
Cryptography for Ultra-Low Power Devices

by
Jens-Peter Kaps

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Doctor of Philosopy
in

Electrical Engineering

May, 2006

Approved:

Prof. Berk Sunar
ECE Department
Dissertation Advisor

Prof. Wayne P. Burleson
ECE Department
University of Mass., Amherst
Dissertation Committee

Prof. John McNeill
ECE Department
Dissertation Committee

Prof. Wenjing Lou
ECE Department
Dissertation Committee

Prof. Fred J. Looft
ECE Department Head

Abstract

Ubiquitous computing describes the notion that computing devices will be everywhere:

clothing, walls and floors of buildings, cars, forests, deserts, etc. Ubiquitous computing is

becoming a reality: RFIDs are currently being introduced into the supply chain. Wireless

distributed sensor networks (WSN) are already being used to monitor wildlife and to track

military targets. Many more applications are being envisioned. For most of these appli-

cations some level of security is of utmost importance. Common to WSN and RFIDs are

their severely limited power resources, which classify them as ultra-low power devices.

Early sensor nodes used simple 8-bit microprocessors to implement basic communi-

cation, sensing and computing services. Security was an afterthought. The main power

consumer is the RF-transceiver, or radio for short. In the past years specialized hard-

ware for low-data rate and low-power radios has been developed. The new bottleneck are

security services which employ computationally intensive cryptographic operations. Cus-

tomized hardware implementations hold the promise of enabling security for severely power

constrained devices.

Most research groups are concerned with developing secure wireless communication pro-

tocols, others with designing efficient software implementations of cryptographic algorithms.

There has not been a comprehensive study on hardware implementations of cryptographic

algorithms tailored for ultra-low power applications. The goal of this dissertation is to de-

velop a suite of cryptographic functions for authentication, encryption and integrity that is

specifically fashioned to the needs of ultra-low power devices.

This dissertation gives an introduction to the specific problems that security engineers

face when they try to solve the seemingly contradictory challenge of providing lightweight

cryptographic services that can perform on ultra-low power devices and shows an overview

of our current work and its future direction.

i

Preface

This dissertation describes the research I conducted at the Worcester Polytechnic Insti-

tute (WPI) in the past four years. I hope that the work presented here serves as a tutorial

to the specific problems of providing cryptography for ultra-low power devices and that it

lays the foundation for future research in this area.

This work would not have been possible without the support and help of many people

here at WPI and from outside. First of all I want to thank my advisor Prof. Berk Sunar

who agreed to be my mentor while I was crossing the United States on a bicycle in order

to attend the Cryptographic Hardware and Embedded Systems (CHES) in San Francisco.

He was always available and provided me with guidance, advice, support and inspiration.

I am grateful to my dissertation committee Prof. Wayne Burleson, Prof. Wenjing Lou,

and Prof. John McNeill for their support. Prof. Burleson opened my eyes to the low level

VLSI design issues which I now propose for future work. Prof. Lou gave me insights into the

workings of security protocols. Prof. McNeill provided me with many valuable comments

and suggestions.

I would particularly like to thank my co-conspirators Gunnar Gaubatz, Kaan Yüksel,

and Erdinç Öztürk. Gunnar and I did not only work together on many papers, live in

the same lab and the same house, he is also a very good friend. The work on NH and

its derivatives would not have been possible without Kaan who researched universal hash

functions and formulated the mathematical descriptions and proofs. Erdinç implemented

the ECC point multiplication shown in Chapter 5. Thanks to Prof. Martin for his invaluable

help with the proofs for the universal hash function families presented in Chapter 4.

Thanks go also to Prof. Fred Looft, our department head, who let me experiment

with my teaching skills on four students during a summer course and then hired me as an

Instructor. This experience gave me unique insights into what it means to be a professor and

I learned many valuable lessons. Nothing would work in the department without the help

of the administrative assistants Cathy Emmerton, Brenda McDonald, and Colleen Sweeney.

But I want to thank them for an even more important service: providing free sweets in the

department office so I can keep my sugar level high.

ii

I would also like to thank Prof. Christof Paar, who was my advisor for my Master’s

thesis, for his continued friendship and many interesting discussions.

There are also several students I would like to thank. Amongst them are David Holl,

Kui Ren, and Benjamin Woodacre who suffered through my several presentation rehearsals

and with whom I had many fruitful discussions. Thanks to Shiwangi Despande, whom I’m

indebted to, and my lab mates Selçuk Baktır, Deniz Karakoyunlu, and Ghaith Hammouri.

I also want to thank the National Science Foundation for partially funding this research

through the Grants No. ANI-0112889 and ANI-0133297.

Last, but not least, I want to thank my fiancée Alpna Saini for all her love and support

and my parents for their continuous encouragement.

iii

Contents

Abstract i

Preface ii

Table of Contents iv

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Wireless Sensor Networks . 2
1.1.2 Radio Frequency Identifiers . 6
1.1.3 Security Concerns . 8
1.1.4 Security Services . 10

1.2 Previous Work . 12
1.3 Thesis Outline . 15

2 Ultra-Low Power Hardware Design 17
2.1 Sources of Power Dissipation . 17

2.1.1 Dynamic Power . 18
2.1.2 Switching Power . 18
2.1.3 Short Circuit Power . 19
2.1.4 Static Power . 20
2.1.5 Glitching . 20

2.2 Design Guidelines . 21
2.3 Power Optimization at the Technological Level 22

2.3.1 Voltage Scaling . 22
2.3.2 Dual Vt . 23
2.3.3 Transistor Sizing . 24

2.4 Power Optimization at the Architectural Level 24
2.4.1 Path Equalization . 24
2.4.2 Clock Gating . 25

iv

2.4.3 Operand Isolation . 26
2.4.4 Re-timing . 27
2.4.5 Local Transformations . 27
2.4.6 Serialization . 29
2.4.7 Precomputation . 30

2.5 Design Flow for Ultra-Low Power . 31

3 Survey of Cryptographic Algorithms 34
3.1 Survey . 34

3.1.1 Block Ciphers . 35
3.1.2 Stream Ciphers . 37
3.1.3 Hash Functions . 37
3.1.4 Public Key Cryptosystems . 39

3.2 Analysis . 40
3.2.1 Algorithm Structure . 41
3.2.2 Functional Primitives . 43
3.2.3 Storage Requirements . 46
3.2.4 Implementation Considerations . 47

3.3 Recommendations for Designing new Algorithms 48
3.4 Conclusion . 50

4 Universal Hash Functions 51
4.1 Motivation . 51
4.2 Preliminaries . 53

4.2.1 Notations . 53
4.2.2 Universal Hashing . 54

4.3 Hash Function Families . 55
4.3.1 NH . 55
4.3.2 NH - Polynomial (PH) . 56
4.3.3 NH-Polynomial with Reduction (PR) 56
4.3.4 Weighted NH-Polynomial with Reduction (WH) 57
4.3.5 Analysis . 58

4.4 Implementations . 62
4.4.1 NH . 62
4.4.2 NH - Polynomial (PH) . 66
4.4.3 NH-Polynomial with Reduction (PR) 67
4.4.4 Weighted NH-Polynomial with Reduction (WH) 68
4.4.5 Control Logic . 68
4.4.6 Implementation Results . 70

4.5 Multi-Hashing and Toeplitz Construction 72
4.5.1 Toeplitz Construction . 73
4.5.2 WH with Toeplitz Construction . 75
4.5.3 Analysis & Results of WH with Various Block Sizes 77
4.5.4 Analysis of WH with Toeplitz . 78

v

4.6 Conclusion . 84

5 Public Key Functions 86
5.1 Motivation . 86
5.2 Introduction . 88

5.2.1 Parameter Selection . 88
5.2.2 Rabin’s Scheme . 89
5.2.3 The NtruEncrypt Public Key Cryptosystem 90
5.2.4 Elliptic Curve Cryptography . 92

5.3 Implementations . 94
5.3.1 Rabin’s Scheme . 94
5.3.2 NtruEncrypt and NtruSign . 99
5.3.3 Elliptic Curve Architecture . 103

5.4 Analysis . 106
5.4.1 Rabin’s Scheme . 106
5.4.2 NtruEncrypt . 109
5.4.3 Elliptic Curve Architecture . 110
5.4.4 Comparison . 111

5.5 Conclusions . 117

6 Secret Key Functions 119
6.1 Motivation . 119
6.2 Introduction . 120

6.2.1 AES . 121
6.2.2 SHA-1 . 122
6.2.3 Message Authentication Codes . 122
6.2.4 Encryption . 123

6.3 SHA-1 Implementation . 124
6.3.1 Message Scheduler . 125
6.3.2 Message Digest Unit . 125

6.4 AES Implementation . 128
6.4.1 Datapath . 129
6.4.2 Message Schedule . 130

6.5 Analysis and Comparison . 132
6.5.1 Message Authentication Codes . 134
6.5.2 Encryption . 134
6.5.3 Authentication and Encryption . 136

6.6 Conclusion . 136

7 Security Protocols 138
7.1 Introduction . 138
7.2 Popular Protocols . 139

7.2.1 SPINS with SNEP and µTESLA . 139
7.2.2 TinySec . 141

vi

7.3 Security Services . 141
7.4 Feasibility Study . 143

7.4.1 Public Key Schemes . 143
7.4.2 Comparison . 145

8 Conclusion 148
8.1 Summary and Conclusion . 148
8.2 Recommendations for Future Research . 151

Bibliography 153

A References for Cryptographic Algorithms 173
A.1 Block Ciphers . 173
A.2 Stream Cipher . 174
A.3 Hash Functions . 174
A.4 Public Key Cryptosystems . 174

vii

List of Tables

1.1 Power Spectrum . 2
1.2 Sensor Node Platforms . 4

2.1 Power–Energy Tradeoff with Serialization (f -constant) 30

3.1 Common Elements in Block Ciphers . 35
3.2 Summary of Hash Function Characteristics 38
3.3 Comparison of PKC Functions . 40
3.4 Serial / Parallel Tradeoffs in NtruEncrypt (500kHz, N = 167) 42
3.5 Comparison of NH (integer) and PH (polynomial) Implementations 45
3.6 Comparison of AES S-Box Implementations 46

4.1 Comparison of Hash Implementations at 100 Mhz 71
4.2 Power and Energy Consumption of Hash Implementations at 500 kHz . . . 72
4.3 Comparison of Hash Implementations at 100 Mhz 77
4.4 Comparison of Power and Energy Consumption 79
4.5 Comparison of Power and Energy Consumption with f ′ = f t 83

5.1 Multiplication vs. Squaring using Integers 95
5.2 Squaring with Modulo Reduction . 96
5.3 Rabin’s Scheme area and power consumption by function at 500 kHz 107
5.4 NtruEncrypt area and power consumption by function at 500 kHz 109
5.5 ECC area and power consumption at 500 kHz 111
5.6 Comparison of Encryption with Rabin’s Scheme, NtruEncrypt, and ECC . 112

6.1 Results for SHA-1 and AES . 133
6.2 Energy Results for SHA-1 and AES (29 bytes/packet, 500 kHz) 133

7.1 Comparison of PKC Functions (Packets of 30 bytes) 147

viii

List of Figures

2.1 Inverter Output Capacitances . 18
2.2 Glitch caused by Hazard . 21
2.3 Enable Register with Multiplexer . 25
2.4 Clock Gated Register . 25
2.5 Design without Operand Isolation . 26
2.6 Design with Operand Isolation . 27
2.7 Re-mapping . 28
2.8 Phase Assignment . 28
2.9 Low-Power Design Flow . 32

4.1 Functional diagram for NH . 63
4.2 Detailed Block Diagram for NH Datapath 64
4.3 Right shift multiplication of 1001 and 1101 65
4.4 Functional Diagram for PH . 67
4.5 Functional Diagram for PR . 69
4.6 Block diagram for WH . 70
4.7 Detailed block diagram for WH datapath depending on Toeplitz parameter t 76
4.8 Power Consumption . 81
4.9 Energy Consumption . 82

5.1 Block Diagram for Rabin’s Scheme . 97
5.2 NtruEncrypt block diagram . 101
5.3 Block Diagram for the Arithmetic Unit for ECC 105
5.4 Comparator unit built using tri-state buffers 106
5.5 Rabin’s Scheme: Power consumption of parts in % of total based on frequency108
5.6 Power Consumption over a Range of Clock Frequencies 114
5.7 NtruEncrypt: Energy per Encryption Operation for k = 1 . . . 90 116

6.1 Encryption and MAC functions based on AES and SHA-1 121
6.2 CBC-MAC – Generating a hash with a block cipher 123
6.3 Top Level Block Diagram of our SHA-1 Implementation 124
6.4 Block Diagram of the Message Scheduler . 125
6.5 Functional Block Diagram of the Message Digest Unit 126
6.6 Proposed Hardware Architecture of the Message Digest Unit 127

ix

6.7 Top Level Block Diagram of our AES Implementation 128
6.8 Block Diagram of our Implementation of the AES Datapath 130
6.9 Energy Consumption of MAC Computation with AES and SHA-1 Depending

on Payload Size . 135
6.10 Energy Consumption of Encryption with AES and SHA-1 Depending on

Payload Size . 135
6.11 Energy Consumption of Encryption and MAC Computation with AES and

SHA-1 Depending on Payload Size . 136

x

Chapter 1

Introduction

1.1 Motivation

Computing technology is reaching every corner of our lives. Mobile communication,

personal computation (e.g. personal digital assistants: PDAs), and portable naviga-

tion devices are just a few examples of the most commonly known applications. Re-

cent advances in ultra-low-power technology enabled the development of even smaller,

more mobile, autonomous devices. Wireless Sensor Networks (WSN) and RFIDs [126]

are a few examples of this trend.

The power available to WSN sensor nodes and RFID tags is orders of magnitude

less than what common battery powered devices consume. Batteries for these de-

vices are tiny and can supply 10 µW for only one day [65]. Moreover, some of these

technologies collect energy from environmental sources, such as light, heat, noise, or

vibration using power scavengers which produce between 1 µW and 500 µW. Scav-

engers and RFID reader fields do not produce enough energy to support even the

simplest general purpose low power CPUs which are currently being used in Sen-

sor Networks. This defines the domain of ultra-low power. Table 1.1 shows how

“ultra-low power” fits into the power spectrum of computing devices.

1

CHAPTER 1. INTRODUCTION 2

Table 1.1: Power Spectrum

Application Power Source Power Range

Desktop Computer Power Grid 150 W – 500 W

Laptops High Capacity Battery 10 W – 120 W

Palm size devices

Cell Phones Battery 100 mW – 10 W

Embedded Systems

Wireless Sensors Small Batteries 1 mW – 100 mW

Smart Dust, RFID Energy Scavenging 1 µW – 500 µW

Another commonality to WSN nodes and RFID tags is that they communicate

wirelessly, hence their communication is easy to intercept and to tamper with. Due to

the sensitive nature of many of the anticipated applications a certain level of security

is crucial. However, these severe power constraints make designing cryptographic

systems especially difficult. In the following sections we explore the technology behind

RFID and WSN and show their main applications. We identify the security needs

associated with these applications and have a look at what work has been done

previously to address these needs.

1.1.1 Wireless Sensor Networks

Wireless sensor networks (WSN) [27], [28], [29] enable monitoring of natural and man-

made environments at a never before seen level of granularity. This macroscopical

view is achieved by placing 10’s to 1000’s of small wireless sensors, so called sensor

nodes or motes, in the target area to sense fields and forces. For this, each sensor

node contains sensors, limited data processing capabilities, data and energy storage,

and a wireless transceiver enabling them to form a network and work together as an

ensemble. In order to be mass deployable, the sensor nodes must be inexpensive,

expendable, easy to deploy, use, and maintain.

CHAPTER 1. INTRODUCTION 3

These features make WSN very flexible and opened up a wide range of applica-

tions. An overview of the history of sensor networks can be found in [24]. Wireless

sensor networks started out in the military with sensor nodes so big as to till the

bed of a truck. The first reported deployments of small, pager sized nodes were [86]

for environmental monitoring and [139] for habitat monitoring. Examples are mon-

itoring birds on Great Duck Island on the coast of Maine [110], [82] and collecting

microclimate data in the James San Jacinto Mountains Reserve [39], [21]. There are

also several military applications like target tracking [17], [7], detecting radiation [16],

biological, and chemical weapons, and localization of shooters in urban terrain [85].

Most of these applications require the nodes to operate unattended for a long period

of time which is limited by their energy source, usually a battery. In order to minimize

energy consumption the nodes have a low duty cycle, i.e. most of the time they are

turned off. The range of their radio transmitters for wireless data transfer is limited

to conserve power, hence they can only communicate directly with nodes in close

proximity. They establish a routing tree with the base station at its root. The base

station collects the data from the sensors and communicates with the outside world.

It is assumed to have sufficient power for all computations and communications with

the nodes and the outside world [108].

Piconet [13] was an early general-purpose, low-power ad hoc radio network by the

University of Cambridge. The “Smart Dust” project at the University of California,

Berkeley [65] set out to develop sensor nodes of 1mm3 in size. Their early studies

even showed designs for flying motes [145] which probably inspired the book “Prey”

by Michael Crichton [26]. These early Smart Dust motes used a steered laser beam

for communication [13], [146], [147], however battery powered nodes with wireless

radio frequency transmitters have become standard [47]. Current sensor platforms

can be divided into four classes [54]: Gateway, high bandwidth sensing, generic

sensing, and specialized sensing. Table 1.2 shows example motes for each class and

CHAPTER 1. INTRODUCTION 4

their power consumption. The power for sending and receiving is consumed by the

RF-transmitter in addition to the power consumed by the CPU unless noted other-

wise. The gateway class provides the connection from a sensor network to traditional

networks like Ethernet, 802.11 wireless, etc. and functions as a base station. High

bandwidth sensing is used for video and sound which requires significant processing

power and a high bandwidth radio. BTmode and Imote [70] are currently the most

popular choices in this class. The most common platform is generic sensing for which

the Mica 2 and Telos [111] motes from Berkely are examples. These devices are

the size of a modern pager, use two AA batteries and consumes less than 30 mW

when active. The radio consumes an additional 40 mW when sending and about the

same amount when receiving. While sleeping, these mote consumes less than 45 µW.

Sensor node platforms for generic sensing and for specialized sensing use simple 8-bit

Table 1.2: Sensor Node Platforms

Memory Processor Radio
Platform Example Processor ROM RAM Active Sleep Send Receive

[kB] [kB] [mW] [µW] [mW] [µW]

Specialized Spec Custom 8-bit 0 3 1.5 1 900
Sensing Mica2Dot ATmega128L 128 512 24 < 45 42 29

Generic Mica2 ATmega128L 128 512 24 < 45 42 29
Sensing Telos TI MSP430 48 1024 6 < 15 35 38

High Imote ARM7TDMI 512 64 195 300 incl. in Power
Bandwidth BTnode ATmega128L 128 244 39.6 9.9 66 50

Gateway Stargate Intel PXA255 32,000 64,000 < 2, 500

general purpose processors. Kahn describes in [65] that tiny batteries for these de-

vices can supply 10 µW for only one day. Hence, the nodes have to operate on a low

duty cycle. Mica2Dot is only as big as a Quarter coin but its power consumption is

equivalent to that of the Mica 2 mote however it provides less extension possibilities

and therefore fits into the specialized sensing category. When powered with a small

CHAPTER 1. INTRODUCTION 5

3V battery its lifetime will be significantly shorter than that of the Mica2 due to the

lower capacity of the battery. The “Smart Dust” project also developed the Spec (of

dust) mote [56] which is only 5 mm3 in size. The overall dimensions of the motes

depends mainly on the size of the batteries. Advances in battery technology and

development of other power sources [47] will make smaller motes possible.

The current generation of wireless sensor nodes is relying on batteries as its source

of power. The limited lifetime of batteries, however, significantly impedes the use-

fulness of such devices since maintenance access would become necessary whenever

the battery is depleted. Sensor nodes could only be deployed in accessible areas and

not, for example, be dropped off airplanes over enemy territory. Furthermore, the

intention of having large amounts of tiny nodes scattered over a large area would

render maintenance impractical.

We envision that the next generation sensor nodes will operate without batteries.

Instead they will harvest energy from ambient sources in their environment such

as light, heat, and vibration. The notion of removing the battery and having self-

powered computing devices opens the door to a wealth of new applications, not just

for wireless sensor nodes but for the whole field of ubiquitous computing. Computing

devices can then be embedded in walls, in concrete, or placed in inaccessible locations.

Energy scavengers are devices that harvest energy from environmental sources and

convert it into electric power. This energy is stored in a capacitor and can be used to

power the sensor node either continuously, for small amounts of power, or in intervals

if the demand is higher. Autonomous nodes which use scavengers are called self-

powered. An implementation of a signal processing unit powered by a large scavenger

device that can generate up to 400 µW is described in [5]. Commercially available

large scavengers can produce up to 3 mW at a cost of $30 per unit [25]. Newer

scavengers are based on micro-electromechanical systems and have been integrated

on chip which reduces size and cost. They are currently capable of producing up to

CHAPTER 1. INTRODUCTION 6

8 µW of power [89] relying solely on ambient vibration. It is expected that future

MEMS-based scavengers will be able to deliver power up to 50µW continuously.

1.1.2 Radio Frequency Identifiers

Radio Frequency Identifiers (RFID) systems enable wireless identification and track-

ing of items. For this, small, inexpensive electronic devices, so called RFID tags or

transponders, are affixed to the items that are to be identified. The tags contain at a

minimum a wireless RF transceiver and a unique identifier (ID). Tags get queried by

readers which are more complex and usually connected to a backend system via some

form of network. Upon being queried, the tags respond with their IDs. The readers

are capable to query multiple tagged items at once and distinguish between each one

of them.

The first RFID like systems were simple electronic article surveillance (EAS) sys-

tems developed in the late 1960s [77]. In this application the tags did not transmit an

ID they just indicated their presence. In the 1970s researchers were able to construct

tags that respond with an ID number. This opened up a wealth of commercial ap-

plications starting with livestock tracking [1] using implantable devices around 1990

to electronic toll collection for highways, container tracking, car anti-theft, employee

badges, and wireless electronic payment for gasoline and other goods just to name

a few. Several different and incompatible types of identifiers and technologies are

used, depending on application and device vendor. In 1999, the AutoID center at the

Massachusetts Institute of Technology was founded to guide and standardize the de-

velopment of RFID technology [126] which resulted in the adoption of the Electronic

Product Code (EPC) as an international standard. The idea behind the EPC is to

replace the ubiquitous barcodes, the Universal Product Codes (UPS), which can be

scanned by a laser, with simple, cheap, 5 US cent a piece RFID tags that can be read

without line of sight. One example of how RFIDs are moving into the mainstream

CHAPTER 1. INTRODUCTION 7

consumer market is the news that Walmart is planning to track pallets and cases

from its suppliers using RFIDs [2].

The most basic RFID tags, which are also the most common, contain a radio

frequency transponder and a read-only memory chip that contains a unique identifier.

This identifier follows either a proprietary scheme or it is the standardized electronic

product code (EPC), also called Global Unique Identifier (GUID). We distinguish

between active and passive tags. Active tags carry a small battery while the cheaper

and much more common passive tags receive their power from the reader. The reader

emits an electric field while querying the tags, which also powers the tags. The

amount of power a tag receives depends on the field’s intensity which is governed by

national and international regulations. Only about 20 µW are available for the digital

part of an RFID tag.

More sophisticated tags have more functionality than just responding to a reader

with their ID [144]. Some new tags have writable memory so that a reader can store

information on the tag. This can be used to maintain a log of a tags state during

each read right on the tag. Other new tags have embedded sensors, blurring the

line with sensor nodes. These sensors can not consume any power while the tag is

not exposed to the RF field of a reader. However simple bacteria and temperature

sensors have been developed that change their electrical properties depending on their

environmental conditions and maintain that state. One example are temperature

sensors that detect whether a food item has become to warm, or bacterial sensors

measuring bacterial contamination in food and indicating once a certain threshold

has been exceeded. When queried by a reader, these sensor RFID tags respond with

their ID and the state of the sensor.

