forwarded back to the
control board, as discussed previously.

The analysis module uses the traces collected by the control PC
as input.

5.3 Protected Implementations
Since our designs are divided into two parts, datapath and controller,
we discuss each part separately. Additionally, we tried to follow
the hierarchical design rules, which make the modification phase
required for the protection more time-efficient and easier.
A. Datapath: Since the datapath consists of multiple parts, we dis-
cuss each part individually:
Constants: The constants are reused in the protected implementa-
tions without any modifications.
I/Os: In the TI protection method, the Master Key, Plaintext, and
Ciphertext should be divided into two shares. Hence, instead of
using single input/output for each of them, we used two inputs for
the Master Key and Plaintext, and two outputs for the Ciphertext.
Sbox: As mentioned before, the internal structure of the Sbox is
modified, so the old version is replaced with the protected Sbox.
PRNG: For generating random bits used by protected Sboxes, we
use the lightweight block cipher Trivium. Our implementation of
Trivium generates 64 bits per clock cycle. Since for each operation
of protected Sboxes, 90 bits of random data are required, one extra
register is used to store 64 bits generated ahead of time.
AND Gate: The AND gates located in the critical path of our im-
plementations do not need to be protected. The reason is that these
AND gates operate on individual shares of the secret data, and re-
vealing their information does not provide any useful information
to the attacker.
B. Controller: The controllers are the same as in the unprotected
implementations except for additional control and status signals
used for the communication with the PRNG.

The block diagrams of the protected implementations are shown
in Figures 10 and 11 in Appendix A.

The comparison between the unprotected and protected imple-
mentations is summarized in Table 5. An overhead of the protected
implementations in terms of the number of LUTs fluctuates as a
function of 𝑈 , but remains in the relatively small range between
2.06 and 2.27. These variations are smaller in case of flip-flops (2.87-
2.89), and higher in case of Slices (1.54-1.90). The cycle counts and
the numbers of BRAMs remain exactly the same. Since the critical
paths of our implementations are unchanged in protected versions,
the maximum clock frequencies of the protected designs are only
slightly lower compared to the unprotected ones. As a result, we

are also able to maintain almost the same throughput as in the
unprotected implementations.

In [8], Diehl et al. provided a descriptive comparison between
unprotected and protected implementations of four lightweight
block ciphers TWINE, SIMON, PRESENT, and LED. The general-
purpose secret-key block-cipher standard AES was implemented
as well using architectures suitable for lightweight applications.
The results of the comparison among these five ciphers is shown
in Table 6. Since the results presented in [8] were obtained using
Spartan-3E, for the fair comparison we regenerated the results for
all architectures of LowMC using a very similar FPGA from the
Spartan-3 family, capable of handling the sufficient number of Block
RAMs. The obtained results are shown in Table 7.

The unprotected implementations of LowMC use a significantly
larger number of LUTs than all investigated lightweight block ci-
phers. Only the unprotected implementation of AES uses more
LUTs than LowMC with 𝑈 = 1 and 𝑈 = 2. Additionally, all imple-
mentations presented in [8] did not use any Block RAMs, while
the implementations of LowMC require between 47 and 64 BRAMs.
The unprotected implementations of lightweight block ciphers and
AES also operate at a higher clock frequency than all implementa-
tions of LowMC. Additionally, they outperform LowMC in terms of
Throughput. The relative cost of protection in terms of the number
of LUTs is higher for all ciphers investigated in [8], except AES.
The negative effect of the SCA countermeasures on the maximum
clock frequency and Throughput is the lowest in the case of SIMON
and LowMC. The protected implementation of LowMC with 𝑈 = 1
requires fewer LUTs than the protected implementation of TWINE,
and only about one third more than the protected implementations
of AES, LED, and SIMON. Overall, the protected implementations
of LowMC are competitive with the protected implementations of
lightweight block ciphers in terms of the number of LUTs, but not
in terms of the number of BRAMs and Throughput.