Nowadays all functions, from RF transponder to ID memory and also many of

the new additional functions like sensing and re-writable memory, are integrated into

one tiny custom chip. Researchers envision that wireless sensor nodes will make a

CHAPTER 1. INTRODUCTION 8

similar progression as RFIDs did over the past 40 years and soon also be the size of a

grain of rice. However the size of the tags is limited be the size requirements for the

antenna.

1.1.3 Security Concerns

Wireless sensor networks developed for researchers to study natural environments and

monitor animal habitats had no need for any form of security. The data gathered by

the sensor nodes was public and there was no benefit for an attacker in tampering

with the operation of the network. Radio frequency identification tags were originally

designed for monitoring livestock. The security concerns for this application were also

minimal. However, with the increasing number of applications for both technologies

the security concerns are becoming the bottle neck for widespread deployment.

Wireless Sensor Networks A general overview of security issues for general wire-

less networks can be found in [132]. Ad-hoc sensor networks (ASN) are a special form

of wireless sensor networks (WSN) in that the nodes are highly mobile. In some cases

the membership in the network can change, new devices can be added, others retired,

and some might be moved to a different network. A good introduction to the security

issues that WSN face can be found in [109] and [61]. Here are some examples for

WSN that we refer to throughout this dissertation and the security concerns they

raise.

WSN Example 1: WSN nodes can be used to monitor the mechanical stress of

a bridge. Any crack in the concrete, deformation of the steel rods will be picked

up by the sensors and relayed to a monitoring facility. This information is used to

generate an up to the minute status of the bridge. In the event of a major accident

or an earthquake, the operators can immediately asses the damage and determine if

the bridge is still save or has to be closed. This type of monitoring can be achieved

CHAPTER 1. INTRODUCTION 9

by mixing thousands of maintenance free, vibration scavenger powered, grain of rice

sized, inexpensive sensor nodes into the concrete when the bridge is constructed. Once

in place, the sensor nodes will form a network and relay their measurement data to

one or more base stations. These sensor nodes have limited transmission power and

range. Therefore, it would be easy for an attacker to send fake information using a

high powered device like a laptop and fool the authorities to close the bridge.

WSN Example 2: WSN nodes can be used for military purposes, for example to

detect and gain as much information as possible about enemy movements, explosions,

and other phenomena of interest. This information is relayed to mobile command

posts where it helps the commanders to make decisions about troop movements, calls

for air support, etc. The sensors can either be dropped off an aircraft over enemy

territory after which they lie stationary on the ground, or they are carried by each

soldier and vehicle and therefore form a mobile ASN. In this scenario it is of utmost

importance to prevent the enemy from listening to the transmitted data. In addition

to this, it is very likely that some nodes fail and stop operating and, even worse, that

some nodes get captured by the enemy.

Radio Frequency Identification Devices Security aspects of RFIDs have been

examined in[151], [127], and [150]. We are presenting two popular applications for

RFID tags and highlight their security concerns.

RFID Example 1: RFID tags with Electronic Product Codes (EPC) are going to

replace the ubiquitous optical barcodes which are showing the universal product code

(UPC), on consumer items. The wireless nature with no line-of-sight requirement

makes RFID ideal for inventory control and fast check out. Workers in a shop only

need to hold the RFID reader in front of a shelf and immediately know how many

items of each product are in the shelf. At the checkout, the shoppers only have to put

CHAPTER 1. INTRODUCTION 10

the goods on the belt which passes them through a reader. There is no need to search

for the barcode and align it with an optical scanner. This will speed up the checkout

process. However, this raises security concerns. If the tags do not get deactivated

at the time of checkout, it is possible to track individuals by the unique combination

of tags in their clothing. The book Spychips1[3] elaborates on the threats to privacy

that RFIDs pose. In spite of this, a consumer might want to keep the RFID tags

active due to other benefits they offer. A RFID enabled washing machine can warn

the user if it detects red socks in a load of white shirts. In order to make tracking

more difficult but enabling some of the benefits a deletion of unique identifier but

not the products properties might be sufficient. That however raises the question on

which reader is allowed to erase information of the tag.

RFID Example 2: Wireless electronic payment e.g., Exxon Mobile Speedpass2,

is another growing application for RFID. The tag’s number is linked to the users

credit card information. When filling up a tank of gasoline, the user waves the RFID

device in front of the fuel pump and the gasoline will get billed to users credit card.

However, an attacker on the opposite fuel pump could intercept the messages with

an unlicensed and therefore more powerful reader and then use this information to

charge her fuel to the legitimate user. This example illustrates that it is important

to protect the wirelessly transmitted data from an eavesdropper.

1.1.4 Security Services

Most of the security concerns we just discovered can be addressed by the services of

availability, authenticity, integrity, confidentiality, trust setup and scalability. Cryp-

tographic functions are the fundamental building blocks of most of these services.

1Spychips is a trademark of Katherine Albrecht and Liz McIntyre
2Speedpass is a registered trademark of the Exxon Mobile Corporation

CHAPTER 1. INTRODUCTION 11

Availability The functionality of the sensor network must be ensured in spite of

denial-of-service attacks (DoS) or node failures, i.e. the network must be available to

authorized parties. The countermeasures to these kind of concerns are at the network

protocol level and therefore not addressed in this dissertation.

Authenticity In WSN and for RFID applications authenticity is of utmost impor-

tance. WSN Example 1 shows that an attacker can easily inject unauthenticated

messages into a bridge monitoring network. RFID Example 1 raises the question on

which reader is allowed to erase information on a tag. If this feature should be allowed

only for a retail store, then the tag has to accept the delete commands only after it

has successfully established the authenticity of the reader. The service of authenticity

can be provided by message authentication codes (MAC), keyed hash functions and

digital signatures.

Integrity For all of the examples above, the integrity of data that is transmitted be-

tween WSN nodes or an RFID tag and the reader must be guaranteed. Wireless data

transmission for ultra-low power WSN nodes and RFID tags is very unreliable due

to their low-power radio transmitters. Furthermore attackers can easily modify the

data of messages in transit. Message authentication codes, keyed hash functions and

digital signatures can guarantee message integrity and at the same time authenticity.

Confidentiality Keeping data secret is crucial for military applications (WSN Ex-

ample 2) and electronic payment applications (RFID Example 2). The standard

solution is for the sender to encrypt the data with a secret key, known only to the

sender and receiver. The receiver would then decrypt the data.

Trust Setup and Scalability In order to establish trust between sensor nodes or

RFID tags and the readers secret cryptographic keys have to be established between

CHAPTER 1. INTRODUCTION 12

all participants. The simplest idea is to use one common shared key. However, if a

node, or an RFID tag is captured, the attacker might be able to retrieve the secret

key which would give access to all network traffic. The capture of a single sensor

node by an adversary should not jeopardize the integrity of the entire network. An-

other approach is to establish a secret between each pair of communicating partners.

For a network with n nodes that potentially all talk to each other it would require

n · (n − 1)/2 keys. This does not scale for the thousands of nodes or millions of

tags that are going to be used in the above examples. Other approaches are the use

of shared keys or random key pre-distribution for which many schemes have been

proposed [22], [154], [35]. Public key cryptography offers an elegant way for estab-

lishing secret keys, even though the computational complexity seems daunting. We

are exploring this specific case in Chapter 5.

1.2 Previous Work

In order enable the above mentioned security services for ultra-low power devices we

need to have special hardware implementations of cryptographic functions. When

designing cryptographic hardware that can perform under the constrained environ-

ments of RFIDs and WSN the power consumption has to be made the first design

priority. So far research has concentrated on the network specific aspects of WSN

and on software implementations of cryptographic algorithms. The security aspects

of distributed sensor networks have been reviewed by NAI Labs in [19]. However, this

study focused only on software implementations on current processors whose energy

consumption is far above the amount that can be supplied by a scavenger circuit. Only

recently studies were published on special hardware implementations [38, 42, 41, 153].

The services of Authenticity and Integrity can be provided by message authenti-

cation codes (MACs). Universal hash function families, as discussed in Chapter 4,

CHAPTER 1. INTRODUCTION 13

can be used to build secure MACs. To our knowledge not much work has been

done on improving the performance of universal hashing in hardware. Ramakrishna

published a study on the performance of hashing functions in hardware based on

universal hashing [116]. However, the main emphasis was on using hash functions

for table organization and address translation. In an early work Krawczyk [73] pro-

posed new hash functions from a hardware point of view. This work introduced two

constructions: a CRC-based cryptographic hash function, and a construction based

on Toeplitz hashing where matrix entries are generated by a Linear Shift Feedback

Register (LFSR). The reference gives a sketch for hardware implementation, which

includes a key spreader. However, it is difficult to estimate the power consumption

of this function from a sketch. There have been no implementations reported so far.

In the past decade we have seen many new hash constructions being proposed, con-

stantly improving in speed and collision probability [130, 49, 123, 74, 14, 36]. For

a survey see [100]. However, most of these constructions have targeted efficiency

in software implementations, with particular emphasis on matching the instruction

set architecture of a particular processor or taking advantage of special instructions

made available for multimedia data processing (e.g. Intel’s MMX technology). While

such high end platforms are essential for everyday computing and communications,

in numerous embedded applications (e.g. PDAs, mobile phones) space and power

limitations prohibit their employment.

Complex key management and high storage requirements for multiple keys and

messages put a considerable burden on the power consumption of the nodes. The use

of public key cryptography would eliminate the need for complicated protocols and

at the same time would also increase the security of the entire system, since only the

public key of the base station would have to be embedded into the nodes. However,

until recently, most publications on ultra-low power cryptography claim that public

key cryptography is not feasible on for WSN nodes and RFID tags [108], [109], [61].

CHAPTER 1. INTRODUCTION 14

Many research papers [108, 78, 81, 40, 46] have been published for secret key

cryptography which is used to provide confidentiality. However, most of them ana-

lyze encryption algorithms for wireless sensor networks and RFIDs exclusively with

reference to speed and code size while only a few [112] address the energy consumption

of software based implementations. However, the ultra-low power applications we are

envisioning, do not provide enough power for running cryptographic algorithms on

general purpose microprocessors. The first ultra-low power hardware implementation

of a block cipher was reported in [38] and [37].

The main power consumer of a wireless sensor node is its RF-transceiver or radio

for short. In the past years specialized hardware has been developed for the radios

which combine low-data rate, low-power consumption, and the ability to interface

directly with low-power micro controllers. We propose that in order to provide ad-

equate security for ultra-low power applications like WSN and RFID, one has to

employ a similar approach as for the radios, i.e. specialized hardware in conjunction

with application specific algorithms. The main design goal is to have ultra-low power

implementations. However, other factors also play a role. In spite of the advances in

radio design, transmission power is still very costly compared to computations. On

most WSN nodes, transmitting a single bit costs as much power as executing 1000

instructions. Hence, the transmission overhead incurred by applying security has

to be kept to an absolute minimum. Furthermore, most cryptographic algorithms

currently in use are designed for high performance, mostly in software on 32-bit mi-

croprocessors. On sensor nodes, or RFIDs the computation time is not very critical.

It is more important to consume little power and space. Our goal is to develop a

suite of cryptographic functions for authentication, encryption and integrity that is

specifically fashioned to the needs of ultra-low power devices.

CHAPTER 1. INTRODUCTION 15

1.3 Thesis Outline

We started our quest for a suit of cryptographic functions for ultra-low power devices

with a close look at the power dissipation of CMOS circuits and low power design

methodologies in Chapter 2. We use the low power design considerations to explore

current cryptographic primitives and analyze their suitability for ultra-low power

implementations in Chapter 3.

The first function we implemented was the universal hash function family NH

which has provable security properties. We introduce three variations on NH, each

showing an improvement in power consumption, and prove that each is at least as

secure as the original NH. We then show how the technique of multihashing and the

Toeplitz approach can be combined to reduce the power and energy consumption

even further while maintaining the same security level with a very slight increase in

key material in Chapter 4.

These results encourage us to challenge the prevalent notion that public key cryp-

tography is not feasible for wireless sensor notes. In Chapter 5 we present proof-

of-concept implementations of three different algorithms—Rabin’s Scheme, NtruEn-

crypt, and Elliptic Curve Cryptography—and analyze their architecture and perfor-

mance according to various established metrics.

In Chapter 6 we complete our suit of cryptographic functions by exploring secret

key algorithms. We present a novel ultra-low power SHA-1 design and an energy

efficient AES design. Both can be used for authentication and encryption.

We mentioned in Section 1.2 that transmission power is very costly. In Chap-

ter 7 we are analyzing the two most popular WSN protocols and present a list of

fundamental security services that would be best served by using public key cryp-

tography. This analysis is corroborated with data from our public key algorithm

implementations from Chapter 5.

Chapter 8 closes this dissertations with our conclusions and recommendations for

CHAPTER 1. INTRODUCTION 16

future research.

Chapter 2

Ultra-Low Power Hardware Design

In order to provide cryptographic functions for ultra-low power devices, the power

consumption has to become the major design consideration. This Chapter provides

an overview of the sources for power dissipation in CMOS circuits and then presents

a few methods on how to limit power consumption at different levels of circuit design.

A detailed description of low power design methodologies can be found in these books

[114], [105] and these journal papers [12], [104], [11].

2.1 Sources of Power Dissipation

In order to design ultra-low power circuits we have to examine and understand the

sources of power dissipation in CMOS devices. The following formula characterizes

the power dissipation [31]:

P =

(
1

2
· CL · V 2

DD + QSC · VDD

)
· f ·N

︸ ︷︷ ︸
PDynamic

+ Ileak · VDD︸ ︷︷ ︸
PLeakage

(2.1)

The term VDD is the supply voltage. PDynamic represents the dynamic power dis-

sipation caused by changes to the outputs of the CMOS circuit i.e. transitions from

logic 0 to logic 1 or vice versa. The second term PLeakage represents the static power

17

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 18

consumption which is dissipated while the circuit is powered on. It is independent of

switching activity and frequency, therefore we assume it to be constant for a certain

circuit. We examine the two major sources of power dissipation in detail.

2.1.1 Dynamic Power

The dynamic power consumption consists of two parts: switching power and short

circuit power. Both are depending on the switching activity, i.e. the number of gate

output transitions per clock cycle N , and the operating frequency f .

PDynamic = PSW + PSC

For our discussion of the dynamic power consumption we use the simplest CMOS

gate, an inverter (Figure 2.1), as a general model of any CMOS gate.

2.1.2 Switching Power

The switching power dissipation describes the power dissipated by charging and dis-

charging the nodes capacitance CL, it is therefore also referred to as the capacitive

power dissipation. For simplification we assume that all capacitances are at the out-

put node. In this model, the capacitance CL consists of two parts: C1 and C2, as

shown in Figure 2.1, where C1 is a capacitance to ground and C2 to VDD. When the

Q2

Q1

VDD

C2

C1

A X

Figure 2.1: Inverter Output Capacitances

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 19

input A is at logic 0, the n-channel transistor Q1 is open and the p-channel transistor

Q2 is closed, leading to a logic 1 at the output X. At the same time, the capacitance

C2 is emptied, shortened by Q2 and the capacitance C1 is charged. A change on A

from logic 0 to 1 causes Q1 to close, which will discharge C1 and Q2 to open, which

will charge C2. During this single transition, a charge of C2 ·VDD was taken from the

power supply. On the next input change the charge C1 · VDD will be taken from the

power supply. Assuming that CL = C1 + C2, we can say that after one input transi-

tion from 0 to 1 and back to 0 the inverter has taken a charge of (C1 + C2)VDD from

the power supply. Therefore, we can average this for one single output transition to

1
2
·CL · VDD. The power dissipated by this is 1

2
·CL · V 2

DD which leads to Equation 2.2

for the switching power PSW .

PSW =
1

2
· CL · V 2

DD · f ·N (2.2)

2.1.3 Short Circuit Power

During an input transition of a CMOS circuit there is a short time period in which

the n-channel and the p-channel transistors are both on, causing a short circuit from

VDD to ground. This current, ISC , flows while the input voltage is between VT and

VDD − VT where VT is the threshold voltage. The amount of current is depending on

the gain factor β (amplification) of a MOS transistor and input rise and fall times τ .

Veendrick [142] computed the short circuit current as

ISCmean =
1

12
· β

VDD

· (VDD − 2VT) · τ

T
.

Using the fact, that 1
T

= f we can express PSC as

PSC =

(
1

12
· β

VDD

· (VDD − 2VT) · τ
)
· VDD · f ·N (2.3)

This approximation was improved, amongst others, by Turgis et al. in [141] with

an explicit formulation for PSC . They also introduced an idea to express the short-

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 20

circuit power dissipation through an equivalent charge QSC carried by the short-circuit

current which leads to Equation 2.4.

PSC = QSC · VDD · f ·N (2.4)

2.1.4 Static Power

The static power consumption of a CMOS circuit is caused by the leakage currents of

transistors and pn-junctions. If we go back to Figure 2.1 and assume the input is a

logic 0, we know that the n-channel transistor Q1 is open. The leakage power is given

by the leakage current I0n of this transistor. When the input is a logic 1 and then the

power is given by the leakage current I0p of the p-channel transistor Q2. This can be

expressed by Equation 2.5.

PLeakage = PS = VDD · I0n + I0p

2
= Ileak · VDD (2.5)

Leakage currents are increasing from one CMOS technology generation to the

next due to the reduction of threshold voltage, channel length, and gate oxide thick-

ness [124]. In future generations the leakage power is projected to become the domi-

nant part of the overall power consumption [30][63].

2.1.5 Glitching

Glitches are unwanted transitions of a signal after an input change until the final

output value is reached. This behavior is due to different arrival times of signals

to a gate, called logic hazards. Figure 2.2 shows the circuit for the logic equation

Q = AB + BC which exhibits a static-1 hazard. When the inputs A and C are logic

1 any change on B will cause a transition on Q. There are two paths for B to the

output Q where one path contains an inverter. This causes a slightly longer delay,

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 21

resulting in a glitch in the output Q. Larger, more complex circuits e.g. ripple carry

Q

B

B

A

C

Q

Figure 2.2: Glitch caused by Hazard

adders, amplify this problem. In typical combinational circuits glitching accounts for

between 10% and 40% of the dynamic power consumption [43]. Hazards and therefore

glitches can be avoided at the cost of more circuitry. If leakage power is a deciding

factor than this might not be possible.

2.2 Design Guidelines

From the analysis of the power dissipation in CMOS circuits we can derive a few

simple rules guidelines for designing ultra-low power circuits.

1. The number of output transitions has to be minimal.

2. The circuit size should be minimized.

3. Glitches cause unnecessary transitions and therefore should be avoided.

The guidelines 1 and 3 are directly influencing the dynamic power consumption and

the 2nd guideline is influencing the leakage power consumption. Unfortunately not

all of these rules can be applied at the same time. Therefore, a compromise must be

achieved. Equation 2.1 demonstrates that the dynamic power consumption PDynamic

depends on the operating frequency and the number of transitions. The leakage

power PLeakage depends on the circuit size. In most ultra-low power applications the

clock frequency is low and ranges from 500 kHz [5] to about 4 MHz [108]. At these

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 22

frequencies the PLeakage becomes the dominant part of the overall power consumption

and therefore minimizing the circuit size is of utmost importance. The size of the

circuit is influenced by the size of the cryptographic parameters, the complexity of the

arithmetic units, and by the number of flip-flops needed to store variable parameters

e.g.. round keys and partial products.

The energy a given circuit consumes is E = P · t, where t is the the time it

takes for one cryptographic operation to complete. Energy can also be written as

E = (PDynamic + PLeakage) · t. For a given circuit PDynamic ·t is independent of the clock

frequency therefore, the energy this circuit consumes at different frequencies is only

depending on PLeakage ·t. Hence, the faster a circuit completes a task, the less energy

it consumes due to leakage power and its energy consumption due to dynamic power

can be viewed as constant.

2.3 Power Optimization at the Technological Level

This section gives a very brief overview of the most popular power optimizations

methods on the technological level. The research presented in this dissertation con-

centrates on power savings at the logic and architectural level as well as on the system

level. We used the TSMC 0.13µm ASIC library for our ultra-low power proof of con-

cept implementations and therefore had no access to power optimization methods at

the technological level. However, how our circuits could benefit from the techniques

shown in this section is a topic for future research.

2.3.1 Voltage Scaling

Supply voltage scaling is the most adopted method to reduce power consumption

because of the quadratic dependence of switching power PSW on the supply voltage

VDD (see Equation 2.2). Historically however, constant voltage scaling has been used

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 23

till the 0.8µm generation which yields significantly smaller power savings than supply

voltage scaling. Constant voltage scaling came out of the need to keep supply voltages

constant at standardized levels of first 5 V and then 3.3 V.

Supply voltage scaling, also called constant electric field scaling, requires the scal-

ing of geometric features and silicon doping levels to maintain a constant field across

the gate oxide of the MOS transistor. This technology results in the lowest energy

delay product if we ignore the leakage power. Reducing the supply voltage VDD lowers

the speed of the transistors as it depends on difference between supply voltage and

threshold voltage (VDD − VT). Hence, VT has to be scaled along with VDD. However,

lowering VT increases the subthreshold leakage current and is limited by noise mar-

gins. Therefore, [30] identifies the leakage power as a barrier to further scaling of VT

and supply voltage scaling in general. Another approach in shown in [23] where the

circuit is operated much below the optimal supply voltage and the reduced speed is

compensated for by increasing area, i.e. exploiting parallelism.

2.3.2 Dual Vt

Dual VT ASIC libraries contain two versions of most gates, one were the transistors

have a high threshold voltage and one with low threshold voltage. The supply voltage

is constant. Transistors with low threshold voltage VT are faster due to the larger

difference VDD−VT but their leakage power is higher. Transistors with a high thresh-

old voltage are slower, but their leakage power is lower. This gives the designer the

flexibility to use gates with low threshold transistors for speed critical paths and high

threshold transistors for non critical paths. Unfortunately, we did not have access to

such a library for our research.

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 24

2.3.3 Transistor Sizing

Transistor sizing is the operation of varying the size of the channel of a transistor in

a combinational gate. Enlarging the channel of transistors which drive large loads

increases its drive capability which in turn reduces the output transition times. The

short circuit power of the driven gate is directly proportional to to the input rise and

fall time τ (see Equation 2.3). This can be exploited to minimize power consump-

tion [15]. Rich ASIC libraries provide gates with a wide variety of transistor sizes

which helps the synthesis tools to obtain optimum sizes for a wide range of gate loads

and therefore reduce the overall power consumption.

2.4 Power Optimization at the Architectural Level

The power optimization techniques at the architectural level were available to us

and we used them extensively for our proof of concept designs. Some of the methods

described in this section are available within Synopsys Design Compiler and Synopsys

Power Compiler, others we applied in the hardware description.

2.4.1 Path Equalization

Path Equalization, also called Path Balancing, aims to reduce glitching in a circuit

by ensuring that the delay paths to all inputs of each gate are roughly balanced.

This leads to nearly aligned transitions at the inputs thus eliminating hazards which

in turn reduces switching activity and therefore dynamic power consumption. Path

equalization can be achieved through insertion of delay elements and local transfor-

mations.

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 25

2.4.2 Clock Gating

Figure 2.3 shows a typical implementation of a synchronous register with enable. We

assume that a register is multiple bits wide and consists of one flip-flop per bit. The

register is disabled when the enable signal is at logic 0. Its output is fed back to its

input through the multiplexer. When the enable signal is at logic 1 the register can

load new values from data in. In this design each flip-flop of the register requires a

clk

QD
1

0

Clock

Enable

Data in
Data out

Figure 2.3: Enable Register with Multiplexer

multiplexer at its data input. Furthermore the clock network has to drive each flip-

flop. Clock gating provides a way to disable the clock signals for a register, therefore

eliminating the need for separate multiplexers for each input bit. Figure 2.4 shows

such a design. The enable signal is usually the output of some combinatorial logic and

Clock Gating Cell

Latch

QD

clkQD

E

Clock

Data outData in

Enable

Figure 2.4: Clock Gated Register

my contain glitches. The latch prevents glitches from the enable signal to propagate

to the clock input of the register. The AND gate performs the actual gating.

Clock gating replaces the multiplexers with a single clock gating cell and isolates

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 26

the register clock from the global clock. The clock gating cell, containing a latch and

an AND gate, consumes more power than a single bit multiplexer. However, when

this technique is applied to multiple bit registers it can conserve both, static and

dynamic power. We observed savings even at registers that were only 8-bits wide.

2.4.3 Operand Isolation

Operand Isolation is a method to selectively stop data from entering a block of com-

plex combinatorial logic, causing many transitions and therefore dynamic power con-

sumption, when the output is discarded by either an unselected multiplexer or a

currently disabled register. Figure 2.5 shows an example where changes to the input

A consume power even when the output A’ is not used. To prevent this unneces-

Combinational
Logic

0

1

B

Select

A
Q

A’

Figure 2.5: Design without Operand Isolation

sary power consumption isolation logic can be added at the input to the complex

combinatorial logic. It prevents changes to input A from propagating through the

combinatorial logic. The isolation logic usually consists of either AND or OR gates

depending on the specific application. The example in Figure 2.6 uses an AND gate

for operand isolation. The combinatorial logic only receives the input A when its

output A’ is selected by the multiplexer. Otherwise its input it 0.

The ideal candidates for operand isolation are complex circuits like adders, multi-

pliers, etc., where the additional leakage power caused by the isolation logic is smaller

than the dynamic power consumption of a not isolated circuit. Another good appli-

cation are circuit parts that have to be active only once after many clock cycles.

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 27

Combinational
Logic

Logic
Isolation

0

1
A

B

Select

Q

A’

Figure 2.6: Design with Operand Isolation

2.4.4 Re-timing

Retiming for low-power is the process of positioning new or moving existing flip-flops

so that they separate parts of the circuit that cause glitching from parts that have

high input capacitance. As glitches do not get propagated through flip-flops this

technique significantly reduces the switching activity of the high input capacitance

part of the circuit and hence reduces the dynamic power consumption.

2.4.5 Local Transformations

Many of the local transformation techniques replace a gate, or a small group of

gates in order to reduce dynamic power consumption from nets with higher switching

capacitance. These techniques are being executed directly by the logic synthesis tools,

like Synopsys Power Compiler [138]. Here is a brief overview.

Re-factoring Combinational logic functions that can be expressed through logic

equations can be factored using Boolean algebra resulting in optimized expressions. In

order to maximize efficiency, it is important to look across boundaries in a hierarchical

design to find logic equations that can be optimized. For example, the expression

p = a · c + a · d is computed in one design block, q = b · c + b · d is computed in

another design block. The top level design, which instantiates both design blocks,

computes r = p+q. If we look across the hierarchical boundaries we can simplify this

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 28

expression to r = (a + b) · (c + d) which requires less gates and therefore consumes

less leakage and dynamic power.

Re-mapping tries to remove high activity nets by mapping the logic function ac-

complished by simple logic gates into more complex gates. Figure 2.7 shows an

example where the high activity net n is removed by mapping onto an OR-NAND

gate.

A

B
n

C
Q

A

B
C

Q

Figure 2.7: Re-mapping

Phase Assignment is used to eliminate high activity nets by changing the phase

of the inputs and outputs. We say that a port, output or input, is in positive phase

when no inverter appears on that port. We say that it is in negative phase if an

inverter is connected. Note, this does not change the function of the circuit or lead

to the output being inverted. Figure 2.8 shows how this change in phase assignment

eliminates the high activity net n2.

n1 n2 n1A

B
Q

A

B
Q

Figure 2.8: Phase Assignment

Pin Swapping Gates with multiple functionally equivalent inputs, e.g. 4 input

NAND gates, might have different input capacitances associated with each input.

Pin Swapping swaps the inputs in such a way as to map high activity nets to inputs

with low capacitances and low activity nets to inputs with higher capacitances.

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 29

Re-sizing Resizing can be applied at the transistor and at the gate level. Here

we are only considering gate resizing. Many ASIC libraries have several versions

of the same gate, from slow, with higher input capacitances slowing down signal

propagation and consuming less leakage power, to fast, with lower input capacitances

speeding up signal propagation and consuming more leakage power. Gate resizing

exploits these features to reduce the dynamic power consumption of a circuit. It

does this by using fast gates on delay critical paths and slow gates on non critical

paths [44]. This technique leads to more balanced paths, similar in sense to the path

equalization technique discussed in Section 2.4.1, which results in a circuit with less

spurious transitions, hence lowering the dynamic power consumption. However, as

resizing does not change the topology of the circuit, it is guaranteed to be as fast as

the original one.

2.4.6 Serialization

Serialization is a powerful technique for implementing algorithms provided they are

serializable. It allows the implementer to scale the designs from high speed full

parallel computing with full operand length to word serial and bit serial one bit at a

time. This technique is applicable to many arithmetic circuits, e.g. multipliers, and

algorithms that are of iterative nature.

Table 2.1 shows a design space exploration which, at a very high level, compares

full parallel, word serial, and bit serial designs in terms or power consumption, speed,

and energy consumption. Speed refers to the number of clock cycles needed for

completion, the clock frequency is assumed to be constant.

The bit serial approach minimizes the number of gates which reduces the number

of gate inputs and therefore input capacitances and reduces wire lengths leading to

the least amount of dynamic power consumption. The small number of gates also

leads to the least amount of leakage power. However, it needs the most amount of

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 30

Table 2.1: Power–Energy Tradeoff with Serialization (f -constant)

Power Power Energy Energy
Design

Dynamic Leakage
Speed

PDyn Dominant PLeak Dominant

full parallel high high high medium low

word serial medium medium medium medium medium

bit serial low low low medium high

clock cycles, leading to the longest computation time. Full parallel circuits, on the

other hand, have the highest power consumption but are the fastest.

If we assume that the clock frequency is constant for all designs, then the energy

consumption is independent of the level of serialization if the dynamic power consump-

tion is dominant. If the leakage power is dominant, then the energy consumption is

inverse proportional to the power consumption.

2.4.7 Precomputation

This method selectively precomputes the output logic values of a circuit one clock

cycle before they are required. Using these precomputed values reduces switching

activity in the succeeding clock cycle. This by itself does not reduce the overall

dynamic power consumption of the circuit as the total switching activity remains

about the same.

We can take advantage of precomputation if it is possible to precompute a result

using only a subset of input conditions. If the output could correctly be precom-

puted, the the original circuit can be “turned off” in the next clock cycle and if only

for those cases were the precomputation yield a correct result the circuit remains

“on”. By carefully selecting the precomputation logic, i.e. selecting the subset of

input conditions for which the output should be precomputed, the dynamic power

consumption can be reduced at the cost of some additional gates with their associ-

ated leakage power consumption. This method is described in detail with intuitive

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 31

examples in [4]. It also shows how to use precomputation in combinational circuits.

In arithmetic circuits precomputation can precompute values that are repeatedly

used by the algorithm and store them in registers. During the actual computation

the registers are use like a lookup table, which speeds up the calculations and de-

creases the dynamic power consumption at the cost of more registers and therefore

an increased consumption of leakage power. The square-and-multiply algorithm [134]

for computing the xb is a good example where precomputation yields power savings

(also called k-ary method). Assume b is an n-bit integer. The square and multiply

algorithm uses on average n − 1 squarings and d1
2
n − 1e multiplications. If we pre-

compute 2k values, i.e. we compute x0, x1, . . . , x2k−1, and use them as a lookup table

we can reduce the number of multiplications.

2.5 Design Flow for Ultra-Low Power

We described all of our proof of concept designs in VHDL or Verilog using the ar-

chitectural and logical level optimizations described above extensively. Our target

was the TSMC 0.13 µm ASIC library, which is characterized for power. We used the

Synopsys tools Design Compiler [136] and Power Compiler [138] for synthesizing our

designs and Modelsim for simulation. The design flow is shown in Figure 2.9. At each

level of design flow we refined our architectures by analyzing the simulation results.

The first level is called register transfer level, or RTL for short. Synopsys creates

a forward-annotated switching activity interchange format (SAIF) file containing di-

rectives that determine which design elements to trace during simulation. Modelsim

reads this file and tracks the switching activity while simulating our design with in-

structions from the testbench. The results are written into a back-annotated SAIF

file. Synopsys reads this file and computes first estimates of the power consumption

of each section of the circuit.

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 32

Modelsim

Modelsim

Modelsim

Design Vision

Synthesis Simulation

RTL analysis RTL Level Simulation

Final Gate Level Simulation

SDF

Netlist

Parasitics

Primepower

Hierachical Power Analysis

SAIF

RTL.SAIF

VHDL

Testbench

SDF

Netlist

Parasitics
Gate Level Simulation

Primepower

Final Power Analysis

SAIF

SAIF

Final Results

2. Compilation
Flattened, Power Optimized

1. Compilation
Hierarchical

Figure 2.9: Low-Power Design Flow

CHAPTER 2. ULTRA-LOW POWER HARDWARE DESIGN 33

The next step is to compile the netlist of the design using Synopsys which also

produces the back-annotated file in standard delay format (SDF). This file contains

timing information for each verilog cell in the design. Modelsim uses this for sim-

ulation and to create an accurate back-annotated SAIF file. This file is used by

Primepower which provides us with detailed power consumption information for all

elements of the hierarchical design.

The back-annotated SAIF file is used by Synopsys for an incremental compilation

with power optimization. The result is simulated again and the resulting SAIF file

is used by Synopsys for generating the final power reports. At this level we can use

Primepower to show us how the power consumption varies over time.

Chapter 3

Survey of Cryptographic

Algorithms

This Chapter gives an overview of cryptographic primitives present in classic and

emerging algorithms and analyzes their suitability for ultra-low power implementa-

tions. This analysis is supported with data obtained from our own example imple-

mentations of ultra-low power primitives of block ciphers (Chapter 6), hash functions

(Chapter 4) and even public key algorithms (Chapter 5). To this end, we introduce

useful techniques for implementors of cryptographic algorithms as well as guidelines

for cryptographers to design new cryptographic algorithms specifically for ultra-low

power applications.

3.1 Survey

As a first step we examine current cryptographic algorithms. We limit ourselves to

current popular algorithms and also include some that we found to be particularly

interesting for this purpose.

34

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 35

3.1.1 Block Ciphers

We start our discussion by identifying common functions and structures that are

shared by a wide variety of established block cipher designs. Our list of algorithms

consists of classic block ciphers (DES/3DES, IDEA, RC5), the AES finalists, and the

extended tiny encryption algorithm XTEA. Table 3.1 contains a summary for the

ciphers under consideration.

Table 3.1: Common Elements in Block Ciphers

Algorithm R
ef

er
en

ce

N
o.

of
R

ou
n
d
s

B
lo

ck
S
iz

e
(b

it
s)

F
ei

st
el

S
P

-N
et

w
or

k

A
ri

th
m

et
ic

S
-B

ox

P
se

u
d
or

an
d
om

S
-B

ox

F
ix

ed
P
er

m
u
ta

ti
on

s

A
d
d
it

io
n

(m
o
d

2w
)

F
ix

ed
S
h
if
t/

R
ot

at
io

n

V
ar

.
S
h
if
t/

R
ot

at
io

n

M
o
d
.
M

u
lt

ip
li
ca

ti
on

C
on

st
.
M

u
lt

ip
li
ca

ti
on

DES/3DES [96] 16/48 64 • • • •
IDEA [76] 8 64 • • •
RC5 [122] 12/16 32/128 • • •
AES [97] 10/12/14 128 • • • • •
RC6 [120] 20 128 • • • •
MARS [18] 2× 16 128 • • • • • •
Serpent [6] 32 128 • • • •
Twofish [128] 16 128 • • • • • •
XTEA [152] ≥ 32 32 • • •

Round Structure Virtually all modern block ciphers are iterated product ciphers,

i.e. the encryption process consists of repeated application of a round function. The

round function is composed of multiple layers of transformations that perform substi-

tution and permutation, more generally also called confusion and diffusion layers. In

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 36

and by itself the round function is not considered secure, but each additional round

adds to the security level.

Popular round structures are variations of the Feistel network (DES, RC5, MARS,

etc.) in which the round function typically only modifies part of the round data.

Therefore, some publications refer to rounds in Feistel ciphers as half-rounds. Sub-

stitution and Permutation Networks (SPN) on the other hand typically modify the

entire dataset in each round, examples are IDEA, Rijndael (AES), etc.

Substitution Functions All product ciphers employ substitution functions, so

called S-Boxes, in one form or another for introducing non-linearity into the en-

cryption process. Various techniques range from look-up table based pseudo-random

substitutions to non-linear arithmetic functions of high degree.

Permutation Product ciphers combine various transformations for confusion and

diffusion. The latter is achieved either through fixed permutations (e.g. IP/IP−1 and

P-Box in DES) or through data dependent (variable) shifts and rotations (RC5/6 and

MARS).

Key Mixing Almost all block ciphers add subkeys into the round data using XOR

operations, which are fast and introduce virtually no overhead in both software and

hardware implementations. Several algorithms also use a blend of XORs and reg-

ular integer addition. This has the effect that the resulting addition is no longer

commutative, thereby complicating cryptanalysis.

Arithmetic Operations Certain arithmetic operations are useful for combining

diffusion and non-linear mixing of round data with key bits. A good example is

truncated integer multiplication which is used in MARS.

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 37

3.1.2 Stream Ciphers

Stream ciphers can be built in two different ways. The predominant method is to use

a pseudo random number generator (PRNG) to generate a key stream and XOR its

output with the datastream. The other possibility is to use a dedicated stream cipher

like RC4.

The RC4 is a proprietary stream cipher. It uses integer addition modulo 256 and

employs a dynamic S-Box with 256 8-bit entries. This S-Box is a lookup table where

the entries change with each encrypted byte depending on the key.

PRNGs can be built from block ciphers, hash functions, modular exponentiators,

or linear feedback shift register (LFSR) based stop-and-go generators. The first three

have a big advantage over a dedicated stream cipher, namely, the base function can

also be used for its original purpose. The stream cipher functionality comes at minimal

extra cost.

3.1.3 Hash Functions

A hash function produces a short fixed size digest of a long message. This digest

can be used to check the integrity of a message. Hash functions that employ a

secret key are called message authentication codes (MAC) and hence provide message

authentication as well as integrity. Universal hash function families provide provable

security and can be used to build provable secure MACs [148], i.e. bounds on the

success probability of an attacker independent of the computational power applied

can be proven. For this article we selected some of the most popular hash functions

and additionally two universal hash function families: NH [14] and WH (Chapter 4).

Table 3.2 summarizes some hash function parameters.

Each hash function has a fixed input size. Longer input strings are split, shorter

ones are padded. The hash size specifies the length of the resulting hash value, inde-

pendent of the length of the input string. The hash functions MD4, MD5, and those

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 38

described in the Secure Hash Standard (SHS) SHA-1, SHA-256, etc. all belong to the

same group of hash algorithms. MD2, MD4, MD5, and SHA-1 share similar func-

tional blocks with minor differences in the parameters. In spite of recent advances in

attacking SHA-1, it is still in wide spread use, however MD4 and MD5 are considered

compromised.

NH was introduced as a new hash function family for an authentication code

called UMAC and is based on modular integer multiplication and summation. WH

is a hash function family with even stronger security properties than NH and can be

used in place of NH. It is specifically designed for implementation in ultra-low power

hardware and is based on modular polynomial multiplication and summation. NH

and WH are defined for any fixed block size. For our table we assume a block size of

64 bits as this was also the size chosen in [153] for the implementation.

Table 3.2: Summary of Hash Function Characteristics

A
lg

or
it

h
m

R
ef

er
en

ce

N
o.

of
R

ou
n
d
s

In
p
u
t

S
iz

e(
b
it

s)

H
as

h
S
iz

e(
b
it

s)

C
on

st
an

ts
(b

y
te

s)

V
ar

ia
b
le

s
(b

y
te

s)

In
te

ge
r

M
u
lt

ip
li
ca

ti
on

(b
it

s)

In
te

ge
r

A
d
d
it

io
n

(b
it

s)

P
ol

y
n
om

ia
l
M

u
lt

ip
li
ca

ti
on

S
im

p
le

L
og

ic
F
u
n
ct

io
n
s

F
ix

ed
S
h
if
t/

R
ot

at
io

n

MD2 [66] 16 128 128 256 48 32 • •
SHA-1 [99] 4 512 160 16 20 32 • •
MD4 [118] 3 512 128 16 16 32 • •
MD5 [119] 4 512 128 16 16 32 • •
NH [14] n/a 64 64 64 64

WH [153] n/a 64 64 • •

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 39

3.1.4 Public Key Cryptosystems

The security of classic public key algorithms typically relies on the hard problem of

integer factorization or finding the discrete logarithm (DL) in a finite field (RSA,

ElGamal, etc.). The dominating arithmetic operation of these algorithms is modu-

lar exponentiation, which is typically implemented using modular multiplication and

squaring operations. A variant of RSA is Rabin’s Scheme, in which the public key

exponent is fixed to the value 2. This significantly reduces the complexity of the

encryption operation to modular squaring and allows for a compact implementation,

whereas the general case of RSA would be too large. The security of Rabin’s Scheme

relies on the integer factorization problem just like RSA. Therefore, there is no com-

promise in terms of security.

Elliptic curve cryptography (ECC) uses a variant of the DL problem that is defined

over the additive group of points on an elliptic curve. Points are repeatedly added

(or doubled) until a scalar ‘multiple’ of the originating point is obtained. A single

point “addition” consists of a heterogeneous variety of finite field operations such as

addition/subtraction, multiplication and in some cases inversion.

Hyperelliptic curve cryptography (HECC) has been proposed as a generalization

of ECC. Its advantage is that operands can be even shorter than for ECC while an

equivalent level of security is maintained. The problem of HECC is its arithmetic

structure which is even more complex than that of ECC. While efficient explicit

expressions exist for the group operations [106], they still contain diverse arithmetic

primitives that may prove to be too complex for ultra-low power implementations.

NtruEncrypt is based on a completely different hard problem namely the Shortest

Vector Problem (SVP) in high dimension lattices. The central arithmetic primitive

of NtruEncrypt is multiplication in a truncated polynomial ring. The operation itself

can be subdivided into individual computations of polynomial coefficients through

accumulation of partial products. Table 3.3 compares the algorithm parameters of

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 40

Rabin’s Scheme, Ntru and Elliptic Curve of equivalent security levels.

Table 3.3: Comparison of PKC Functions

Algorithm R
ef

er
en

ce

E
n
cr

y
p
ti

on

S
ig

n
at

u
re

M
es

sa
ge

P
ay

lo
ad

(b
it

s)

C
ip

h
er

te
x
t

(b
it

s)

S
ig

n
at

u
re

L
en

gt
h

(b
it

s)

In
te

ge
r

M
u
lt

ip
li
ca

ti
on

(b
it

s)

E
C

P
oi

n
t

A
d
d
it

io
n

(b
it

s)

P
ol

y
n
om

ia
l
C

o
effi

ci
en

ts

(b
it

s)

Rabin’s Scheme [121] • • < 512 512 512 512

NtruEncrypt [59] • < 265 1,169 8

NtruSign [58] • 1,169 8

EC-MV [134] • < 200 400 169

EC-DSA [64] • 200 169

3.2 Analysis

In this section we analyze how the structure, functional primitives and storage re-

quirements of cryptographic algorithms relate to their energy consumption. From this

we can devise recommendations for future algorithms tailored toward ultra-low power

implementations. For our example implementations, we used the TSMC 0.13µm ASIC

library, which is characterized for power, and the Synopsys tools Design Compiler and

Power Compiler for synthesis. Modelsim was used for simulation and capturing of

switching activity which was used by Power Compiler for power estimation. We no-

ticed that at a clock frequency of 500 kHz, which is commonly found in sensor nodes,

the static power consumption PLeak, caused by leakage, outweighs the dynamic power

consumption PDyn, caused by switching activity. Future CMOS generations will have

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 41

even higher leakage power consumption according to the International Technology

Roadmap for Semiconductors [63] which will cause it to be dominant even at higher

frequencies.

3.2.1 Algorithm Structure

The algorithm structure can tell us how well each algorithm lends itself to both

parallelization and serialization. The latter ties in directly with minimization of

circuit area and therefore static power consumption.

Scalability refers to the possibility of scaling an algorithm between bit serial and

highly parallelized realizations in an efficient manner. In certain contexts, such as

Public Key Cryptography, scalability may also encompass the re-use of existing pro-

cessing elements for higher precision operands than originally intended, i.e. using a

1024 bit modular exponentiator hardware for 2048 bit operands.

The iterative round structure of most block ciphers is by itself an indicator for

a reasonable degree of scalability, provided that all rounds are the same. Then only

one instance of the round function needs to be implemented. Serialization is possible

with RC5 and RC6 and, ignoring a slightly modified last round, also for most other

ciphers.

In contrast to block ciphers, public key schemes are for the most part based on

arithmetic over large integer or polynomial fields, which usually lends itself well to

serialization, even though certain operations like modular reduction introduce addi-

tional complexity which hinders serialization beyond a certain point. The biggest

problem with serial implementations is the running time that is cubic in the operand

size for most public key algorithms. Insofar it is important to evaluate the trade-off

between area usage and a certain degree of parallelization.

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 42

Modularity is closely related to the concept of scalability, but more in the sense

that simple processing elements can be replicated easily for further parallelization

of a task when higher performance is necessary. We will give our implementation

of the NtruEncrypt algorithm as an example (Chapter 4). NtruEncrypt has good

modularity. Its basic operation can be subdivided into computations using 8-bit

long polynomial coefficients. By intelligently arranging memory accesses to these

coefficients, it is possible to perform computation of multiple coefficients of the result

in parallel. Since storage of operands is by far the largest portion of the circuit, scaling

up the number of parallel arithmetic units (AUs) has little effect (< 50% increase)

on the overall area and power consumption. At the same time the number of clock

cycles can be reduced dramatically, as can be seen from Table 3.4. The critical path

delay is not affected.

Table 3.4: Serial / Parallel Tradeoffs in NtruEncrypt (500kHz, N = 167)

Power (µW) Clock PDP
Implementation

PDyn PLeak Total
Area1

Cycles2 ns×µW

Single AU 4.03 15.1 19.1 2,850 29,225 13.18

8 AUs in parallel 5.00 22.5 27.5 3,950 3,682 18.96

Regularity describes the degree of similarity between modules at different levels of

parallelization. At the logic level highly regular designs allow for efficient parameteri-

zation and reuse, while irregular circuits often require manual design changes. At the

algorithmic level a high degree of regularity expresses the uniformity of operations

necessary to perform a task, while very complex tasks consisting of many different

atomic operations are characterized by their irregularity. Rabin’s Scheme, NH and

WH are good examples for algorithms that have high regularity. They all have one

simple underlying function. In block ciphers even a single round of a block cipher

1Area is given in terms of equivalent two input NAND gates
2Number of clock cycles to complete one operation

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 43

can take up considerable amounts of chip area. Serialization of the round function is

therefore necessary. Ciphers with a homogeneous round function (e.g. AES) have a

high degree of regularity and therefore seem better suited for serialization than others

of heterogeneous structure (e.g. DES).

Power - Energy Tradeoff Energy equals the amount of power dissipated over

time. Increasing the degree of parallelism increases the power consumption, but at

the same time decreases the computation time. The trade-off depends on the overall

structure of the architecture, since certain elements may have constant size. The

point of optimality can be found by modeling the energy consumption as a function

of the degree of parallelism. A useful metric for this is Energy per Bit Encrypted. It

describes the amount of energy necessary to encrypt a single bit of the message. This

metric can be used to compare the energy efficiency of cryptosystems at an equivalent

level of security. It is independent of the actual operand length.

3.2.2 Functional Primitives

In the following we describe the characteristics of each group of primitives we encoun-

tered in Section 3.1 and their suitability for ultra-low power implementation.

Simple Logic Functions This group contains logic functions where the output is

dependent on only a small, fixed set of inputs. This includes functions like XORs of

two bitstrings (AddRoundKey in AES), bit-multipliers and multiplexers. The number

of logic gates scales linearly with the width of the data path.