Figure 5: T-Value of the unprotected lightweight implemen-
tation vs. trace count

6 TVLA RESULTS
TVLA was performed on the protected and unprotected versions of
both the lightweight and the unrolled implementations of LowMC.
The designs were instantiated in the NewAE CW305 board. This
board uses a Xilinx Artix-7 xc7a100tftg256-3 FPGA as a target. The
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Table 5: Results for the unprotected and protected unrolled implementations on Artix-7

Metric U = 1 U = 2 U = 4 U = 8 U = 16

Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio

LUTs (6 Inputs) 867 1,813 2.09 848 1,922 2.27 1,075 2,398 2.23 1,560 3,523 2.26 3,328 6,860 2.06
Flip Flops 658 1,904 2.89 667 1,913 2.87 665 1,911 2.87 663 1,909 2.88 661 1,907 2.89
Slices 470 724 1.54 400 759 1.90 549 916 1.67 765 1,217 1.59 1,356 2,317 1.71
Block RAMs 22 22 1.00 29 29 1.00 30 30 1.00 32 32 1.00 64 64 1.00
Max. Freq. (MHz) 189 172 0.91 198 182 0.92 187 178 0.95 181 175 0.97 175 159 0.91
Cycle Count 2,685 2,685 1.00 1,373 1,373 1.00 717 717 1.00 389 389 1.00 225 225 1.00
Latency (us) 14.21 15.61 1.10 6.93 7.54 1.09 3.83 4.03 1.05 2.15 2.22 1.03 1.29 1.42 1.10
Throughput
(Mbits/s) 9.01 8.20 0.91 18.46 16.97 0.92 33.38 31.78 0.95 59.56 57.58 0.97 99.56 90.45 0.91

Power (mW) 299 315 1.05 316 355 1.12 337 404 1.20 412 480 1.17 794 951 1.20
E/bit (nJ/bit) 33.2 38.4 1.16 17.1 20.9 1.22 10.1 12.7 1.26 6.9 8.3 1.20 8.0 10.5 1.32

Table 6: Results for the unprotected and protected implementations of lightweight block cihpers and AES on Spartan-3E [8]

Metric TWINE SIMON PRESENT LED AES

Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio

LUTs (4 Inputs) 296 2,946 9.95 565 2,151 3.80 595 1,707 2.86 727 2,175 2.99 1,182 2,387 2.01
Slices 229 1,777 7.75 403 1,404 3.48 408 1,221 2.99 486 1,290 2.65 806 1,736 2.15
Max. Freq. (MHz) 200 67 0.33 176 176 1 177 70 0.39 116 55 0.47 128 86 0.67
Throughput
(Mbits/s) 355 118 0.33 329 326 0.99 366 143 0.39 134 73 0.54 94 63 0.67

Table 7: Results for the unprotected and protected implementations of LowMC on Spartan-3

Metric U = 1 U = 2 U = 4 U = 8 U = 16

Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio Unpr. Pr. Ratio

LUTs (4 Inputs) 1,025 2,929 2.85 1,156 3,157 2.73 1,429 3,952 2.76 2,183 5,232 2.39 3,445 7,964 2.31
Flip Flops 673 1,914 2.84 670 1,918 2.86 676 1,917 2.83 666 1,915 2.87 668 1,927 2.88
Slices 739 2,084 2.82 847 2,188 2.58 939 2,588 2.75 1,362 3,223 2.36 1,961 4,629 2.36
Block RAMs (RAMB16s) 47 47 1.00 64 64 1.00 60 60 1.00 64 64 1.00 64 64 1.00
Max. Freq. (MHz) 90 82 0.91 79 73 0.92 75 67 0.89 68 66 0.97 75 72 0.96
Cycle Count 2,685 2,685 1.00 1,373 1,373 1.00 717 717 1.00 389 389 1.00 225 225 1.00
Latency (us) 29.92 32.50 1.08 17.34 18.66 1.07 9.51 10.5 1.11 5.64 5.86 1.03 2.98 3.09 1.03
Throughput
(Mbits/s) 4.27 3.93 0.92 7.38 6.85 0.92 13.45 12.19 0.91 22.69 21.84 0.96 42.95 41.42 0.96

FOBOS2 control board was used to control data communication
with the DUT and control the DUT clock. The DUT was run at 1
MHz to reduce signal distortion, which is favorable to attackers.
Picoscope 5000 was used for power measurements at a sampling
frequency of 125 MS/s. The CW305 low-noise amplifier (LNA) was
used to amplify the voltage drop across a 0.1Ω resistor located
between the power supply and the Artix-7 FPGA.

The generation of input shares corresponding to multiple fixed-
vs-random traces was performed in software. The TVLA results
for the unprotected lightweight and unrolled designs are shown in
Appendix A in Figures 12 and 13. As expected, both unprotected
designs leak information, as indicated in the figures by the t-value
exceeding the threshold of |𝑡 | = 4.5. 10,000 traces were sufficient to
demonstrate the significant leakage.