Fixed Shifts and Permutations Fixed in this context means that the shifts and

permutations are not data dependent. Permutations and expansions are used in

block ciphers (DES, Serpent, AES) as non-linear diffusion elements. Fixed shifts

and rotations serve the same purpose and are frequently used in block ciphers (AES,

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 44

Mars, Serpent, Twofish) and hash functions (MD2, SHA-1, MD4, MD5). Common

to all these functions is that their implementation introduces virtually no cost as

they require only wiring resources and no logic. They are perfect for any hardware

implementation.

Data Dependent Shifts Also called “variable shifts” for short, are used in a

couple of block ciphers (RC5, RC6, Mars) due to their resistance against differential

cryptanalysis. Implementations frequently use barrel shifters to support all possible

shifts or rotations. The delay for one shift operation is proportional to log2 n but its

area scales with n log2 n. For situations in which the shift or rotation is followed by

a register, it may be more power efficient to instead implement the register as a shift

register with parallel load and combine it with some additional control logic and a

counter. Due to the relatively high area cost variable shifts are not well suited for

ultra-low power implementations unless they can be combined with existing registers.

Integer Arithmetic Integer arithmetic primitives such as addition and multiplica-

tion are frequently the most costly functions in a cryptographic algorithm. Although

they can often be implemented in a bit serial fashion (e.g. multiplication), the effi-

cient propagation of carries presents itself as a major problem. The simplest form of

an adder, the carry propagate or ripple carry adder, scales linearly with the word size

n, but glitches in the carry chain cause high dynamic power consumption. Various

alternatives exist in the literature, but they go along with a penalty in terms of area

and therefore static power consumption. Because of these costs integer arithmetic

should be avoided as much as possible for new ultra-low power algorithms. An el-

egant solution to this problem might also be the usage of residue number systems

which can result in carry free arithmetic.

Arithmetic primitives are frequently combined with modular reduction steps. In

trivial cases the modulus is chosen as 2k, which means that only k bits of the result

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 45

are kept, excess bits are truncated. Finite field arithmetic with a non-trivial modulus

adds a fair amount of complexity to the circuit. Simple implementations perform

conditional subtractions of the modulus from the result, depending on the value of its

most significant bit. For certain classes of public key algorithms which heavily depend

on modular arithmetic, the use of residue number system arithmetic has proven to

be effective for efficient implementation.

Polynomial Arithmetic Polynomial arithmetic, i.e. arithmetic in extension fields,

is preferable for ultra-low power implementation due to limited carry propagation and

improved regularity. Therefore, several algorithms are specifically tailored towards

arithmetic in GF (2k) (e.g. AES). Additions in fields of characteristic two can simply

be implemented by an XOR. For ultra-low power applications multiplication may

be implemented in a bit-serial fashion. This is facilitated by the simplicity of the

addition and reduction steps.

The vast difference in power consumption between integer and polynomial arith-

metic is demonstrated in Chapter 4, where we describe the universal hash function

families NH and PH. PH is a redefinition of NH which uses polynomials over GF (2)

instead of integers. We would like to emphasize that both hash functions are 2−w-

almost universal, hence both provide the same level of security. The differences in

area, speed and power consumption, however, are impressive. Note, both algorithms

require only 64 clock cycles for computing the hash of one set of inputs. The results

of our implementation at 500 kHz are summarized in Table 3.5.

Table 3.5: Comparison of NH (integer) and PH (polynomial) Implementations

Power (µW) Delay PDP
Implementation

PDyn PLeak Total
Area3

ns ns×µW

NH (integer) 5.47 28.1 33.6 5,291 9.92 333.31

PH (polynomial) 3.41 12.1 15.5 2,356 1.35 20.93

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 46

Substitution Functions (S-Box) can be implemented using various techniques.

While look-up tables are fast and easy to implement, the size of the tables is often

prohibitively expensive. If performance is secondary to low power consumption and

an arithmetic description for the S-Box exists, then a circuit realization of the under-

lying arithmetic operation may be preferable. We performed a case study on different

AES S-box architectures for ultra-low power implementations. For one circuit we im-

plemented the S-box as an arithmetic function using its inherent algebraic structure.

For our other circuit we implemented a 256 × 8-bit look-up table in combinational

logic. The results are summarized in Table 3.6. Even though the combinational im-

plementation uses only 30% of the dynamic power of the arithmetic implementation,

due to its size its total power consumption is two times higher. This shows that

it is advantageous if the content of the S-box can be described algebraically, which

additionally gives an opportunity for serialization.

Table 3.6: Comparison of AES S-Box Implementations

Power (µW) Delay PDP
Implementation

PDyn PLeak Total
Area4

ns ns×µW

AES S-Box: Logic 0.42 7.67 8.10 1,397 1.61 13.04

AES S-Box: Algebraic 1.39 2.68 4.07 431 4.68 19.05

3.2.3 Storage Requirements

Storage requirements of cryptographic algorithms are manifold. All constants and

variables used by an algorithm as well as implementation specific storage elements add

to it. Constants are comprised of fixed setup parameters, precomputed constants, and

static S-Boxes. Fixed parameters and precomputed constants can be implemented in

3Area is given in terms of equivalent two input NAND gates
4Area is given in terms of equivalent two input NAND gates

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 47

combinational logic. Strategies for larger sets of constants i.e. S-Boxes are described

above in Section 3.2.2.

Variables, as well as variable S-Boxes (RC4) and temporary data has to be stored

in registers or RAM. Pipelining techniques require additional storage elements. Since

storage elements typically impose significant area and power penalties, they should

be used conservatively in ultra-low power implementations.

3.2.4 Implementation Considerations

Here we want to mention additional considerations that go beyond looking at the

structure and elementary functions of a cryptographic algorithm.

Multi-encryption and Multi-hashing Multi-encryption /-hashing are two re-

lated concepts for increasing the security of an algorithm by applying it repeatedly.

The Triple Data Encryption Algorithm (TDEA) also known as Triple DES is prob-

ably the best known example of multi-encryption. It applies DES three times in a

row, using either two or three different keys depending on the keying option. It was

originally developed out of the need to prolong the lifetime of DES until a new, more

secure standard was found. However, in the light of ultra-low power cryptography,

multi-encryption and multi-hashing can be seen as an enabling technology. It makes

it possible to use block ciphers or hash functions that consume very little power but

have a small security margin, and run them several times in series, thus obtaining a

more secure overall cipher or hash function.

Fixed or Constant Parameters in cryptosystems can help to alleviate the prob-

lem of large storage requirements, and even simplify certain computations. This

is highly dependent on the intended application context. For example, an Internet

server will typically have to change keys and associated key parameters frequently,

such that keeping them constant is not possible. In embedded applications, where

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 48

communication is typically limited to links between sensor nodes and a base station,

fixing parameters such as the public key helps to reduce the storage requirements

significantly.

Precomputation is a powerful method for solving latency problems and is espe-

cially important for low-power nodes where intensive computations must be spread

over time to reduce the power consumption below the maximum tolerable level. If

the algorithm allows precomputation of intermediate results and thus only a small

number of computations are necessary for the processing of the data, then latency

may be virtually eliminated.

3.3 Recommendations for Designing new

Algorithms

In this section we outline recommendations for designers of cryptographic algorithms

from an implementers point of view. Note that designing cryptographic algorithms

requires a unique skill-set and many years of experience and therefore should be

attempted only by professional cryptographers. We use the terminology defined in

the previous section to describe the key features that a new algorithm should have.

The goal is to obtain an ultra-low power, scalable, secure algorithm.

The most important requirement is scalability. It should be possible to scale

the algorithm from a bit serial implementation to a highly parallel implementation

depending on the desired maximum power consumption and speed. The extent to

which an algorithm is scalable depends on its regularity. New cryptographic algo-

rithms should be regular and contain only a limited amount of different primitives.

In order to further improve the scalability, the basic functions themselves should be

serializable. Then the implementor can trade off speed with power on a fine level of

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 49

granularity and not just on the algorithmic level (e.g. round function).

Serializing an algorithm slows down its operation assuming the clock speed is held

constant. However, in environments where data has to be sent quickly but only once

in a while, it would be desirable if most steps could be computed “offline” ahead of

time. When the data becomes available only a simple, fast computation should be

required to complete the operation (e.g. addition of data to the key).

Applications for WSN and RFIDs have a variety of security requirements ranging

from high risk applications e.g. military target tracking, where the devices are likely

to being attacked to low risk applications e.g. passive environmental monitoring.

This would be best supported if the new algorithms could operate with various key

lengths (e.g. AES). Another method to increase the security level without increasing

its footprint is multi-hashing / multi-encryption.

We would like to briefly summarize the implementation considerations for elemen-

tary functions.

• Lookup tables are costly. An algebraic representation can be more efficient.

• Polynomial arithmetic in GF (2k) is well suited for hardware implementation.

• Integer arithmetic has an inherent high power consumption.

• Data dependent shifts and rotations are costly unless they can be combined

with existing registers.

• Fixed shifts and rotations are well suited for hardware implementation.

Messages in WSN and used by RFIDs are usually very small and average between

30 bits to 100 bits in length. The power consumed by transmitting a bit is high

compared to the power consumed by computation. A new algorithm should therefore

have a compact representation of cipher I/O. Encryption functions should not cause

any message expansion and use a small block size. Hash functions should result in

CHAPTER 3. SURVEY OF CRYPTOGRAPHIC ALGORITHMS 50

small digests as they are transmitted in addition to the original data. Ideally, the

digest size should not affect the collision probability, i.e. security.

The challenge of future research is to find an algorithm that at its core contains a

a simple, scalable primitive. It would be highly desirable if this simple primitive can

be used as a common element for secret and public key functions. This would make

it possible to provide both types of functions for ultra-low power applications, which

in turn will enable simpler and efficient security protocols.

3.4 Conclusion

Current wireless sensor nodes and RFID tags struggle with the load of cryptographic

algorithms implemented in software. The next generation nodes will be MEMS pow-

ered and therefore their power constraints will be even more severe. Future RFID

tags will incorporate more functionality like writable memory and sensors. This will

further decrease the amount of power available for cryptography. In this Chapter, we

provide guidelines on how to implement current cryptographic algorithms in hardware

to enable sufficiently strong cryptography for these devices. We use these guidelines

in the following chapters for our ultra-low power implementations.

Chapter 4

Universal Hash Functions

Parts of this chapter were presented in [153] and [68].

4.1 Motivation

Protecting the integrity of data is of utmost importance for many application sce-

narios. For example, smart dust motes that are embedded in a bridge could monitor

the stress and inform the authorities in case of emergency. Wireless sensors might

monitor plant growth, moisture and PH-value on a farm. In both cases the data is not

confidential but its authenticity and integrity are very important. For this purpose,

efficient Message Authentication Codes (MACs) [131] may be preferable over digital

signature schemes [32] due to their high encryption throughput and short authenti-

cation tags. A disadvantage for both digital signature schemes and traditional MACs

is that they provide only computational security. This means that an attacker with

sufficient computational power may break the scheme. More severely, the lack of a

formal security proof makes these schemes vulnerable to possible shortcut attacks.

Universal hash functions, first introduced by Carter and Wegman [20], provide a

unique solution to the aforementioned security problems. Roughly speaking, universal

51

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 52

hash functions are collections of hash functions that map messages into short output

strings such that the collision probability of any given pair of messages is small. A

universal hash function family can be used to build an unconditionally secure MAC.

For this, the communicating parties share a secret and randomly chosen hash function

from the universal hash function family, and a secret encryption key. A message is

authenticated by hashing it with the shared secret hash function and then encrypting

the resulting hash using the key. Carter and Wegman [148] showed that when the

hash function family is strongly universal, i.e. a stronger version of universal hash

functions where messages are mapped into their images in a pairwise independent

manner, and the encryption is realized by a one-time pad, the adversary cannot forge

the message with probability better than that obtained by choosing a random string

for the MAC.

Black et.al. [14] describe a new, provably secure message authentication code

(called UMAC), which has been designed to achieve extreme speeds in software im-

plementations. A hash function family named NH underlies hashing in UMAC. In

this paper we improve upon NH in order to make secure hash functions possible in

ultra-low-power devices. We implement NH with power efficiency guidelines in mind

and notice that its power consumption exceeds our limits by far. Instead of optimiz-

ing the implementation even more and reducing its power consumption by a fraction

we take a different approach. We make incremental changes to the original algorithm

which result in improved efficiency in hardware. This leads to the new hash function

families named PH and PR. We then identify the main power consumers (i.e. registers,

adders) and carefully remove components one by one. We formulate the resulting new

algorithm (WH) mathematically. We prove that all three new hash function families

are still at least as secure as the original NH.

While WH is consuming an order of magnitude less power than NH, its leakage

power consumption remains a bottleneck. The leakage power is proportional to the

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 53

circuit size which is proportional to the size of the hash value which in turn is pro-

portional to the security level. The technique of multi-hashing was introduced [123]

to increase the security level of a given hash function without changing the size of

the hash value at the expense of more key material. We reverse this procedure to

preserve the security level while reducing the size of the hash value and therefore the

leakage power. We use the Toeplitz approach to reduce the amount of key material

needed. The resulting design is scalable and can be tailored to specific energy and

power consumption requirements without sacrificing security.

4.2 Preliminaries

4.2.1 Notations

Let {0, 1}∗ represent all binary strings, including the empty string. The set H =

{HK : A → B}, is a family of hash functions with domain A ⊆ {0, 1}∗ of size a and

range B ⊆ {0, 1}∗ of size b. HK denotes a single hash function chosen from the set

of hash functions H according to a random key K ∈ C where the set C ⊆ {0, 1}∗

denotes the finite set of key strings. In the text we will set h = HK for convenience.

The element M ∈ A stands for a message string to be hashed and is partitioned

into blocks as M = (m1, · · · ,mn), where n is the number of message blocks of length

w. Similarly the key K ∈ C is partitioned as K = (k1, · · · , kn), where each block ki

has length w. We use the notation H[n,w] to refer to a hash function family where

n is the number of message (or key) blocks and w is the number of bits per block.

Let Uw represent the set of nonnegative integers less than 2w, and Pw represent

the set of polynomials over GF (2) [87] of degree less than w. Note that each message

block mi and key block ki belongs to either Uw, Pw or GF (2w). Here GF (2w) denotes

the finite field of 2w elements defined by GF (2)[x]/(p), where p is an irreducible

polynomial of degree w over GF (2). In this setting the bits of a message or key block

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 54

are associated with the coefficients of a polynomial. To illustrate, suppose w = 6 and

p = x6 +x+1. Let us see how two messages (binary bit strings), 101101 and 100011,

can be multiplied in the Galois Field of GF (2)[x]/(p). 101101 and 100011 would be

mapped into x5 +x3 +x2 +1 and x5 +x+1, respectively. Multiplication of these two

polynomials yields x10 +x8 +x7 +x6 +2x5 +x4 + 2x3 +x2 +x +1. This is equivalent

to x10 + x8 + x7 + x6 + x4 + x2 + x + 1 (since 2x5 ≡ 0x5 ≡ 0 in GF (2)). Dividing this

polynomial by p and taking the remainder, we obtain x5 +x3 +x2 +x (corresponding

to the bit string 101110). Note that this way carries are eliminated as well. Finally

the addition symbol ‘+’ is used to denote both integer and polynomial addition (in a

ring or finite field). The meaning should be obvious from the context.

4.2.2 Universal Hashing

A universal hash function, as proposed by Carter and Wegman [20], is a mapping from

the finite set A with size a to the finite set B with size b. For a given hash function h ∈
H and for a message pair (M, M ′) where M 6= M ′ the following function is defined:

δh(M,M ′) = 1 if h(M) = h(M ′), and 0 otherwise, that is, the function δ yields 1 when

the input message pairs collide. For a given finite set of hash functions δH(M,M ′)

is defined as
∑

h∈H δh(M, M ′), which tells us that δh(M, M ′) yields the number of

functions in H for which M and M ′ collide. When h is randomly chosen from H

and two distinct messages M and M ′ are given as input, the collision probability is

equal to δh(M, M ′)/|H|. We give the definitions of the two classes of universal hash

functions used in this paper from [100]:

Definition 1 The set of hash functions H = h : A → B is said to be universal if

for every M,M ′ ∈ A where M 6= M ′,

|h ∈ H : h(M) = h(M ′)| = δH(M, M ′) =
|H|
b

.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 55

Definition 2 The set of hash functions H = h : A → B is said to be ε-almost

universal (ε− AU) if for every M, M ′ ∈ A where M 6= M ′,

|h ∈ H : h(M) = h(M ′)| = δH(M, M ′) = ε|H| .

In this definition ε is the upper bound for the probability of collision. Observe that

the previous definition might actually be considered as a special case of the latter

with ε being equal to 1/b. The smallest possible value for ε is (a− b)/(b(a− 1)).

4.3 Hash Function Families

Here, we present the universal hash family NH, and then we introduce three variations

to it. Each one improves upon the previous one in terms of efficiency , but diverges

further from NH.

4.3.1 NH

In the past many universal and almost universal hash families were proposed [130,

49, 123, 74, 14, 36]. Black et al introduced an almost universal hash function family

called NH in [14]. The definition of NH is given below.

Definition 3 ([14]) Given M = (m1, · · · ,mn) and K = (k1, · · · , kn), where mi and

ki ∈ Uw, and for any even n ≥ 2, NH is computed as follows:

NHK(M) =




n/2∑
i=1

((m2i−1 + k2i−1) mod 2w) · ((m2i + k2i) mod 2w)


 mod 22w .

Theorem 1 ([14]) For any even n ≥ 2 and w ≥ 1, NH[n,w] is 2−w-almost universal

on n equal-length strings.

We refer the reader to the same paper for the proof of the above theorem.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 56

4.3.2 NH - Polynomial (PH)

In this construction NH is redefined with message and key blocks as polynomials over

GF (2) instead of integers:

Definition 4 Given M = (m1, · · · ,mn) and K = (k1, · · · , kn), where mi and ki ∈
Pw, for any even n ≥ 2, PH is defined as follows:

PHK(M) =

n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) .

In a hardware implementation this completely eliminates the carry chain and thereby

improves all three efficiency metrics (i.e. speed, space, power) simultaneously. That

is, due to the elimination of carry propagations, the operable clock frequency (and

thus the speed of the hash algorithm) is dramatically increased. Likewise, the area

efficiency is improved since the carry network is eliminated. Finally, due to the

reduced switching activity, the power consumption is reduced.

4.3.3 NH-Polynomial with Reduction (PR)

The main motivation for this construction is the length of the authentication tag,

which is a concern for two reasons. The tag needs to be transmitted along with

the data, therefore, the shorter the tag, the less energy will be consumed for its

transmission. The energy consumed by transmitting a single bit can be as high as

the energy needed to perform the entire hash computation on the node. The energy

needed for transmitting the tag is proportional to its bit-length. Secondly, the size of

the tag determines the number of flip-flops needed for storing the tag. The original

NH as well as PH introduced above require a large number of flip-flops for the double

length hash output. In this construction, the storage and transmission requirement

is improved by introducing a reduction polynomial of degree matching the block size,

hence reducing the size of the authentication tag by half.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 57

Definition 5 Given M = (m1, · · · ,mn) and K = (k1, · · · , kn), where mi and ki ∈
GF (2w), for any even n ≥ 2, and a polynomial p of degree w irreducible over GF (2),

PR is defined as follows:

PRK(M) =

n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) (mod p) .

Note that the original NH construction eliminates the modular reductions used in

the previously proposed hash constructions (e.g. MMH proposed in [49], SQUARE

proposed in [36]) since reductions are relatively costly to implement in software. A

modulo reduction involves division and computation of the remainder. In hardware,

however, reductions (especially those with fixed low-weight polynomials) can be im-

plemented quite efficiently. The reduction becomes an integral part of the computa-

tion and involves only a simple subtraction at each step (see Section 4.4.4).

4.3.4 Weighted NH-Polynomial with Reduction (WH)

While processing multiple blocks, it is often necessary to hold the hash value accu-

mulated during the previous iterations in a temporary register. This increases the

storage requirement and translates into a larger and slower circuit with higher power

consumption. As a remedy we introduce a variation of NH where each processed

block is scaled with a power of x. This function is derived from the changes we make

to PR which are described in Section 4.4.4.

Definition 6 Given M = (m1, · · · ,mn) and K = (k1, · · · , kn), where mi and ki ∈
GF (2w), for any even n ≥ 2, and an irreducible polynomial p ∈ GF (2w), WH is

defined as follows:

WHK(M) =

n/2∑
i=1

(m2i−1 + k2i−1) · (m2i + k2i) x(n
2
−i)w (mod p) .

Due to the scaling with the factor x(n
2
−i)w, perfect serialization is achieved in the

implementation where the new block product is accumulated in the same register

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 58

holding the hash of the previously processed blocks. This eliminates the need for an

extra temporary register as well as other control components required to implement

the data path.

4.3.5 Analysis

In this section we give three theorems establishing the security of the NH variants.

Theorem 2 For any even n ≥ 2 and w ≥ 1, PH[n,w] is 2−w-almost universal on n

equal-length strings.

Proof Let M , M ′ be distinct members of the domain A with equal sizes. We are

required to show that

Pr [PHK(M) = PHK(M ′)] ≤ 2−w .

Expanding the terms inside the probability expression, we obtain

Pr




n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) =

n/2∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)


 ≤ 2−w . (4.1)

The probability is taken over uniform choices of (k1, k2, . . . , kn) with each ki ∈ Pw

and the arithmetic is over GF (2). Since M and M ′ are distinct, mi 6= m′
i for some

1 ≤ i ≤ n. Addition and multiplication in a ring are commutative, hence there is

no loss of generality in assuming m2 6= m′
2. Now let us prove that for any choice of

k2, k3, . . . , kn we have

Prk1∈Pw


(m1 + k1)(m2 + k2) +

n/2∑
i=2

(m2i−1 + k2i−1)(m2i + k2i) =

(m′
1 + k1)(m

′
2 + k2) +

n/2∑
i=2

(m′
2i−1 + k2i−1)(m

′
2i + k2i)


 ≤ 2−w

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 59

which will imply (4.1). Let

y =

n/2∑
i=2

(m′
2i−1 + k2i−1)(m

′
2i + k2i)−

n/2∑
i=2

(m2i−1 + k2i−1)(m2i + k2i) .

Rewriting the probability yields

Prk1 [(m1 + k1)(m2 + k2)− (m′
1 + k1)(m

′
2 + k2) = y] ≤ 2−w .

Next, we show that for any m2, m′
2 and y ∈ Pw there exists at most one k1 ∈ Pw such

that

k1(m2 −m′
2) + m1(m2 + k2)−m′

1(m
′
2 + k2) = y .

Then the identity becomes

k1(m2 −m′
2) = y −m1(m2 + k2) + m′

1(m
′
2 + k2) . (4.2)

Since m2 6= m′
2, the term (m2 −m′

2) cannot be zero. The analysis can be concluded

by examining two possible cases. Since there is no zero divisor in GF (2)[x], either

(m2−m′
2) divides the right hand side of (4.2) and there is one k1 ∈ Pw satisfying the

equation, which is

k1 = (y −m1(m2 + k2) + m′
1(m

′
2 + k2)) /(m2 −m′

2) ,

or (m2 − m′
2) does not divide the right hand side of (4.2) and there is no k1 ∈ Pw

satisfying this equation. These two cases prove that there can be at most one k1 value

(out of 2w possible values), which causes collision. Therefore,

Pr [PHK(M) = PHK(M ′)] ≤ 2−w .

2

Theorem 3 For any even n ≥ 2 and w ≥ 1, PR[n,w] is universal on n equal-length

strings.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 60

The intuition behind this theorem and theorem4 is that when PR or WH are used

as the hash function, we can mathematically prove and quantify that the adversary

cannot falsify our message with a better probability than randomly selecting the right

hash value from all possible hashes.

Proof Let M , M ′ be distinct members of the domain A with equal lengths. We are

required to show that

Pr [PRK(M) = PRK(M ′)] = 2−w .

Expanding the terms inside the probability expression, we obtain

Pr




n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) =

n/2∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i) (mod p)


 = 2−w.

We proceed as in the proof of Theorem 2 with the only exception of the arithmetic

performed in GF (2w), instead of Pw. Similarly the derivation yields

k1(m2 −m′
2) = y −m1(m2 + k2) + m′

1(m
′
2 + k2) (mod p) .

Since m2 6= m′
2, the term (m2−m′

2) cannot be zero and its inverse in GF (2w) exists.

Hence there is exactly one k1 ∈ GF (2w) satisfying the equation, which is

k1 = (m2 −m′
2)
−1 (y −m1(m2 + k2) + m′

1(m
′
2 + k2)) (mod p) .

Therefore,

Pr [PRK(M) = PRK(M ′)] = 2−w .

2

Theorem 4 For any even n ≥ 2 and w ≥ 1, WH[n,w] is universal on n equal-length

strings.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 61

Proof Let M, M ′ be distinct members of the domain A with equal lengths. For

brevity we denote (m2i−1+k2i−1)(m2i+k2i) = mk2i, (m′
2i−1+k2i−1)(m

′
2i+k2i) = m′k2i

and so on. Let M, M ′ be distinct members of the domain A with equal lengths. We

are required to show that

Pr [WHK(M) = WHK(M ′)] = 2−w .

Expanding the terms inside the probability expression, we obtain

Pr




n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i)
(
x(n

2
−i)w

)
=

n/2∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)

(
x(n

2
−i)w

)
(mod p)


 = 2−w . (4.3)

The probability is taken over uniform choices of (k1, . . . , kn) with each ki ∈ GF (2w)

and the arithmetic is over GF (2w). Since M and M ′ are distinct, mi 6= m′
i for some

1 ≤ i ≤ n. Let m2l 6= m′
2l. For any choice of k1, . . . , k2l−2, k2l, . . . , kn having

Prk2l−1∈GF (2w)




n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i)
(
x(n

2
−i)w

)
=

n/2∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)

(
x(n

2
−i)w

)
(mod p)


 = 2−w (4.4)

satisfied for all 1 ≤ l ≤ n/2 implies (4.3). Setting y and z as

y =

[
l−1∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)x

(n
2
−i)w−

l−1∑
i=1

(m2i−1 + k2i−1)(m2i + k2i)x
(n
2
−i)w

]
(mod p)

and

z =




n/2∑

i=l+1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)x

(n
2
−i)w−

n/2∑

i=l+1

(m2i−1 + k2i−1)(m2i + k2i)x
(n
2
−i)w


 (mod p)

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 62

we rewrite the probability expression in (4.4) as

Prk2l−1

[
x(n

2
−l)w

[
(m2l−1 + k2l−1)(m2l + k2l)− (m′

2l−1 + k2l−1)(m
′
2l + k2l)

]
=

y + z (mod p)
]

= 2−w .

Since x(n
2
−l)w is invertible in GF (2w), the equation inside the probability expression

can be rewritten as follows.

k2l−1(m2l −m′
2l) + m2l−1(m2l + k2l)−m′

2l−1(m
′
2l + k2l) = x−(n

2
−l)w(y + z) (mod p)

Solving the equation for k2l−1, we end up with the following

k2l−1 = (m2l −m′
2l)

−1
(
(x−(n

2
−l)w)(y + z)−

m2l−1(m2l + k2l) + m′
2l−1(m

′
2l + k2l)

)
(mod p) .

Note that (m2l−m′
2l) is invertible since in the beginning of the proof we assumed that

m2l 6= m′
2l. This proves that for any m2l, m′

2l (with m2l 6= m′
2l) and y, z ∈ GF (2w)

there exists exactly one k2l−1 ∈ GF (2w) which causes a collision. Therefore,

Pr [WHK(M) = WHK(M ′)] = 2−w .

2

4.4 Implementations

4.4.1 NH

The algorithm for NH is described in [14]. It is given in this paper in Definition 3 as

NHK(M) =




n/2∑
i=1

((m2i−1 + k2i−1) mod 2w) · ((m2i + k2i) mod 2w)


 mod 22w .

This leads to the simple functional block diagram shown in Figure 4.1. The message

and the key are assumed to be split into n blocks of w bits. Messages that are shorter

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 63

than a multiple of 2 ·w are padded. All odd message blocks are applied to input m1,

all even message blocks to input m2. The blocks of the key are applied similarly to

k1 and k2. The output of Adder 1 is ma = m1 + k1 mod 2w, the output of Adder 2 is

mb = m2 + k2 mod 2w. These are integer additions where the carry out is discarded.

The multiplication results in mout = ma ·mb. The final adder accumulates all n/2

products.

Adder 1 Adder 2

Multiplier

Adder 3

64 64 64

64 64

128

64

128

m1 k1 m2 k2

ma mb

sum

mout

Figure 4.1: Functional diagram for NH

The detailed block diagram for the circuit is much more complex and can be found

in Figure 4.21 As power consumption is our main concern and not speed, we base our

design on a bit serial multiplier. For each multiplication of two w bit numbers, w

partial products need to be computed and added: mout =
∑w

j=1 ma ·mb[j] · 2j−1.

This decision gives us the ability to use a bit serial adder for Adder 2 as its

result mb[j] (indicated as mult in Figure 4.2) can directly be used by the bit serial

multiplier. A bit serial adder produces one bit of the result with each clock cycle,

starting with the LSB, and it has minimal glitching. Unfortunately, this adder has

to store both its inputs in shift registers which raises the leakage power consumption.

1Boxes labeled “R1” or “R2” denote shifts.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 64

The multiplicand ma has to be available immediately. Therefore, we use a simple

Bit Multiplier

Carry−Save Adder

64

Operand Isolation

Ripple Carry Adder

Swap

64

128

64 64

128

Multiplexer Multiplexer

128

128 64

6464

64

64

128

R1

Sum Register Carry Register

64

64

Right Shift Register Right Shift Register

Full Adder

64 64

MuxSum Register

Ripple Carry Adder

64

64 64

128

Swap

128

128

Reg.

128sout

a

s_sft1 c_in

c_outs_out

s_oi

rcasum

s_sum

s_swap

c_oi

c_null

c_loop

s_loop c_loop

saout sbout

a b

k2

cout

ccin

0

m1 k1

rcasout

ma sout

mult

0

b

cin

m2

s_loop

Bit Serial Adder
Adder 2Adder 1

64

Multiplier & Adder 3

Figure 4.2: Detailed Block Diagram for NH Datapath

ripple carry adder to implement Adder 1. Its main disadvantage is that it takes a

long time until the carries propagate through the adder, causing a lot of glitching

and therefore a high power consumption. Due to its delay, it is necessary to store

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 65

its output in a register. However, Adder 1 needs to compute a new result only every

64 clock cycles, hence its dynamic power consumption is tolerable.

The Bit Multiplier in Figure 4.2 computes the partial products, one during each

clock cycle. The addition of the partial products is accomplished using a carry-save

adder and the Right Shift Algorithm [103]. Figure 4.3 shows an example of this algo-

rithm. This adder uses the redundant carry-save notation which results in minimal

1001 · 1101

Register 0 0 0 0 0 0 0 0

4th-bit = 1 1 0 0 1

Add: 0 1 0 0 1 0 0 0

Shift: 0 0 1 0 0 1 0 0

3rd-bit = 0 0 0 0 0

Add: 0 0 1 0 0 1 0 0

Shift: 0 0 0 1 0 0 1 0

2nd-bit = 1 1 0 0 1

Add: 0 1 0 1 1 0 1 0

Shift: 0 0 1 0 1 1 0 1

1st-bit = 1 1 0 0 1

Add: 0 1 1 1 0 1 0 1

Figure 4.3: Right shift multiplication of 1001 and 1101

glitching as the carries are not fully propagated. However, this requires 64 additional

flip-flops to store the carry bits. After one multiplication has been computed, its

result has to be added to the accumulation of the previous multiplications as indi-

cated by Adder 3 in Figure 4.1. Rather than having a separate multiplier and adder,

in the actual implementation we add the partial products of the next multiplication

immediately to the result of the previous additions. This technique makes use of the

Sum Register and the Carry Register of the Multiplier to store the result of Adder 3,

thus saving a 128 bit register and a 128 bit multiplexer.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 66

The carry-save adder has separate data paths for sum and carry. It can add the

partial products of one multiplication very efficiently. However, after the product is

computed it needs to be re-aligned before the partial products of the next multipli-

cation can be added to this result. This re-alignment involves converting the number

from carry-save notation to standard binary notation, i.e, adding the caries to the

sum. This addition is done using a ripple carry adder (Figure 4.2 shows that this

Ripple Carry Adder has the signal rcasum as output). Even though the products of the

multiplication are 128 bits wide, the carry is only 64 bits wide, hence the ripple carry

adder is only 64 bits wide. This sum needs to be computed only after a multiplication

has finished, i.e., every 64 clock cycles. As the result is not needed during the other

63 clock cycles, we isolate the operands from the ripple carry adder, hence the adder

does not consume power due to switching activity when its output is not needed.

After one multiplication is completed and the result is re-aligned, the carry registers

are set to zero for the next computation.

4.4.2 NH - Polynomial (PH)

The main power consumers in the implementation of NH are the ripple carry adders

and flip-flops needed for the multiplier and the bit serial adder. PH is a variation

on NH in that it uses polynomials over GF (2) instead of integers. This replaces the

costly adders with simple XOR gates which consume significantly less power (see

Figure 4.4). Adder 1 is replaced by 64 XOR gates and its result does not need to be

stored in a register because of their much shorter delay. The bit-serial adder (Adder 2)

is replaced by XORs and a single 64 bit shift register which reduces the complexity of

this unit by 64 flip-flops. The Multiplier and Adder 3 are combined as in NH but the

carry-save adder is replaced by XORs. This eliminates the whole carry path including

the carry register (64 flip-flops), the multiplexer, and the ripple carry adder to realign

the sum. Just changing NH from using integers to polynomials reduces the number

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 67

of cells by 65%, the dynamic power consumption by 38% and the leakage power by

more than a half.

6464

XOR

Left Shift Register

64

64 64

XOR

Bit Multiplier

64

64

Sum Register

R1 R2

Multiplexer

128 128

XOR

128

128

m2 k2

mb

m1 k1
Adder 1 Adder 2

ma

a

mult

b

Multiplier & Adder 3sum

b

Figure 4.4: Functional Diagram for PH

4.4.3 NH-Polynomial with Reduction (PR)

The main difference between PR and PH is that the result is reduced to 64 bits using

an irreducible polynomial. In our hardware implementation the multiplication and the

reduction are interleaved, eliminating the need for extra storage space for the partial

product, which makes the reduction very efficient. Moreover, using low Hamming-

weight polynomials the reduction can be achieved with only a few gates and minimal

extra delay. We are performing the modulo reduction after every single addition. This

keeps the reduction circuit simple and the result is never larger than w bits. However,

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 68

the Multiplier and Adder 3 can no longer be merged. This is expensive as we need to

have not just one adder but also one extra 64-bit register (see Figure 4.5). Therefore,

we are not able to reduce the number of flip-flops in our implementation but we

reduced the switching activity as our datapath through the multiplier is only 64 bits

wide. Adder 3 computes a new result only once every 64 clock cycles. The number

of cells for this implementation is slightly higher than for PH and thus the leakage

power is increased. Due to the reduced switching activity, however, the dynamic

power consumption is now 50% less then that of NH.

4.4.4 Weighted NH-Polynomial with Reduction (WH)

This design was inspired by the bottlenecks we observed in the implementation of PR.

For instance, the Multiplier and Adder 3 (Figure 4.1) could not be merged as in PH.

However, the shorter output size of PR and hence the savings in transmission power

make a modulo reduced result very appealing. Therefore, we used a different approach

to optimize PR We removed from PR’s implementation the 64 bit register and the

XOR gates of Adder 3 and the 64 bit multiplexer from the Multiplier, The function of

the resulting design is characterized by the construction shown in Definition 6:

WHK(M) =

n/2∑
i=1

(m2i−1 + k2i−1) · (m2i + k2i) x(n
2
−i)w (mod p) .

Compared to NH, the removal of the mentioned components reduced the dynamic

power consumption by 59%, the leakage power consumption by 66%, and the number

of cells by 74%. This dramatic savings become more obvious when the block diagrams

for NH in Figure 4.2 and for WH in Figure 4.6 are compared.

4.4.5 Control Logic

The control logic manages the switching of the multiplexers, loading of the next data

set and resetting of the carry registers. Due to the iterative nature of our multiplier,

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 69

6464

XOR

Left Shift Register

64

64

Sum Register Bit Multiplier

64

64
64

Modulo Reduction

Multiplexer

XOR

64

64

XOR

Sum Register

64 64

XOR

64

m2 k2

mb

mult

ma

mout

0

sum

m1 k1

b

Adder 1 Adder 2

Adder 3

Multiplier

Figure 4.5: Functional Diagram for PR

the control logic requires a counter. Traditionally, counters are built using a register

and a combinational incrementer. The incrementer requires long carry propagations

which cause glitching and introduce latency. As the critical delay of the datapath

is minimized in our design to only a few levels of logic, the delay of an incrementer

would create a bottleneck in the control circuit. Hence, optimization of this unit is

critical. Instead of an integer counter, we use a linear feedback shift register (LFSR)

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 70

XORXOR

6464 64 64

Left Shift Register

64mb

Bit MultiplierSum Register

Left Shift

64a
64m_loop

64+1msft

XOR

Modulo Reduction

64

64m_out
64

64ma

m1 k1 m2 k2

sout

mult

Adder 1

Multiplier & Adder 3

Adder 2

Figure 4.6: Block diagram for WH

with 6 flip-flops for NH, PH, PR, and WH-64, enhanced to “count” up to 64. LFSRs

have minimal glitching and therefore make power efficient and fast counters.

4.4.6 Implementation Results

For synthesizing our designs we used the Synopsys tools Design Compiler [136] and

Power Compiler [137], and the TSMC 0.13 µm ASIC library. The results of the sim-

ulation on many input sets were verified with the Maple package [53] for consistency.

Table 4.1 shows the results for power, area, and delay for the hash function imple-

mentations synthesized for operation at 100 MHz. The column Delay describes the

maximum delay which determines the highest operable frequency.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 71

Table 4.1: Comparison of Hash Implementations at 100 Mhz

Dynamic Leakage Total Circuit Delay/

Design Power Power Power Area Speedup

µW % µW % µW % g.e. % ns x

NH 1093.9 100 28.1 100 1122.0 100 5291 100 9.92 1.0

PH 682.7 62 12.1 43 694.8 62 2356 45 1.35 7.4

PR 549.9 50 14.0 50 563.9 50 2537 48 1.35 7.4

WH 452.3 41 9.4 33 461.7 41 1701 32 1.35 7.4

WH consumes 41% of the dynamic power and 33% of the leakage power of NH

while at the same time consuming only 32% of the area2. WH and NH need the same

number of clock cycles to compute a hash value from the same input but WH can run

7.4 times faster than NH. We proved that WH provides the same level of security.

The dynamic power consumption of WH is 452.3 µW at 100 MHz. This is much

higher than our aim of 20 µW. The CMOS power formula in Equation 2.1 shows that

the dynamic power consumption is directly proportional to the operating frequency.

Hence, the implementations consume 1/200th of the dynamic power when clocked at

500 kHz, however, the leakage power remains the same. This lower frequency is used

in sensor node implementations [5]. Table 4.2 demonstrates that at low speeds the

leakage power becomes the limiting factor for ultra-low-power implementations. WH

can operate with as little as 11.6 µW. This is in the range of the power produced by a

MEMS scavenger [89]. This table also shows how much energy each circuit consumes

when it computes the hash for one 128-bit input as well as resulting energy per single

bit. We would like to note that we used an ASIC standard cell library to obtain these

results. A full custom IC-design would yield even higher power savings.

2g.e. stands for gate equivalents. It describes the area a circuit consumes in terms of two input

NAND gates.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 72

Table 4.2: Power and Energy Consumption of Hash Implementations at 500 kHz

Dynamic Leakage Total Energy

Design Power Power Power
Energy

per bit

µW % µW % µW % nJ % pJ/bit %

NH 5.47 100 28.1 100 33.6 100 4.30 100 33.6 100

PH 3.41 62 12.1 43 15.5 46 1.98 46 15.5 46

PR 2.75 50 14.0 50 16.8 50 2.15 50 16.8 50

WH 2.26 41 9.4 33 11.6 35 1.49 35 11.6 35

4.5 Multi-Hashing and Toeplitz Construction

The newly introduced hash function family WH is a big improvement over NH in

terms of power consumption. However, we can reduce the dominant leakage power

consumption even further by utilizing Multi-Hashing and the well known Toeplitz

approach. These techniques helps us to design a smaller circuit which therefore con-

sumes less leakage power.

The circuit size scales with the data path width, i.e. the block size w of the message

and the key. Since the collision probability is equal to 2−w (see Section 4.3.5), reducing

the block size w will significantly increase this probability and impair the security

of the system. In order to decrease the collision probability without changing the

word size, [14] uses the technique of multi-hashing [123] in which different random

members of the hash function family are applied to the message, and the results

are concatenated to form the hash value. We use a similar approach, however, we

preserve the collision probability while reducing the word size. For instance, to obtain

the collision probability of 2−w with a block size of w/4 bits, each message block is

hashed 4 times with independent keys. The computed hash outputs (w/4 bits each)

are then concatenated to form the w bit hash result. The drawback of this method is

that it requires 4 times the key material. As a remedy one can employ the well-known

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 73

Toeplitz approach [84, 14, 73] in which shifted versions of one key rather than several

independent keys are used. In this case, however, since the keys are related to each

other, it is not obvious that the collision probability can be maintained. In Theorem 5

we prove that the Toeplitz construction for WH can still achieve the desired result.

4.5.1 Toeplitz Construction

We introduce the hash function family WHT [n,w, t] (“Toeplitz-WH”) having three

parameters, namely n, w and t. The additional parameter t stands for Toeplitz

iteration count, where t ≥ 1, and the others are defined as before. Domain A remains

the same whereas the range is now B = {0, 1}wt. A function is selected by a key K

of length w(n + 2(t − 1)) bits. In other words, K is composed of (n + 2(t − 1)) w

bit words. We have K = (k1, k2 · · · , kn+2(t−1)), where each ki is a w bit word. The

notation Ki..j represents K = (ki, ki+1, · · · , kj). Then for a message string M ∈ A,

WHT
K(M) is defined as follows.

WHT
K(M) = (WHK1..n(M), WHK3..n+2(M), · · · , WHK2t−1..n+2t−2(M)).

Theorem 5 For any w ≥ 1, t ≥ 1, and any even n ≥ 2, WHT [n,w, t] is universal

on equal-length strings with collision probability of 2−wt.

Proof For the sake of brevity we will use WH and WHT instead of WH[n,w] and

WHT [n,w, t], respectively. Let M and M ′ be distinct members of the domain A with

equal lengths. We are required to show

Pr[WHT
K(M) = WHT

K(M ′)] = 2−wt (4.5)

We have M = (m1,m2, · · · ,mn), M ′ = (m′
1,m

′
2, · · · , m′

n) and K = (k1, k2, · · · , kn+2(t−1)),

where mi, m′
i and ki are all w bit words associated with polynomials. Note that the

arithmetic is carried out over GF (2w) with the irreducible polynomial p of degree w.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 74

Next we define the event Ej for j ∈ {1, · · · , t} as follows.

Ej :

n/2∑
i=1

(k2i+2j−3 + m2i−1)(k2i+2j−2 + m2i) x(n
2
−i)w =

n/2∑
i=1

(k2i+2j−3 + m′
2i−1)(k2i+2j−2 + m′

2i) x(n
2
−i)w (mod p)

We call each term in the summations of the Ej a “clause” (e.g., (k1 + m1)(k2 +

m2)x
(n
2
−1)w is a clause). Now the probability in (4.5) can be rewritten as

Pr[E1 ∩ E2 ∩ · · · ∩ Et] .

Without loss of generality, we can assume that M and M ′ disagree in the last clause

(i.e., mn−1 6= m′
n−1 or mn 6= m′

n). Notice that if M and M ′ agreed in the last clause

then each Ej would be satisfied if and only if it was also satisfied when that last clause

was omitted. Hence, we could truncate M and M ′ after the last clause in which they

disagree, and still obtain exactly the same set of keys causing collisions.

Now, again without loss of generality, we can assume that mn−1 6= m′
n−1 be-

cause for each iteration of Ej the key is shifted by two words making the case

symmetric. We proceed by proving that for all j ∈ {1, · · · , t}, Pr[Ej is true |
E1, · · · , Ej−1 are true] = 2−w, implying the theorem.

For j = 1, the claim is satisfied due to Theorem 4. For j > 1, the events E1

through Ej−1 depend only on key words k1, · · · , kn+2j−4 while Ej depends also on

kn+2j−3 and kn+2j−2. By fixing k1 through kn+2j−4 such that E1 through Ej−1 are

satisfied, and fixing any value for kn+2j−3, we prove that there is only one value of

kn+2j−2 satisfying Ej. Let

y =

n/2−1∑
i=1

(k2i+2j−3 + m′
2i−1)(k2i+2j−2 + m′

2i) x(n
2
−i)w −

n/2−1∑
i=1

(k2i+2j−3 + m2i−1)(k2i+2j−2 + m2i) x(n
2
−i)w .

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 75

Thus, Ej becomes

Ej : (kn+2j−3+mn−1)(kn+2j−2+mn)−(kn+2j−3+m′
n−1)(kn+2j−2+m′

n) = y (mod p) .

Now we are required to prove that

Pr [(kn+2j−3 + mn−1)(kn+2j−2 + mn)−
(kn+2j−3 + m′

n−1)(kn+2j−2 + m′
n) = y (mod p)

]
= 2−w .

Solving the equation inside the above probability expression for kn+2j−2, we end up

with the following

kn+2j−2 = (mn−1 −m′
n−1)

−1
(
y −mn(mn−1 + kn+2j−3)+

m′
n(m′

n−1 + kn+2j−3)
)

(mod p) .

Note that (mn−1−m′
n−1) is invertible since in the beginning of the proof we assumed

mn−1 6= m′
n−1. This proves that for any kn+2j−3, mn−1, m′

n−1 (with mn−1 6= m′
n−1)

∈ GF (2w) there exists exactly one kn+2j−2 ∈ GF (2w) which causes a collision. There-

fore,

Pr[WHT
K(M) = WHT

K(M ′)] = 2−wt .

2

4.5.2 WH with Toeplitz Construction

We have shown in Section 4.5.1 that it is possible to preserve the security level while

reducing the word size if the message is hashed multiple times with independent keys.

The Toeplitz approach describes how these keys can be generated efficiently. For our

implementation we assume that the circuit, which generates the messages and the

keys, implements this approach and delivers keys and the appropriate parts of the

message to our hash function implementation.

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 76

Figure 4.7 shows a detailed block diagram for WH depending on the Toeplitz

parameter t. We define the word size w as 64 bits. The block size is the word

size divided by the Toeplitz parameter t. The implementation of WH with a 64 bit

word size, i.e. t = 1, is called WH-64. The minimum input length in this case is

2 · w = 128 bits. Half of these bits are applied to m1 and the other half to m2. The

same holds for the key. In order to achieve the same level of security for a word size

of 32 bits we would hash the message twice. Hence, the Toeplitz iteration count t

would be two. The implementation of this is called WH-32. In order to hash the same

input of 128 bits WH-32 would need to compute four hashes. The length of the final

output is the same.

XORXOR

64/t64/t 64/t 64/t

Modulo Reduction

Left Shift

64/t+1msft

64/tb

Bit Multiplier Left Shift Register

64/tma 64/tmb

Sum Register

XOR

64/t

64/tsout
64/t

64/ta

m1 k1 m2 k2

0
sin

mult

m_out

m_loop

Figure 4.7: Detailed block diagram for WH datapath depending on Toeplitz parame-

ter t

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 77

4.5.3 Analysis & Results of WH with Various Block Sizes

We implemented WH with block size w of 64 bits (WH-64), 32 bits (WH-32), and

16 bits (WH-16) using the TSMC 0.13 µm ASIC library and the Synopsys tools Design

Compiler and Power Compiler. Table 4.3 shows the results for power, area, and delay

for these hash implementations, synthesized for operation at 100 MHz .