Figures 5 and 6 show how the t-values increase as we analyze
more traces. The x-axis shows the number of traces, and the y-
axis shows the maximum absolute t-value observed. It is clear that
the unprotected unrolled implementation fails the test at a very
low number of traces compared to the unprotected lightweight
implementation, which consumes much less power.

On the other hand, Figures 7 and 8 show the TVLA results of the
protected lightweight and unrolled implementations, respectively.
In this case, we collected and analyzed 1 million traces, and still, no
significant leakage can be observed. This experiment confirms the
effectiveness of the implemented countermeasures.
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Figure 6: T-Value of the unprotected unrolled implementa-
tion vs. trace count

Figure 7: Fixed-versus-random TVLA of the protected light-
weight implementation (1 million traces)

Figure 8: Fixed-versus-random TVLA of the protected un-
rolled implementation with 𝑈 = 16 (1 million traces)

Figure 9: LowMC power estimations. Power was estimated
at 10, 50 and 100 MHz.

7 POWER AND ENERGY ESTIMATION
Power consumption and energy per bit (E/bit) are major concerns
in cryptographic implementations since they are directly related to
power supply characteristics and battery life. We estimated power
consumption using Vivado for protected and unprotected designs.
Two corner cases were studied, lightweight (𝑈=1) and fully unrolled
(𝑈=16). Power was estimated at three different frequencies; 10, 50,
and 100 MHz and only the core FPGA supply𝑉𝑐𝑐𝑖𝑛𝑡 was considered.
The device used is Xilinx Artix-7 xc7a100tftg256-3. We performed
vector-less post-place-and-route power estimation, and we set a
toggle rate to 50% and ambient temperature to 25°C. The results are
shown in Figure 9.

We observe that for all designs, the static power is very similar,
about 15-17 mW. Also, as expected, power increases linearly with
frequency. Furthermore, the unrolling factor𝑈 , and the existence
of protection significantly affects the power consumption. We also
observed that the BRAM power consumption constitutes 47-84% of
total dynamic power.

For E/bit, we estimated the power consumption for each design
(𝑈 = 1 to 𝑈 = 16) at its maximum frequency using the same
methodology described above. We then calculated 𝐸/𝑏𝑖𝑡 (𝑛𝐽/𝑏𝑖𝑡) =
𝑃𝑜𝑤𝑒𝑟 (𝑚𝑊 )/𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑀𝑏𝑝𝑠). The results are listed in Table 5.
We observe that the energy per bit generally trends down as the
unrolling factor𝑈 increases, with the exception that E/bit for𝑈=8
is slightly smaller than E/bit for 𝑈=16.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we first introduced the LowMC block cipher and the
motivation behind using it inside of other cryptographic schemes.
Two unprotected and the corresponding two protected architec-
tures have been proposed, implemented, and analyzed. These imple-
mentations demonstrate the capability of using BRAMs to substan-
tially reduce the number of LUTs and Slices required to implement
LowMC. In particular, our unprotected lightweight implementation
uses only 867 LUTs and our unprotected unrolled implementation
with 𝑈 = 16 3,328 LUTs. Our fastest unrolled architecture uses
over 4.5 fewer slices than the best high-speed implementation of
LowMC reported to date. At the same time, it is slower in terms
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of throughput by a factor of 2.92. Threshold implementations pro-
vide substantial improvements in the information leakage for both
architectures. The lack of detectable leakage was verified experi-
mentally using TVLA with 1 million traces. These implementations
increase the number of LUTs by approximately a factor of 2.09 for
the lightweight architecture and a factor of 2.06 for the unrolled
architecture with the unrolling factor 𝑈 = 16. They do not affect
the number of BRAMs, and have a negligible effect on the circuit
throughput and latency.

Our next goal is to incorporate the algorithmic optimizations
by Dinur et al. [9] and make the corresponding implementations
protected against side-channel attacks. Both lightweight and high-
speed architectures will be implemented and analyzed. Additionally,
we will use this work as a starting point for efficient and side-
channel resistant implementations of the entire Picnic signature
scheme.
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Figure 10: Top-level block diagram of the protected lightweight implementation. All bus widths are 128 bits, unless specified
otherwise.
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Figure 11: Generalized top-level block diagram of the protected unrolled implementation. All bus widths are 128 bits, unless
specified otherwise.
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Figure 12: Fixed-versus-random TVLA of the unprotected unrolled implementation with 𝑈 = 16 (10K traces)

Figure 13: Fixed-versus-random TVLA of the unprotected lightweight implementation (10K traces)
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