Table 4.3: Comparison of Hash Implementations at 100 Mhz

Dynamic Leakage Total Circuit Delay /

Design Power Power Power Area Speedup

µW % µW % µW % g.e. % ns x

WH-64 452.3 100 9.36 100 461.7 100 1701 100 1.35 1.0

WH-32 217.5 48 4.81 51 222.3 48 873 51 1.31 1.0

WH-16 126.2 28 2.32 25 128.5 28 460 27 0.76 1.8

It can be seen in Table 4.3 that the dynamic and leakage power consumptions as

well as the circuit size are reduced almost linearly with the block size. We analytically

verify these observations. For simplicity, in our analysis we ignore the contributions of

the control and reduction units to the power consumption. From the power dissipation

formula for CMOS (Equation 2.1) we see that the leakage power is proportional to

the number of gates (i.e. area A) used: PLeak ∝ A. The area in turn is proportional

to the block size, i.e. A ∝ w, and therefore

PLeak ∝ w .

The dynamic power consumption is proportional to the operating frequency and the

number of logic transitions: PDyn ∝ f N . Since N ∝ w, the dynamic power consump-

tion scales with the frequency and the block size as follows.

PDyn ∝ f w

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 78

The total power consumption P = PDyn + PLeak is related to f and w as

P ∝ w(cf + 1) .

Here c is a fixed constant factor. The energy E consumed is the total power times

the running time: E = P T . Since T = w
f
, the total energy consumption is related to

the block size and the frequency as

E ∝ w2

(
c +

1

f

)
.

The slight nonlinearity observed in Table 4.3 can be explained by considering the

control and the modulo reduction units, which are the only parts in the circuit that do

not scale linearly with the block size. The size of the modulo reduction unit depends

on the primitive polynomial and can be made negligible by utilizing a low-Hamming

weight polynomial such as a trinomial. The control unit scales with the logarithm of

the block since an LFSR of r flip flops may be used to count through 2r − 1 states.

This explains why the reduction is not exactly linear. The critical timing path in all

implementations is from the control logic to the shift register.

4.5.4 Analysis of WH with Toeplitz

Table 4.4 shows the power consumptions of three implementations of WH. The first

one is the standard implementation of WH with a block size of w = 64. The other two

implementations are utilizing the multi-hashing technique with t = 2 and 4, and with

block sizes of w = 16 and 32, respectively. The figures given in Table 4.4 represent

the power/energy consumptions of the three hash algorithms for processing the same

amount of input data (i.e. 64 bits).

In the table we observe that both the dynamic and the leakage power consumptions

decrease almost linearly with increasing multi-hash iteration count t. We observe

the same behavior for all frequencies. On the other hand the energy consumption

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 79

stays about the same regardless of multi-hashing and only increases with decreasing

operating frequency. Also notice that the leakage power remains the same and it

becomes the limiting factor at lower frequencies. One way to reduce the dynamic

power consumption is to lower the operating frequency. However, this increases the

energy consumption as the leakage power is now consumed over a longer period of

time.

Table 4.4: Comparison of Power and Energy Consumption

100 MHz 500 kHz

Design PDyn PLeak P E PDyn PLeak P E

µW µW µW nJ µW µW µW nJ

WH-64 452.3 9.36 461.7 0.30 2.261 9.36 11.62 1.49

WH-32 217.5 4.81 222.3 0.28 1.087 4.81 5.90 1.51

WH-16 126.2 2.32 128.6 0.33 0.631 2.32 2.95 1.51

1 kHz

Design PDyn PLeak P E

nW µW µW nJ

WH-64 4.523 9.36 9.37 599.5

WH-32 2.175 4.81 4.82 616.4

WH-16 1.262 2.32 2.31 592.9

As evident from the table using the Toeplitz approach it is possible to reduce

the power consumed to hash w bits of data. We next analyze the dependency of

power and energy on the block size, the operating frequency, and the multi-hashing

iteration count. As a first step we define w as a constant block size of 64 bits. The

Toeplitz count is t. In order to achieve the same security for an implementation with

a block size of w
t

the result has to be hashed t times. The effective block length

becomes w′ = w
t
. This approach reduces the power consumed to hash a block of

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 80

w bits independently of the operating frequency as

P ′
Dyn ∝ f w′ = f

w

t
, and

P ′
Leak ∝ w′ =

w

t
.

The total power consumption is found as

P ′ ∝ w

t
(cf + 1)

where c is a fixed constant factor. This is in line with what we have observed in

Table 4.4: The total power consumption is reduced by a factor of t. This improvement

does not come for free. Since we have now t blocks of length w
t
, where each will be

hashed t times, it will take t times longer to compute the hash of w bits of data:

T ′ = t T = tw
f
. However, the energy remains unaffected:

E ′ = P ′ T ′ ∝ w2

(
c +

1

f

)
.

Figure 4.8 shows how the power consumption of a circuit depends on its area and

the clock speed. The graph is extrapolated from simulation data at 100 MHz. It

shows clearly that at low frequencies the power consumption scales linearly with the

area, i.e. the leakage power is the dominant part. At higher frequencies the dynamic

power takes over. The dynamic power consumption scales linearly with the frequency.

Note that the frequency axis in Figure 4.8 is logarithmic and only the powers of ten

are shown.

The energy consumption is shown in Figure 4.9. The axes have a different orienta-

tion than in Figure 4.8 such that the frequency is decreasing towards the right and the

area is decreasing towards the left. The frequency axis in Figure 4.9 is in logarithmic

scale. Figure 4.9 demonstrates that the energy consumption decreases linearly with

increasing frequency. However, the energy consumption is independent of the area.

This allows us to reduce the circuit size, i.e. increase the Toeplitz parameter t, with-

out any penalty on the energy consumption. Reducing the circuit size decreases the

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 81

leakage power and at low frequencies this has a big impact as shown in Figure 4.8. It

is now possible to increase the frequency to a level such that the power consumption

is the same as it was before reducing the area. Looking back into Figure 4.9, we can

see that the energy consumption is reduced while the power consumption remained

the same. This is a powerful tool for optimizing this hash function with respect to

specific energy and power consumption requirements.

Figure 4.8: Power Consumption

Equalizing Runtime We have demonstrated that the Toeplitz construction pro-

vides a drastic t-fold reduction in power consumption and circuit size at the price of

t-times slower hash computation. In order to maintain the runtime one may decide to

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 82

Figure 4.9: Energy Consumption

increase the operating frequency t times: f ′′ = f t. In this arrangement the dynamic

power consumption does not depend on t anymore, only the leakage power does.

f ′′ = f t T ′′ = T ∝ w

f

P ′′
Dyn ∝ f ′′ w′ = f w P ′′

Leak = P ′
Leak ∝

w

t

P ′′ ∝ w

(
cf +

1

t

)
E ′′ ∝ w2

(
c +

1

t f

)

The most important result of this is that at low frequencies (i.e. P ′′
Dyn ¿ P ′′

Leak) the

total power consumption as well as the energy consumption scales with the Toeplitz

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 83

Table 4.5: Comparison of Power and Energy Consumption with f ′ = f t

f =100 MHz f =500 kHz

Design f ′ PDyn PLeak P E f ′ PDyn PLeak P E

MHz µW µW µW nJ kHz µW µW µW nJ

WH-64 100 452.3 9.36 461.7 0.30 500 2.261 9.36 11.62 1.49

WH-32 200 435.5 4.81 440.0 0.28 1000 2.175 4.81 7.00 0.89

WH-16 400 505.0 2.32 507.3 0.32 2000 2.525 2.32 4.84 0.62

f =1 kHz

Design f ′ PDyn PLeak P E

kHz nW µW µW nJ

WH-64 1 4.523 9.36 9.37 599.5

WH-32 2 4.350 4.81 4.82 308.4

WH-16 4 5.050 2.32 2.32 148.5

parameter t.

for low frequencies : E ′′ ∝ 1

t

w2

f
P ′′ ∝ 1

t
w

for high frequencies : E ′′ ∝ w2 P ′′ ∝ w f

Table 4.5 shows that the energy needed to compute the hash of a 128 bit data

block can be reduced without affecting the runtime. The dynamic power consumption

remains roughly constant as time increases, but the leakage power consumption is

reduced. Note that the header of the table specifies the frequency f only. The actual

clock frequency f ′ for WH-64 is equal to f , for WH-32 it is twice higher (t = 2) and

for WH-16 it is four times higher (t = 4).

The only way to reduce the leakage power of a circuit, aside from using a different

technology, is to reduce the circuit size. Multiple hashing enables us to reduce the

circuit size while maintaining the security level. The amount of additional key mate-

rial is reduced through the Toeplitz approach so that this becomes a viable solution.

Table 4.5 shows that at 500 kHz we can reduce the power and energy consumptions

by more than half and still compute the hash with the same security and in the same

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 84

amount of time.

4.6 Conclusion

In this chapter, we propose three variations on NH (the underlying hash function of

UMAC), namely PH, PR and WH. Our main motivation was to prove that univer-

sal hash functions can be employed to provide provable security in ultra-low-power

applications such as next generation sensor networks. More specifically, hardware

implementations of universal hash functions with an emphasis on low-power and rea-

sonable execution speed are considered.

The first hash function we propose, i.e. PH, produces a hash of length 2w and is

shown to be 2−w-almost universal. The other two hash functions, i.e. PR and WH,

reach optimality and are shown to be universal hash functions with a much shorter

hash length of w. Since their combinatorial properties are mathematically proven,

there is no need for making cryptographic hardness assumptions and using a safety

margin in practical implementations. In addition, these schemes are simple enough

to allow for efficient constructions.

To our knowledge the proposed hash functions are the first ones specifically de-

signed for efficient hardware implementations. Designing the new algorithms with

efficiency guidelines in mind and applying optimization techniques, we achieved dras-

tic power savings of up to 59% and speedup of up to 7.4 times over NH. Note that the

speed improvement and the power reduction are accomplished simultaneously. We

also observed that at lower operating frequencies the leakage power becomes the dom-

inant part in the overall power consumption. Our implementation of WH consumes

only 11.6 µW at 500 kHz.

The only way to reduce the leakage power even further is to reduce the circuit

size. Therefore, we applied multi-hashing integrated with the Toeplitz approach to

CHAPTER 4. UNIVERSAL HASH FUNCTIONS 85

our hash function WH resulting in the designs WH-32 and WH-16. Without sacrificing

any security we achieved drastic power savings of up to 90% over NH and reduced the

circuit size by more than 90% to less than 500 gates at the expense of a very slight

increase in the amount of key material.

We presented a powerful method for optimizing WH with respect to specific energy

and power consumption requirements. We have shown that with the introduction of

multi-hashing (t times) together with the Toeplitz approach the circuit size and the

power consumption is reduced by a factor of t while it takes t times longer to compute

the hash. Therefore the energy consumption stays about the same. On the other

hand the operating frequency may be increased t times to achieve the hash without

increasing the runtime. Then the dynamic power consumption is increased t-fold,

however, the leakage power is not affected. Hence, at low frequencies (i.e. PDyn ¿
PLeak) the total power consumption as well as the energy consumptions decrease

linearly with increasing parameter t. This is a powerful technique to decrease the

circuit size, and the power and energy consumptions simultaneously while maintaining

the hashing speed. The only limiting factor is the maximum operating frequency.

By designing the new algorithms with efficiency guidelines in mind and applying

optimization techniques, we achieved drastic power, energy and area savings. Our

implementation of WH-16 consumes only 2.95 µW at 500 kHz and uses only 460

equivalent gates. It could therefore be integrated into a self-powered device. This

enables the use of hash functions in ultra-low-power applications such as “Smart

Dust” motes, RFIDs, and Piconet nodes.

Chapter 5

Public Key Functions

In this chapter we present ultra-low power implementations of three inherently dif-

ferent public key algorithms: Rabin’s Scheme, NtruEncrypt and Elliptic curve cryp-

tography. Parts of this chapter were presented in [42] and [41]. The ECC point

multiplication circuit was implemented by Erdinç Öztürk and is described in detail

in [102] and [101]. Gunnar Gaubatz implemented the circuit for the “Star Multipli-

cation” of NtruEncrypt.

5.1 Motivation

Most publication on wireless sensor network security seem to preclude that public

key cryptography (PKC) is not feasible on severely power constrained devices, and

therefore, revert to emulation of asymmetry using symmetric key techniques [108].

However, [117] shows that this is impossible for the service of broadcast authentication

and therefore public key based schemes have to be used.

Most, if not all, implement cryptographic primitives in software on general purpose

micro-controllers. While intuition might support this notion of infeasibility, we are not

aware of any studies that have actually analyzed the cost of PKC in sensor networks,

86

CHAPTER 5. PUBLIC KEY FUNCTIONS 87

apart from [19] and our own publications [42] and [41].

Public key cryptography can enable services like broadcast authentication and

tremendously simplify the implementation of many other security services and addi-

tionally reduce transmission power due to less protocol overhead. We show this in

Chapter 7. Moreover, the capture of a single node would not compromise the en-

tire network, since the nodes do not have to store any globally shared secrets. Our

approach to overcome the difficulty in implementing PKC in sensor nodes is based

on providing a custom-designed low-power co-processor that can be embedded in the

node and that handles all of the compute-intensive tasks.

The challenge is to overcome the considerable computational complexity of stan-

dard public key encryption algorithms and make public key encryption possible on

ultra-low power devices. Traditional schemes like RSA or ElGamal require consider-

able amounts of resources which in the past limited their use to large-scale platforms

like networked servers and personal computers. Mobile equipment with less computa-

tional resources, such as cell phones, Personal Digital Assistants (PDAs) and pagers,

therefore uses much more efficient elliptic curve based algorithms such as EC-DH

and EC-DSA which execute considerably faster while preserving the same level of

security [149]. The operands of EC-cryptosystems are much shorter than those in

traditional schemes. Unfortunately the improved computational efficiency of ECC

comes at the price of much more complex arithmetic primitives and a large number

of temporary operands, whereas RSA or ElGamal require only one single arithmetic

primitive and few operands. The heterogenous structure and larger storage require-

ments of ECC make it less scalable and more challenging for energy efficient low-power

implementations.

CHAPTER 5. PUBLIC KEY FUNCTIONS 88

5.2 Introduction

Rabin’s Scheme, NtruEncrypt and Elliptic Curve Scalar Point Multiplication are

inherently different algorithms. In order to be able to quantitatively compare them

and their suitability for ultra-low power implementation we had to chose algorithm

specific parameter sets that provide approximately the same level of security. In

this section we talk about the rational behind our selection and briefly describe the

algorithms.

5.2.1 Parameter Selection

When we talk about matching levels of security, we base our assumptions on the

widely recognized analysis by Lenstra and Verheul [79]. They relate the selection of

key sizes of various types of cryptosystems to the anticipated progress of cryptanalysis

and cost of computation. They distinguish between key sizes of classical asymmetric

systems (RSA, Rabin’s Scheme, ElGamal, etc.), Subgroup Discrete Logarithm (DL)

based schemes, and Elliptic Curve (EC) based systems. However, their analysis does

not include a definition of equivalent security for a lattice based scheme like Ntru-

Encrypt. For our purpose of finding parameters for NtruEncrypt, which offer a level

of security comparable to the other two systems, we therefore refer to the analysis of

Hoffstein, Silverman and Whyte [60].

While in practice certain classes of applications might require a higher level of se-

curity than others, we regard our designs simply as proof of concept and hence choose

to implement them at a comparatively low level of security. It should, however, be

relatively straightforward to estimate the cost of higher security level implementations

based on the analysis that we give at the end of this Chapter. For Rabin’s Scheme

we selected a modulus of 512 bits, which according to Lenstra and Verheul [79] pro-

vides a security level of around 60 bits. Our ECC architecture performs arithmetic

CHAPTER 5. PUBLIC KEY FUNCTIONS 89

in a prime field of 100 bits in size, which provides a security level between 56 and

60 bits depending on the confidence level one puts into the assumption that no sig-

nificant cryptanalytic progress has been made. In the case of NtruEncrypt we chose

the system parameters as (N, p, q) = (167, 3, 128), based on findings in [60], offering

a security level of around 57 bits.

5.2.2 Rabin’s Scheme

Rabin’s Scheme was introduced in 1979 in [115]. It is based on the factorization prob-

lem of large numbers and is therefore similar to the security of RSA with the same

sized modulus. Rabin’s Scheme has asymmetric computational cost. The encryption

operation is faster than decryption, which is comparable to RSA with similar param-

eters. Its asymmetry makes Rabin’s Scheme an interesting choice for sensor network

scenarios in which nodes and base stations have disparate computational capabilities.

Below is a brief description of the Rabin’s Scheme. For a detailed description and the

mathematical proofs see [115][90].

Set-up

1. Choose two large random strong prime numbers.

2. Compute n = p · q.

3. Pick a random number b for which 0 ≤ b < n.

4. The public key is (n, b), the private key is (p, q).

Encryption

1. Represent the message as an integer x for which 0 ≤ x < n

2. Compute the ciphertext y as En,b(x) ≡ x(x + b) mod n, as defined in [115]

CHAPTER 5. PUBLIC KEY FUNCTIONS 90

Only the public key n, b is required for encryption. If we fix b to 0 then En,b(x) be-

comes a simple squaring operation En(x) = x2 mod n = y. Rabin’s Scheme requires

only one squaring, whereas RSA requires several squarings and multiplications for

encryption. Therefore encryption with Rabin’s Scheme is several hundreds of times

faster than RSA [121].

Decryption involves finding the roots of y. The decryption function is Dn(y) ≡ √
y

mod n = {x1, x2, x3, x4} and yields four results. In order to determine the correct

solution, sufficient redundancy has to be included in x. Certain simplifications are

possible if p ≡ q ≡ 3 mod 4. We would like to point the interested reader to [90] for

a complete description of these algorithms. We did not pursue a hardware implemen-

tation of the decryption function.

5.2.3 The NtruEncrypt Public Key Cryptosystem

NtruEncrypt is a relatively new cryptosystem that claims to be highly efficient and

particularly suitable for embedded applications such as smart cards or RFID tags,

while providing a level of security comparable to that of other established schemes,

in particular RSA. While it has not yet received the same level of scrutiny for estab-

lishing its resistance to cryptanalysis, there is evidence for efficiency in the simplicity

of its underlying arithmetic. In this section we briefly describe the basic setup of

NtruEncrypt and its operations. For more in-depth descriptions of the mathematical

properties of NtruEncrypt we refer to [59, 57].

NtruEncrypt is based on arithmetic in a polynomial ring R = Z(x)/((xN − 1), q)

set up by the parameter set (N, p, q) with the following properties:

• All elements of the ring are polynomials of degree at most N − 1, where N is

prime.

CHAPTER 5. PUBLIC KEY FUNCTIONS 91

• Polynomial coefficients are reduced either mod p or mod q, where p and q are

relatively prime integers or polynomials.

• p is considerably smaller than q, which lies between N/2 and N .

• All polynomials are univariate over the variable x.

Multiplication in the ring R is sometimes referred to as ”Star Multiplication” based

on use of an asterisk ~ as the operator symbol. It can be best described as the

discrete convolution product of two vectors, where the coefficients of the polynomials

form vectors in the following way:

a(x) = a0 + a1x + a2x
2 + . . . + aN−1x

N−1

= (a0, a1, a2, . . . , aN−1)

b(x) = (b0, b1, b2, . . . , bN−1)

c(x) = (c0, c1, c2, . . . , cN−1)

Then the coefficients ck of c(x) = a(x) ~ b(x) mod q, p are each computed as

ck =
∑

i+j=k mod N

aibj

The modulus for reduction of each coefficient ck of the resulting polynomial is either

q for Key Generation and Encryption, or p for Decryption, as briefly described below.

A thorough description of these procedures along with an initial security analysis can

be found in [59].

Set-up The following steps generate the private key f(x):

1. Choose a random polynomial F (x) from the ring R. F (x) should have small

coefficients, i.e. either binary from the set {0, 1} (if p = 2) or ternary from

{−1, 0, 1} (if p = 3 or p = x + 2 [57, 8]).

CHAPTER 5. PUBLIC KEY FUNCTIONS 92

2. Let f(x) = 1 + pF (x) 1.

The public key h(x) is derived from f(x) in the following way:

1. As before, choose a random polynomial g(x) from R.

2. Compute the inverse f−1(x) (mod q).

3. Compute the public key as h(x) = g(x) ~ f−1(x) (mod q).

Encryption

1. Encode the plaintext message into a polynomial m(x) with coefficients from

either {0, 1} or {−1, 0, 1}.

2. Choose a random polynomial φ(x) from R as above.

3. Compute the ciphertext polynomial c(x) = pφ(x) ~ h(x) + m(x) (mod q).

Decryption

1. Use the private key f(x) to compute the message polynomial m′(x) = c(x)~f(x)

(mod p).

2. Map the coefficients of the message polynomial to plaintext bits.

5.2.4 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is the collective term for a multitude of different

asymmetric cryptographic key exchange and agreement protocols, e.g. Diffie-Hellman

1It is not strictly necessary to construct f(x) in this way, but it is recommended in order to

decrease the decryption failure rate. It is important, however, that f(x) be invertible (modp) and

(modq).

CHAPTER 5. PUBLIC KEY FUNCTIONS 93

Key Exchange with Elliptic Curves (ECDH), Elliptic Curve Digital Signature Algo-

rithm (ECDSA), Menezes-Vanstone Elliptic Curve Cryptosystem (ECMV), and many

more. Scalar point multiplication serves as the basic building block of these and is

the computationally most expensive operation. Different types of finite fields can be

used for the construction of elliptic curve groups. The most common ones are Galois

Fields with prime characteristic or binary extension fields, e.g. GF(p) and GF(2k).

Efficient arithmetic in these fields is the key to low-power implementations of ECC

in hardware.

For the purpose of establishing the feasibility of an ECC based public key primitive

in a pervasive security context, we selected ECMV for data encryption. Below is a

brief description of ECMV. A more detailed description can be found in [134].

Set-up

1. Choose an elliptic curve E : y2 ≡ x3 + α · x + b mod p.

2. Choose a primitive element α = (xα, yα) ∈ E.

3. Pick a random integer α ∈ {2, 3, . . . , #E − 1}.

4. Compute a · α = β = (xβ, yβ).

5. The public key is (E, p, α, β), the private key is (a).

Encryption

1. Pick a random k ∈ {2, 3, . . . , #E − 1}.

2. Compute k · β = (c1, c2).

3. Encrypt eE,p,α,β(x, k) = (Y0, Y1, Y2) where Y0 = k · α, Y1 = c1 · x1 mod p, and

Y2 = c2 · x2 mod p.

CHAPTER 5. PUBLIC KEY FUNCTIONS 94

Decryption

1. Compute a · Y0 = (c1, c2).

2. Decrypt da(Y0, Y1, Y2) = (Y1 · c−1
1 mod p, Y2 · c−1

2 mod p) = (x1, x2).

5.3 Implementations

We have made for following assumptions for our implementations:

• Depending on the exact application scenario it might be possible to fix the

public key to a constant value. This is extremely beneficial for ultra-low power

implementation, since the key can be embedded statically and does not require

costly storage elements. In our implementations the public key is either hard-

wired or realized as a look-up table in combinational logic.

• As stated in the introduction, we only consider the encryption operation of

both systems. The purpose of these implementations is to show that public key

cryptography is computationally feasible on ultra-low power devices.

5.3.1 Rabin’s Scheme

We have shown in Section 5.2.2 that the basic function for encryption in Rabin’s

Scheme is a simple squaring operation En(x) = x2 mod n, if we set b = 0.

Squarers are a special form of multiplier. While any multiplier can be used to com-

pute the square of a number, special-purpose squarers usually require significantly less

hardware and are faster [103] by exploiting the symmetry of the squaring operation.

Table 5.1 shows in the upper part how the multiplication of an unsigned integer mul-

tiplied with itself is computed by a multiplier. The lower part presents the simplified

squaring algorithm.

CHAPTER 5. PUBLIC KEY FUNCTIONS 95

Table 5.1: Multiplication vs. Squaring using Integers

x3 x2 x1 x0

x3 x2 x1 x0

x3x0 x2x0 x1x0 x0x0

+ x3x1 x2x1 x1x1 x0x1

+ x3x2 x2x2 x1x2 x0x2

+ x3x3 x2x3 x1x3 x0x3

x3x2 x3x1 x3x0 x2x0 x1x0 0 x0

+ x3 x2x1 x1

+ x2

Squarers can be implemented in many ways. As our main concern is to conserve

power we chose a bit-serial approach. The main advantage of a bit-serial design is

that it minimizes the number of gates and reduces wire lengths—all factors that are of

concern with regards to the circuit’s power consumption. Bit-serial implementations

can be almost competitive with complex designs with regard to speed if they are

driven at a high clock rate. A bit-serial squarer which uses the Least Significant Bit

(LSB) first method was presented in [62].

The bit-serial approach is ideal for modular reduction. Using the most significant

bit (MSB) first method, modular reduction can be performed elegantly after each

partial product addition. Table 5.2 shows how this would work with an optimized

squarer. Each dashed line indicates the end of one clock cycle. After each addition is

completed the result gets modulo reduced. Modulo reduction works by checking for

a carry on the MSB and if it is set then adding the two’s complement of the modulus

to the result. The difficulty in the approach shown in Table 5.2 is the generation

of the multiplicand sequence (x3x2x1x0, 0x2x1x0, 00x1x0, 000x0) which requires an

extra 512-bit register.

This is very expensive in terms of area and leakage power as each flip-flop is the

CHAPTER 5. PUBLIC KEY FUNCTIONS 96

Table 5.2: Squaring with Modulo Reduction

x3 x2 x1 x0

x3 x2 x1 x0

+ x3

+ x3x2 x3x1 x3x0

+ x2

+ x2x1 x2x0

+ x1

+ x1x0

+ x0

Modulo Reduction No Reduction

equivalent of 6 gates. Therefore, we implemented the squarer as a bit serial modular

multiplier where multiplicand and multiplier are hard-wired to the same input. All

512 bits of input are available in parallel at the same time. As a multiplier does not

take advantage of the symmetry in squaring we expect it to consume more switching

power. However, due to its smaller footprint the leakage power is also greatly reduced.

At the low clock frequencies commonly encountered in sensor nodes, the influence of

leakage power is the dominant part. An additional advantage of this approach is that

this unit can easily be converted to a full multiplier for an implementation of RSA or

a similar algorithm.

Data Path Figure 5.1 shows the architecture of our squarer. It is a standard

bit serial multiplier design comprised of a Left Shift Register, a Bit Multiplier, a Left

Shift unit, and the main units Adder and Sum Register. In order to perform modular

multiplication we added two multiplexers which toggle the input of the adder between

the next partial product and the 2’s complement of the modulus n (reduction). The

control logic determines whether a reduction operation is necessary after an addition.

Since we are using the same adder for both functions, the number of clock cycles

CHAPTER 5. PUBLIC KEY FUNCTIONS 97

Multiplexer B Multiplexer A

512b2

Left Shift

512a2

Bit Multiplier Left Shift Register

512a1

512

512b 512a

Adder

Sum Register

512b1

512dout

2’s complement of n

mult

din

Figure 5.1: Block Diagram for Rabin’s Scheme

needed for one squaring is data dependent and at most 1024.

Adder The most complex part of the squarer is the Adder. There are two basic

adder designs that are suitable for a low power implementation, namely carry-save

adder and ripple-carry adder. The ripple carry adder consists of one half adder and

511 full adders which is the bare minimum hardware for a 512 bit adder. Therefore

the ripple carry adder has the least leakage power consumption of all alternatives.

However as each input bit might generate a carry and all carries are propagated

immediately this adder also has the longest delay. The propagation of carries causes

glitches which in turn cause a very high dynamic power consumption.

A carry-save adder on the other hand propagates carries only by one position,

hence there are no glitches, resulting in insignificant amounts of delay and dynamic

power consumption. Its disadvantage is that the result is kept in redundant carry-save

representation which requires 512 additional flip-flops for the storage of the carry bits.

This in turn causes a higher consumption of leakage power. Since partial products

and complements of the modulus can be accumulated in redundant form, the final

non-redundant result needs to be computed only at the very end of the multiplication

CHAPTER 5. PUBLIC KEY FUNCTIONS 98

which takes 512 additional clock cycles.

Neither of both approaches seems optimal for this implementation, so we tried

to strike a balance between power and speed. For our adder we are using a ripple-

carry adder and insert a carry-save bit on every 8th bit position. Hence the carries

ripple for a maximum of 8 bits causing some glitching but significantly less than a full

ripple-carry adder would. The dynamic power consumption is therefore much lower

than for a full ripple-carry adder. This adder also needs only 64 additional flip-flops

to store the carry bits, which is 448 flip-flops less than necessary for a full carry-save

adder. This approach, however, introduces a new difficulty. After adding a partial

product to the sum, the result has to be shifted. This would misalign the saved carry

bits 2. Hence, carry bits need to be re-aligned before shifting the sum. This is done

by adding the carry bits to the sum in the appropriate position and saving the carry

bits at the new position. The cost for this is a 512 bit multiplexer, 512 additional

clock cycles and a slightly more complex control logic.

Control Logic The Control logic is comprised of two state machines and one

counter. The counter is implemented as a Linear Feedback Shift Register (LFSR)

and “counts” up to 512. LFSRs have reduced switching activity and are faster than

regular counters, hence reducing the effects on the critical path delay. Furthermore

it is clock gated and can be reset. The counter is used to count all the multiplication

steps and also to count the worst case number of steps necessary to ripple all 64

carry-save flip-flops. The main state machine of this control logic keeps track of the

overall operation of the circuit. Its states are:

1. Load: Loading a new operand into the left shift register.

2. Multiply: Multiplying the operand with itself.

2This problem does not occur when a full carry-save adder is being used as there is one carry bit

associated with every bit position

CHAPTER 5. PUBLIC KEY FUNCTIONS 99

3. Ripple: Compute the final carry free result.

4. Done: The output of the circuit has a valid result.

The second state machine takes care of arithmetic operations of the circuit. Further-

more it is responsible for the clock gating of the counter and the left shift register

(see Figure 5.1). This state machine is used during the Multiply and Ripple states

of the main state machine and uses the following states:

1. Add: Add the partial product to the sum.

2. Shift: Realign the saved carries and shift the result by one bit.

3. Modulo Reduce: Add the 2’s complement to the result.

5.3.2 NtruEncrypt and NtruSign

The basis for our low-power NtruEncrypt architecture is the multiplication operation

in the ring R, which basically is a cyclic convolution of two polynomials of the same

degree N . This operation is sometimes also referred to as “Star Multiplication”,

due to the use of an asterisk (‘~’) as the operator symbol. The two polynomials’

coefficients are of different size, one is reduced modulo q, the other modulo p. The

main goal of our architecture is to be as energy efficient as possible. For now we will

only consider a scenario in which a sensor node encrypts a message. This allows us to

make the following observations which are helpful for an energy efficient architecture.

• Encryption involves loading a random polynomial φ(x) and expanding it to a

pseudo one-time pad using the “star multiplication” pφ(x) ~ h(x) mod q. The

message polynomial m(x) is encrypted by adding the pad to the message modulo

q, coefficient by coefficient. The expansion of the pad does not have to be

computed at once, it is sufficient to compute one coefficient at a time, i.e. the

circuit can be stalled until there is another message coefficient.

CHAPTER 5. PUBLIC KEY FUNCTIONS 100

• As mentioned at the beginning of this section, the public key of the node h(x)

is constant and embedded in the device. Since p is also constant, we can store

a pre-scaled version of the public key h′(x) = ph(x) mod q. Thus we only need

to compute c(x) = φ(x) ~ h′(x) + m(x) mod q.

• The operands involved in the star multiplication have coefficients of different

word sizes. The public key h(x) is a polynomial with coefficients modq, i.e.

with large word size. This leaves the smaller word size modp for coefficients

of the random polynomial φ(x). This directly translates into fewer storage

elements (i.e. flip-flops). For our choice of NtruEncrypt parameters (N, p, q) =

(167, 3, 128), the coefficients of φ(x) will be encoded using two bits. Since the

public key is constant and realized as a look-up table, only 2N = 334 bits of

storage are required as opposed to Ndlog2 qe = 1169.

• We assume that we have a good source of random bits available for generation

of the random polynomial φ(x). In this dissertation we focus on the computa-

tional aspects of cryptographic algorithms only, and therefore random number

generation falls outside of the scope. For information on a compact implemen-

tation of an RNG based on digital artefacts requiring only a few hundred gates

we refer to [34].

NtruEncrypt Data Path The algorithm implementing cyclic convolution consists

of two nested loops. The outer loop iterates over all N coefficients of the result.

The inner loop computes the coefficient by accumulating products of the form aibj,

with index i increasing and j decreasing modN . The three major building blocks

comprising the data path of the circuit—public key look-up table (LUT), arithmetic

units and circular buffer—are illustrated in Figure 5.2. The public key look-up table,

mapping the index of the coefficient to its value, is realized in combinational logic that

lends itself to optimization through the synthesis tool. The circular buffer consists

CHAPTER 5. PUBLIC KEY FUNCTIONS 101

of 2N bits of storage elements containing the coefficients of the random polynomial

φ(x). Data enters the buffer through a multiplexer which connects the two ends of

the buffer and forms a ring. Both, public key LUT and circular buffer, feed into the

arithmetic units (AUs) which multiply and accumulate the operands.

The smallest version of the circuit implements only a single AU. Yet, the architec-

ture allows the implementor to scale up the number k of parallel AUs relatively easily,

with minimal impact on the other elements of the design. Section 5.4.4 elaborates

further on NtruEncrypt’s inherent scalability.

Public Key
Look−Up

Table

Control
Logic

 Arithmetic Unit (AU)

optional parallel AU

. . .

Circular Buffer

Figure 5.2: NtruEncrypt block diagram

Arithmetic Unit An AU consists of a partial product generator, a carry-save adder

(CSA) and a register. For any long operand a and short operand b the partial product

generator will compute ab mod q. The partial product generator has a relatively

simple structure since the short operand uses only two bits. The coefficient values

{−1, 0, 1, 2} are encoded in two bits as {11, 00, 01, 10} respectively. The final partial

CHAPTER 5. PUBLIC KEY FUNCTIONS 102

product is selected from the set {−a, 0, a, 2a} using a multiplexer. The value −a

is computed efficiently by creating the ones-complement with inverters and setting

the incoming carry bit of the CSA to one. By choosing p = 3 and q = 128 the

modular reduction of the intermediate result c =
∑

aibj mod q comes essentially for

free through simple truncation of bits at positions ≥ log2 q = 7. Once all convolution

products and the message coefficient have been accumulated, the CSA is clocked

for seven more cycles with zero input. This propagates all in-flight carry bits and

produces a non-redundant result.

Control Logic The control logic is designed to be as simple as possible in order

to avoid being the bottleneck in terms of power consumption. The four states of the

finite state machine are encoded binary and not one-hot, in order to use the minimum

number of state registers. These states are

1. Load/Run: Load coefficients of φ(x) and compute c0 / Run the computations

of all other coefficients of c(x) (N clock cycles)

2. Add: Add the coefficient mi of the message polynomial m(x) to the partial

convolution product (1 clock cycle)

3. Propagate: Propagate all in-flight carries of the CSA to obtain a non-redundant

final sum (6 clock cycles)

4. Done: Signal completion of computation for a given coefficient and eventually

the whole ciphertext polynomial (1 clock cycle)

The two nested counters needed for keeping track of coefficients in the inner and outer

loop of the algorithm are implemented as Linear Feedback Shift Registers (LFSR) for

reduced switching activity. Furthermore, clock gating is used extensively whenever

possible, to avoid any unnecessary switching activity and reduce parasitic wire ca-

pacitance.

CHAPTER 5. PUBLIC KEY FUNCTIONS 103

The inner loop counter provides the index value for looking up coefficients in the

public key LUT as well as start and end triggers for the control logic, i.e. when to

add the message coefficient mi(x) to the result and when to count out six additional

clock cycles during which the CSA propagates carry bits. The outer loop counter

is initialized through global reset at the beginning of the operation and increases its

value whenever computation of a coefficient has been completed. It also keeps track

of the number of rounds (one per k coefficients) that have been computed and upon

completion raises a signal.

In the case of only a single AU, i.e. k = 1, each round of computation takes

N + 8 clock cycles to complete, with one coefficient per round. The eight additional

clock cycles are necessary for addition of the message coefficient and propagation of

carries in the carry-save adder. The total number of clock cycles for a full polynomial

multiplication of N coefficients therefore takes 29, 225 clock cycles (N = 167). If

k AUs are computing coefficients in parallel, the rounds overlap partially and the

number of clock cycles amounts to (N + 8)(dN/ke) + k − 1. For a high degree of

parallelization k the number of clock cycles can thus be reduced dramatically, i.e. to

only 433 cycles for k = 84.

Between two rounds the data in the circular buffer is rotated in order to be cor-

rectly aligned for the next round of k coefficients.

5.3.3 Elliptic Curve Architecture

Our ECC scalar point multiplication implementation is based upon efficient arith-

metic in prime fields with moduli of special form. We employ a novel modulus scaling

technique that yields a composite modulus of the form m = s · p = 2k + 1, where

the scaling factor s is very small. This leads to a very efficient method for almost

modular reduction, where intermediate results are only reduced to within a small

multiple of m. Only after the final step of the scalar point multiplication the result

CHAPTER 5. PUBLIC KEY FUNCTIONS 104

is fully reduced by means of repeated subtraction. For our implementation we choose

an an elliptic curve given by the equation y2 = x3 + ax + b, defined over the field

GF((2101 + 1)/3) and make use of the special scaled modulus m = 2101 + 1. A scaling

factor of s = 3 has been chosen, because it is sufficiently small so that the sizes of

registers in the design increases only marginally. Furthermore, the use of these moduli

of special form allows us to use the very efficient Algorithm X for modular inversion

of Mersenne primes that was first proposed by Thomas et al. [140]. With a slight

modification the algorithm can be made to also work with scaled moduli m = s · p
where gcd(a,m) 6= 1. For our implementation we chose affine coordinates which yield

faster inversion and they require less storage space than projective coordinates.

Arithmetic Core Figure 5.3 illustrates the data path of the ECC arithmetic core

which implements all arithmetic primitives such as addition, subtraction, multiplica-

tion and division (inversion) by extensively reusing hardware components.

Adder The main functional block on both sides of the data path is the adder. All

arithmetic is implemented in carry-save form which ensures a moderate amount of

switching activity in contrast to a full carry propagation adder. The downside to this

approach is the increased cost of storage for the redundant representation and the

addition, shift, rotation and comparison operations become more cumbersome.

Control Logic The control logic determines which function the arithmetic core

performs by switching the multiplexers appropriately. It consists of a state machine

with 15 states to implement the inversion algorithm. The main states are:

1. Initialize Loads the appropriate initial values into the registers.

2. Shift Right Both, the sum and the carries have to be shifted.

CHAPTER 5. PUBLIC KEY FUNCTIONS 105

−12167

−12167
2n

shifted

R0

R3

R2

R1

MUX

MUX MUX

MUX

MUX MUX

Rtemp0 Rtemp1

0
x2 x1y1

shifted

y2

n nnn

n n n n n n

n
n

nn

n n
n

2n 2n

2n 2n

2n

2n 2n

n

2n

2n

2n
2n p

0

CSA1 CSA2

Figure 5.3: Block Diagram for the Arithmetic Unit for ECC

3. Add The addition of two numbers in carry save notation takes two clock cycles

in our architecture as the carry save adder has only three inputs and a number

in carry save notation consists of two parts, so overall 4 parts have to be added.

CHAPTER 5. PUBLIC KEY FUNCTIONS 106

Comparator The modified version of Algorithm X for inversion with respect to a

scaled modulus requires a comparison of the intermediate result with the constant

scale factor s. A traditional logical OR tree-based approach would be prohibitively

costly in the number of gates required and would also introduce a significant amount

of delay. Our architecture employs a wired-or using tristate buffers as shown in

Figure 5.4 which is described in [101].

out

n n n nk−1 k−2 1 0

1

Figure 5.4: Comparator unit built using tri-state buffers

5.4 Analysis

In this section we analyze the proposed architectures according to various metrics

of interest to ultra low-power applications such as wireless sensor nodes. Since the

three public key algorithms and their hardware architectures are distinctly different

from each other a direct comparison is difficult. We alleviate this situation by fixing

system parameters to values that match security levels of all three systems as closely

as possible, as mentioned in Section 5.2.1.

5.4.1 Rabin’s Scheme

The main concern driving our low-power implementation of Rabin’s Scheme is its

storage requirement. Many well known techniques for optimizing a modular squarer

require either more circuitry or more storage elements. At our targeted clock fre-

quency of 500 kHz the static power consumption is dominant and therefore has to

CHAPTER 5. PUBLIC KEY FUNCTIONS 107

be minimized. Hence, we built a squarer as a bit-serial multiplier, operating on the

entire width of the 512 bit multiplicand and on a single bit of the multiplier at a

time. In order to conserve area we use the same adder for accumulating the partial

products, modulo reducing the results, and re-aligning the carry bits before each shift.

This approach consumes a chip area of less than 17, 000 gates with its accompanying

static power consumption of 117.50µW . The dynamic power consumption at 500 kHz

is 30.68µW resulting in a total average power consumption of 148.18µW . Table 5.3

shows these results and also breaks down the area into area used for combinational

logic (Cmb.) and storage (Reg.). A breakdown of the power consumption by func-

tional blocks reveals an interesting relationship. The adder consumes 39.8% of the

power but only 24.8% of the area, whereas all storage elements combined consume

37.8% of the total power consumption but 55.6% of the area. The disproportional

power consumption of the adder is due to its much higher dynamic power consump-

tion, even at the low frequency of 500 kHz. It is also interesting to note that the

power consumption of the complex control logic for this circuit is negligible at 1.6%.

The column “other” in Table 5.3 comprises the multiplexer and the Bit Multiplier as

shown in Figure 5.1.

Table 5.3: Rabin’s Scheme area and power consumption by function at 500 kHz

Power Area

Blocks PDyn PLeak PTotal Cmb. Reg. Total

µW µW µW % g.e. g.e. g.e. %

Storage 6.82 49.14 55.96 37.8 1,547 7,746 9,292 55.6

Adder 16.97 42.01 58.98 39.8 4,146 0 4,146 24.8

Control 1.00 1.33 2.33 1.6 77 105 182 1.1

Other 5.88 25.00 30.88 20.8 3,103 0 3,103 18.6

Total 30.68 117.50 148.18 100.0 8,874 7,851 16,726 100.0

The high dynamic power consumption of the adder at 500 kHz gets even more

CHAPTER 5. PUBLIC KEY FUNCTIONS 108

amplified when we increase the clock frequency. Figure 5.5 shows the relative power

consumption of the functional parts of our Rabin’s Scheme implementation over clock

frequency from 500 kHz till 100 MHz. At high frequencies the adder dominates the

power consumption with 55% while the relative power consumption of the storage

units declines to 23%. The control logic shows only a moderate increase. Recall

that the adder consists of 8-bit ripple carry adders which exhibit glitching. At high

frequencies, where the dynamic power consumption is dominant, a full carry save

adder would have yielded in a lower power consumption.

0

10

20

30

40

50

60

70

1 10 100

P
ow

er
 [%

 o
f T

ot
al

 P
ow

er
]

Frequency [MHz]

Power Consumption depending on Clock Frequency

Adder
Control

Storage

Figure 5.5: Rabin’s Scheme: Power consumption of parts in % of total based on

frequency

CHAPTER 5. PUBLIC KEY FUNCTIONS 109

5.4.2 NtruEncrypt

The architecture implementing NtruEncrypt was developed with scalability and po-

tential for parallelization explicitly in mind. The hardware friendly arithmetic that

underlies the NTRU system greatly facilitated this process, since the computation of

each of the ciphertext polynomial’s coefficients is independent of one another. Fur-

thermore the use of a circular buffer rotating the coefficients of φ(x) allows multiple

parallel accesses by tapping the buffer at different positions. All AUs use the same

public key coefficient in each iteration, so there is no need to have multiple look-up

tables. Parallel computation of the result can therefore be achieved by simply repli-

cating the AU and slightly modifying the control logic. Figure 5.2 in Section 5.3.2

shows a block diagram of the architecture, where solid lines represent the minimal

configuration. Additional circuit elements for parallelization such as multiple AUs

and a multiplexer are drawn using dashed lines.

Table 5.4: NtruEncrypt area and power consumption by function at 500 kHz

Power Area

Blocks PDyn PLeak PTotal Cmb. Reg. Total

µW µW µW % g.e. g.e. g.e. %

Circular Buffer 3.37 11.33 14.70 76.8 6 2,120 2,126 74.6

Public Key LUT 0.33 1.59 1.92 10.0 391 0 391 13.7

Control Logic 0.18 1.10 1.28 6.7 47 126 172 6.0

Arithmetic Unit 0.14 1.06 1.20 6.3 74 82 157 5.5

Total 19.13 4.03 15.10 100.0 523 2,327 2,850 100.0

We can make an interesting observation at this point by looking at the contribution

of each functional block to the overall circuit area (Table 5.4). The most significant

contribution to the overall power consumption is made by the circular buffer (77%),

yet its size is only proportional to the system parameter N and independent of the

degree of parallelization k. Similarly, the public key look-up table (10%) is indepen-

CHAPTER 5. PUBLIC KEY FUNCTIONS 110

dent of k as well. However, an arithmetic unit contributes the least amount of only

6.3%.

The cost for an implementation with only a single arithmetic unit is therefore

relatively high compared to a more parallelized variant. The small cost of adding

arithmetic units, on the other hand, allows for a high degree of parallelization. This

level of scalability is advantageous when it comes to achieving optimal energy effi-

ciency. In the following analysis we therefore also consider performance estimates for

a highly parallelized (k = 84) variant of our NtruEncrypt architecture, based on data

obtained from simulation of the digit serial implementation (k = 1).

Our implementation of the encryption function of NtruEncrypt takes up a chip

area of less than 3000 equivalent gates for k = 1. This figure includes the storage

elements for the random polynomial φ(x) and the combinational look-up table of

the scaled public key h′(x). Gate level power simulation indicates an average power

consumption of under 20µW at a clock frequency of 500kHz, close to the amount of

static leakage power (see Table 5.6).

5.4.3 Elliptic Curve Architecture

The architecture occupies a chip area equivalent to 18, 720 gates and consumes just

under 400 µW of power at a clock frequency of 500 kHz (see Table 5.5). The dynamic

power consumption of this circuit is three times as high as its leakage power at

500 kHz. This is somewhat surprising as we stated that at these low frequencies

the leakage power is usually dominant. In addition to this, all adders in this circuit

are carry save adders which do not cause glitching and therefor exhibit less dynamic

power consumption but a larger leakage power consumption than for example ripple

carry adders. The detailed breakdown in Table 5.5 sheds some light on this mystery.

It shows that the main power consumer are the multiplexers which channel the data

through the adders and registers. Also the storage units have a higher dynamic power

CHAPTER 5. PUBLIC KEY FUNCTIONS 111

consumption than leakage because of the frequent input changes.

Table 5.5: ECC area and power consumption at 500 kHz

Power Area

Blocks PDyn PLeak PTotal Cmb. Reg. Total

µW µW µW % g.e. g.e. g.e. %

Storage 93.68 43.73 137.41 34.8 702 7,852 8,554 45.7

Adder 13.40 7.40 20.80 5.3 1,496 0 1,496 8.0

Multiplexer 146.08 21.61 167.69 42.5 5,175 0 5,175 27.6

Control 17.78 3.98 21.76 5.5 377 190 566 3.0

Other 22.07 25.28 47.35 12.0 2,929 0 2,929 15.6

Total 292.58 101.82 394.40 100.0 10,679 8,042 18,720 100.0

5.4.4 Comparison

Table 5.6 shows a direct comparison between Rabin’s Scheme, both variants of Ntru-

Encrypt, and ECC. The architectures of Rabin’s Scheme, the simple variant of Ntru-

Encrypt, and ECC were intended to achieve the least possible power consumption

given the available standard cell library, without necessarily reaching optimal energy

efficiency. After an initial analysis of the architectural differences we decided to in-

clude estimates for a highly parallelized variant of NtruEncrypt in the third column

of the comparison. The degree of parallelization k = 84 was chosen in a way that the

area footprint roughly matches that of Rabin’s Scheme and ECC, and secondly that

dN/ke − N/k is as small as possible. This is to divide the number of coefficients N

in a way that utilization of the AUs is high during the last round of computation.

The delay shows the number of clock cycles needed for one encryption operation. For

ECMV, two point multiplications are required, i.e., the ECC circuitry has to be run

on two different sets of inputs. The column “Throughput” takes this into account

and presents a normalized value.

CHAPTER 5. PUBLIC KEY FUNCTIONS 112

Table 5.6: Comparison of Encryption with Rabin’s Scheme, NtruEncrypt, and ECC

Rabin Ntru (k=1) Ntru (k=84) ECMV

Equivalent security 60 bits 57 bits 57 bits 61 bits

Area [g.e.] 16,726 2,850 16,200 18,720

- combinational 8,875 523 7,000 10,679

- storage elements 7,851 2,327 9,200 8,041

Delay

(avg. # cycles)
1,440 29,225 433 408,850

Avg. power [µW] 148.18 19.13 118.7 394.4

- static [µW] 117.50 (79.3%) 15.10 (78.9%) 103.06 (86.8%) 101.82 (25.8%)

- dynamic [µW] 30.68 (20.7%) 4.03 (21.1%) 15.64 (13.2%) 292.58 (74.2%)

Energy [nJ] 426.76 1,118.15 102.79 322,501.88

- per bit [pJ] 833.5 4,235.4 389.4 1,612,509.40

min input [bits] 512 264 264 200

Throughput [kbits/s] 177.78 4.52 304.85 0.24

Area Rabin’s Scheme takes up almost six times the area of simple NtruEncrypt

with a single AU. On the other hand it also has the advantage of performing almost

forty times faster. This is to be expected due to its large operands and full-word

arithmetic. If, however, the absolute area and power requirements are the limiting

factor, it might not be flexible enough. Our ECC architecture exhibits the largest area

requirements, even though it is only 10% larger than Rabin’s Scheme, and it is the

slowest, with Rabin’s Scheme performing 740 times faster and simple NtruEncrypt

almost 19 times faster. Also, our estimates for the parallelized variant of NtruEncrypt

indicate that it outperforms Rabin’s Scheme by nearly factor two using the same area

footprint.

Power Consumption From the figures in Table 5.6 it is evident that static leakage

power is the main culprit for the relatively high energy consumption of both Rabin’s

CHAPTER 5. PUBLIC KEY FUNCTIONS 113

Scheme and NtruEncrypt implementations. However, this is not the case for ECC.

We would like to stress the fact that leakage power is highly technology dependent and

that the ASIC standard cell library we use is not optimized for low power design. The

dynamic power consumption of an architecture, on the other hand, is proportional

to its switching activity. It therefore makes sense to differentiate between these two

influences if we want to compare the relative merits of one architecture over the

other, independently of the process technology. It turns out that dynamic power

consumption in Rabin’s Scheme is nearly twice as high as in the parallel NtruEncrypt’s

case. The dynamic power consumption of ECC is 10 times higher than that of Rabin’s

Scheme. A large portion of its dynamic power is caused by the multiplexers as we

have shown in Section 5.4.3. The leakage power of our ECC implementation is similar

to the ones of Rabin’s Scheme and the parallel version of NtruEncrypt which is to be

expected as all three are of similar size.

Figure 5.6 contains a graph with plots of power consumption over clock frequency

for Rabin’s Scheme, the two NtruEncrypt variants, and ECC. Common to Rabin’s

Scheme and NtruEncrypt is the dominance of static power consumption at low fre-

quencies, while at high clock frequencies dynamic power consumption takes over. The

dynamic power consumption of the parallelized variant of NtruEncrypt, however, in-

creases slower than that of the simple variant or Rabin’s Scheme. This is observable

as a slightly flatter slope at low frequencies. This effect is due to reduced switching

activity in the Arithmetic Units compared to the rest of the circuit. With an in-

creased number of AUs the difference becomes more noticeable. For ECC, the graph

increases linearly, showing that even at 500 kHz the dynamic power consumption is

already dominant.

Throughput The throughput that either architecture can achieve at a given clock

frequency depends on the number of clock cycles for an encryption and the number

of plaintext bits per block. In Rabin’s Scheme the plaintext is up to 512 bits long.

CHAPTER 5. PUBLIC KEY FUNCTIONS 114

0.5 1 2 5 10 20 50 100
0.01

0.1

1

10

100

Frequency [MHz]

P
ow

er
 [m

W
]

Rabin’s Scheme
Ntru (k=1)
Ntru (k=84)
ECC

Figure 5.6: Power Consumption over a Range of Clock Frequencies

At a clock frequency of 500 kHz and an average of 1440 cycles per operation this

translates into a maximum theoretical throughput of 177.8 kbits/s. Since NtruEn-

crypt uses N ternary coefficients we can determine its throughput in terms of kbits/s

by first converting the capacity of the message polynomial m(x) into bits. N = 167

ternary coefficients can hold information equivalent to bN log2 3c = 264 bits. The

entire encryption operation takes 29225 clock cycles for NtruEncrypt with a single

AU, and 443 cycles with 84 AUs. Operating at the same clock frequency, the simple

variant compares unfavorably to Rabin’s Scheme at only 4.52 kbits/s throughput,

almost 40 times less. The estimates for the highly parallelized variant, however, in-

dicate a performance level of 304.85 kbits/s, nearly twice the throughput of Rabin’s

Scheme. The throughput of our ECC architecture is very slow as the necessary com-

putations require many clock cycles and it has to complete two point multiplications

for the ECMV algorithm. The plaintext for ECMV can be up to 200 bits long and

CHAPTER 5. PUBLIC KEY FUNCTIONS 115

it takes an average of 408,850 clock cycles to encrypt. This results in a throughput

of only 0.24 kbit/s which is 1/740th of Rabin’s Scheme and 1/1270th of the parallel

NtruEncrypt.

Energy Efficiency For any cryptographic scheme there is a multitude of possible

design choices by which power consumption can be traded off against performance

and vice versa. Ultimately, however, we would like to know the amount of energy that

is necessary for an elementary encryption operation, i.e. the cost of encrypting a bit

of data at a certain level of security. The amount of energy for the entire operation

is the product of average power consumption and the time it takes to complete that

operation. Considering the amount of plaintext data that can be encrypted in one

operation, we determine the amount of energy per bit encrypted as

Ebit =
Pavg · ncycles

fclock · lop

where lop is the operand length in bits, i.e. 512 for Rabin’s Scheme, 264 for NtruEn-

crypt and 200 for ECMV. As we have discussed earlier, Rabin’s Scheme uses more

power than NtruEncrypt with a single AU, but it also takes much fewer clock cycles

to complete. We can make a similar observation by looking at the energy per bit

metric. The amount of energy necessary to encrypt a single bit with NtruEncrypt

is about five times higher than with Rabin’s Scheme. The picture changes yet again

when we consider NtruEncrypt’s parallelized variant. Our estimates suggest that the

amount of energy per bit drops by nearly factor 11 and is thus less than half the

amount of Rabin’s Scheme. The influence of parallelization on the amount of energy

per bit can be seen in the graph in Figure 5.7. It turns out that k = 84 is not even the

optimal value for energy efficiency. 56 parallel arithmetic units would give the opti-

mal balance between power consumption and delay. The amount of energy per bit for

ECMV is 1,612.5 nJ which is 380 times more than the 4.2 nJ for the simple version of

NtruEncrypt. The smaller input size of ECMV, the higher power consumption and

CHAPTER 5. PUBLIC KEY FUNCTIONS 116

1e-07

1.2e-07

1.4e-07

1.6e-07

1.8e-07

2e-07

2.2e-07

2.4e-07

10 20 30 40 50 60 70 80 90

56 84

E
ne

rg
y

[J
]

No. of Parallel Arithmetic Units

Energy vs. Degree of Parallelization

Energy / Encryption

Figure 5.7: NtruEncrypt: Energy per Encryption Operation for k = 1 . . . 90

the much larger delay all contribute to this high number.

To put our results into perspective, we compare them to estimates reported in

[19] that were obtained from simulation of various public key algorithms on existing

general purpose processor architectures. An implementation of the emerging scheme

XTR on the ARC3 processor suggests an energy consumption of around 130 µJ at a

security level that is comparable to RSA-1024 or 72 bits of equivalent security. Despite

the difference in security levels, this is still between factor 100 and 1000 more energy

than what our architectures require, proving the strength of customized application

specific architectures.

CHAPTER 5. PUBLIC KEY FUNCTIONS 117

5.5 Conclusions

We have demonstrated in this Chapter that it is possible to design public key encryp-

tion architectures with power consumption of less than 20 µW using the right selection

of algorithms and associated parameters, optimization and low-power techniques. In

spite of the common perception of public key cryptography, it is possible to achieve

a level of power consumption low enough to allow its use even in self-powered sensor

nodes. Our implementation is based on a regular ASIC standard cell library that is

not specifically optimized for low-power. It is thus possible to achieve even better

results than ours, although that is not the point we are trying to make here. The use

of public key schemes facilitates much simpler security protocols than those currently

in use with the sensor network community, and has a potential impact on a much

wider range of applications. We explore this issue further in Chapter 7. RFIDs and

contactless smart cards are further examples of ubiquitous computing applications

requiring energy efficient cryptographic functions. So far public key cryptography

has not even been considered for these devices due to its perceived complexity.

Our findings show further that schemes based on traditional modular arithmetic,

such as Rabin’s, does have a significant disadvantage compared to new and emerging

schemes represented here by NtruEncrypt. The use of arithmetic in a polynomial

ring allows for a very compact, yet scalable implementation in hardware. Addition-

ally, NtruEncrypt’s decryption operation—although not further considered in this

Chapter—is based on the same arithmetic operation. This opens up the possibility

for realization of two way key exchange protocols, while this is more difficult with

Rabin’s Scheme, due to its asymmetric properties of encryption and decryption.

The complexity of elliptic curve cryptography still seems to be prohibitively large

for ultra low power applications. Further research into energy efficient cryptographic

primitives is necessary, but our findings give us the confidence that public key cryp-

tography in ubiquitous computing applications is possible and that it can be done

CHAPTER 5. PUBLIC KEY FUNCTIONS 118

efficiently using customized hardware architectures.

Chapter 6

Secret Key Functions

In this chapter we present a novel ultra-low power design of the popular Secure Hash

Algorithm (SHA-1) and an energy efficient design of the ubiquitous Advanced En-

cryption Standard (AES). Both designs consume less than 30 µW of power and can

therefore be used to provide the basic security services of encryption and authentica-

tion for ultra-low power devices. Furthermore, we analyze their energy consumption

based on the TinySec protocol and come to the somewhat surprising result, that

SHA-1 based authentication and encryption is more energy efficient than using AES

for payload sizes of 17 bytes or larger. Parts of this work are published in [67].

6.1 Motivation

While working on hash functions (Chapter 4 and public key algorithms (Chapter 5

for ultra-low power implementations, we observed that at a frequency of 500 kHz

leakage power becomes dominant. In order to conserve leakage power we have to

reduce the circuit size. A common method to save hardware resources and provide

privacy, integrity, and authentication is to use the same cryptographic algorithm for

both functions, MAC computation and encryption. SPINS [108] for example, uses

119

CHAPTER 6. SECRET KEY FUNCTIONS 120

RC5 [122] for encryption and in CBC-mode to build a secure MAC. TinySec [69] is

cipher independent and was tested with RC5 and Skipjack [94, 95] for encryption

and CBC-MAC. The authors of [69] are also considering the Advanced Encryption

Standard [97].

Many research papers [108, 78, 81] analyze encryption algorithms for wireless

sensor networks exclusively with reference to speed and code size while only a few [112]

address the energy consumption of software based implementations. However, the

ultra-low power applications we are envisioning, do not provide enough power for

running cryptographic algorithms on general purpose microprocessors.

In this Chapter we are presenting hardware implementations of the advanced

encryption standard (AES) and the Secure Hash Algorithm (SHA-1) [99] which are

optimized for ultra-low power applications. We are then examining encryption and

authentication functions based on AES and SHA-1. To our knowledge this is the first

ultra-low power implementation of SHA-1 and the first publication describing the use

of SHA-1 for ubiquitous computing on ultra-low power platforms. We are comparing

SHA-1 and AES based encryption and authentication functions with respect to their

footprint, speed, power and energy consumption. The only paper that compared

SHA-1 to AES is [48], however the comparison is only concerned with throughput.

6.2 Introduction

We use AES and SHACAL-1 for encryption and AES in CBC-MAC mode and

HMAC [9, 75] with SHA-1 for authentication. Figure 6.1 shows a top level view

of the AES and SHA-1 based encryption and authentication functions.

CHAPTER 6. SECRET KEY FUNCTIONS 121

128

AES

Plaintext Ciphertext

Key

Encryption

128 128

128

AES
CBC−MACMessage

Key

MAC
Block

128 128

160

SHA−1
MACMessage

Key

MAC
Block

512 160

128−512

Plaintext Ciphertext

Key

Encryption
SHACAL−1

160 160

Figure 6.1: Encryption and MAC functions based on AES and SHA-1

6.2.1 AES

AES was selected by the National Institute of Standards and Technology (NIST) as

Federal Information Processing Standard FIPS-197 [97] in 2001. Since then, many

hardware implementations have been published. Most of them are optimized for

speed and only a few are scalable [83, 45] from fast to small. The first ultra-low power

implementation was reported in [38] followed by [37] by the same group, both papers

analyze the power consumption but not the energy consumption of the circuits. AES

is a block cipher with a fixed input size of 128 bits and a key length of either 128 bits,

192 bits, or 256 bits. For our ultra-low power implementation we chose 128 bits.

AES applies the same round function ten times to its input, also called State, during

encryption. The round function consists of four different transformations: SubBytes,

ShiftRows, MixColumns, and AddRoundKey, each changing the State by applying

linear, non linear and key dependent transformations.

CHAPTER 6. SECRET KEY FUNCTIONS 122

6.2.2 SHA-1

SHA-1 is the most widely used secure hash function and was developed by the National

Security Agency. Its security level is considered to be 280, i.e., 280 operations have to

be made on average to find another input such that the resulting hashes are equal,

also called a collision. Recent attacks on SHA-1 [143] indicate that there might be

a potential weakness but no collisions have been found yet. Many implementations

of SHA-1 have been reported, most of them optimized for speed. To our knowledge,

this is the first ultra-low power implementation of SHA-1. SHA-1 computes a 160-bit

hash of messages up to 264 bits in size. Each message needs to be preprocessed by

padding the message, appending the message length and splitting it into blocks with

a length of 512 bits each. Then the compression function processes each input block

and computes intermediate hash values by iterating over simple functions 80 times.

6.2.3 Message Authentication Codes

SHA-1 can be used to build a message authentication code by introducing a secret

512-bit key K using the secret prefix method SHA-1(K||x). Due to this concatenation

SHA-1 will compute an intermediate hash value of K in the first iteration which can

be precomputed. Hence, computation of a MAC requires dlength(x)/512e operations.

However, the secret prefix method is considered insecure [88] even though SHA-1

includes the message length in the hash and TinySec reveals only half of the hash

result. We therefore suggest to use HMAC, which is formally described in [98] as

HMACk(x) = SHA-1((k ⊕ opad) || SHA-1((k ⊕ ipad) ||x)).

The 160-bit key K is padded with 0’s resulting in k. The terms k ⊕ opad and k ⊕
ipad can be precomputed from the 512-bit constants opad and ipad and k. Due

to the concatenation ((k ⊕ ipad) ||x) the intermediate hash value of (k ⊕ ipad) and

(k ⊕ opad) can be precomputed as well. Hence, computation of a MAC requires

CHAPTER 6. SECRET KEY FUNCTIONS 123

dlength(x)/512e+ 1 operations of SHA-1.

AES can be used in CBC-MAC [135] mode (see Fig. 6.2) to compute authentica-

tion codes. This mode is similar to the Cipher Block Chaining mode [92, 93] in that

E

1H

2x

E

1x

2H

3x

E

3H

keykey key

Figure 6.2: CBC-MAC – Generating a hash with a block cipher

the result from the previous encryption is XORed with the next plaintext block and

encrypted again. The intermediary ciphertexts however are not used in CBC-MAC

mode. The computation of a MAC requires dlength(x)/128e operations. The level of

security of AES in this mode is approximately 264, and not 2128 as one might expect,

due to the birthday attack1.

6.2.4 Encryption

To some extent, hash functions like SHA-1 can also be used to perform encryption.

The best examples are SHACAL [50] and SHACAL-1 [51]. The security of SHACAL

was analyzed in [52] and more recently in [125]. SHACAL defines how the compression

function of SHA-1 can be used as a 160-bit block cipher with a 512-bit secret key.

Shorter keys can be used by padding the key with zeroes but the minimum key size

is 128 bits. AES is a block cipher so its usage for encryption is straight forward.

1If a sensor node produces one message authentication code per second, than it would produce

only 232 in 100 years.

CHAPTER 6. SECRET KEY FUNCTIONS 124

6.3 SHA-1 Implementation

The top level block diagram of our SHA-1 implementation is shown in Figure 6.3. We

assume that one 512-bit block of preprocessed data is stored in memory and available

to our SHA-1 unit.

Wt M t

Wt

Message < 2 bits
64

H0−4

M
(i)

(by CPU)
Preprocessing

M
(i)
0−16

32

32

Message
Digest Unit

Message
Scheduler

Memory

32

Hash Value
160 bits

512 bits

Figure 6.3: Top Level Block Diagram of our SHA-1 Implementation

Our SHA-1 implementation incorporates the Message Scheduler and the Message

Digest Unit as well as a memory bus interface and the necessary control logic. The

operation is broken down into three stages. The initial stage comprises the first

16 rounds. Here, the message scheduler reads the message block one Mt per round.

The next stage is the computation stage which ends with the 80th round. During both

stages, the message scheduler computes Wt and forwards it to the message digest unit

and also stores Wtin the external memory. The message digest unit performs the

message compression function. The final stage is needed to compute the final hash

values from the intermediate hash.

CHAPTER 6. SECRET KEY FUNCTIONS 125

6.3.1 Message Scheduler

During the computation stage the message scheduler has to compute a new Wt value

in each round based on previously calculated Wt’s. Most implementations in literature

use a 16 stage 32-bit wide shift register for this purpose (512 flip-flops). For our ultra-

low power implementation we re-use the memory that contains the message assuming

that we can overwrite the existing contents. The message scheduler is able to interface

with external memory and needs only one 32-bit register to store a temporary value

during computation of the new Wt. Figure 6.4 shows the block diagram of the message

scheduler. The control logic, which handles the bus control signals, is not shown for

simplicity. The message scheduler performs the equation
M

ux Wt
ROTL

1 M
ux

Wt
0

Data Bus

Figure 6.4: Block Diagram of the Message Scheduler

Wt = ROTL1 (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)

where ⊕ denotes bitwise XOR. Four values have to be read from memory and the

result written back to memory in each round. This takes 5 clock cycles in our serial

design, therefore, each round of SHA-1 takes 5 clock cycles. The necessary address

computation (not shown in Figure 6.4) is done using dedicated hard wired adders to

provide +2, +8 and +13 addition modulo 16 for Wt−14, Wt−8, and Wt−3 respectively.

6.3.2 Message Digest Unit

Figure 6.5 shows the functional block diagram of the message digest unit as described

in the SHA-1 standard [99]. SHA-1 requires five 32-bit working variables (a, b, c, d,

CHAPTER 6. SECRET KEY FUNCTIONS 126

e) to which new values are assigned in each round. It can easily be seen that four out

of the five words are shifted in each round (a → b, · · · , d → e) and only determining

the new value for a requires computation. The rotation of ROTL30(b) → c can be

accomplished by wiring. Therefore, we view the registers for the working variables as

a 5 stage 32-bit wide shift register in our ultra-low power SHA-1 implementation.

+
ft

+
ROTL

5

+ +

K t Wt

ROTL
30

e

d

a

e

c d

b c

ba

Figure 6.5: Functional Block Diagram of the Message Digest Unit

Round Function The round function computes a new value for a and shifts all

working variables once per round. The computation for a is a five operand addition

modulo 232 where the operands depend on all input words, the round-dependent con-

stant Kt, and the current message word Wt. In order to conserve area and therefore

limit the leakage power, we use a single 32-bit adder to perform the four additions.

Due to good scheduling of the operations, we can use the register for e also as tempo-

rary register for the additions. The four additions and the shift require 4 clock cycles

per round which is below the need of the message scheduler with 5 clock cycles to

compute the next Wt. Figure 6.6 shows the block diagram of our implementation of

the message digest unit including the round function and the intermediate hash value

computation.

CHAPTER 6. SECRET KEY FUNCTIONS 127

ROTL
30ba c d

M
ux e

M
ux

+

M
ux K t

Wt

ROTL
5

ft

a

b c d
M

ux

H0 H1 H2 H3 H4 H

Figure 6.6: Proposed Hardware Architecture of the Message Digest Unit

Intermediate Hash Value Computation During the final stage, i.e., after the

80th round, the values of the working variables have to be added to the digest of the

previous message blocks, or specific initial values for the first message block. This

can be done very efficiently without additional multiplexers or adders by arranging

all intermediate hash value registers H0, H1, H2, H3, and H4 in a 5 stage 32-bit wide

shift register, similar to our design for the working variables. Shifting the hash value

registers and the working variable registers at the same time and adding the current

contents of e to H4 at each step takes five clock cycles. This again fits into our scheme

of 5 clock cycles per round, which leads to a total of 405 clock cycles for the message

digest computation of one block.

CHAPTER 6. SECRET KEY FUNCTIONS 128

6.4 AES Implementation

For our AES implementation we assume that a message block and the private key

are stored in memory. The result of the AES computation gets written back to

memory. Our 8 bit implementation is inspired by the one reported in [38], however,

we restructured the datapath so that the registers get better utilized and the AES

computation consumes less clock cycles. Fig. 6.7 shows the top level block diagram of

our AES implementation. It consists of the Computation Unit, internal memory for

key expansion and current state, one S-Box, a unit to compute the round constant

Rcon, a control unit and a memory interface.

128 bit ROM
Key

S−Box

Rcon(i)

88

Control

8

8

128 bit RAM
Round Keys

128 bit RAM
New Message

8

8

8

128 bit RAM
State Memory

Computation

Main Memory

Address
Address

8

Figure 6.7: Top Level Block Diagram of our AES Implementation

In CBC-mode the hash of the previous message block gets XORed with the cur-

rent message block. Therefore, we can not use the external memory to store the

intermediate state as we could for our SHA-1 implementation. The same applies to

storing the round keys.

CHAPTER 6. SECRET KEY FUNCTIONS 129

6.4.1 Datapath

Each AES transformation and the key expansion load their operands in a specific

order from the state memory or key memory respectively, and write them back.

Some transformations require the storage of temporary results. We streamlined this

process be grouping the AES transformations into four stages:

1. Initial AddRoundKey–SubBytes–ShiftRows

2. MixColumns

3. AddRoundKey–SubBytes–ShiftRows

4. FinalAddRoundKey

This grouping enables us to re-use registers and minimize the number of internal

memory accesses. It allows us to use a pipelined architecture for stage 1 and 3 which

reduces he number of clock cycles by 40 percent. This improvement comes at the

cost of only one additional 8 bit register over the minimum possible number or 8

bit registers. Furthermore, the memory addressing scheme gets simplified. This is a

tradeoff between low area and energy consumption.

The datapath of our implementation is shown in Fig. 6.8. It is characterized by

the pipelined architecture for stage 1 and 3 as well as the register requirements for

stage 2. We used five 8-bit registers, R0, R1, R2, R3, and R4. The register R0 is

used exclusively for key storage and is needed to implement the RotWord operation.

R2, R3, and R4 are used for the state computation. R1 is used for key computations

except during the MixColumns operation where it gets reused for state computation.

The boxes labeled Keys and Data are the register files for the Round Keys and the

State Memory respectively.

Internal Memory The 128-bit state and the 128-bit round key are stored in inter-

nal memory. This memory is register based and makes extensive use of clock gating

CHAPTER 6. SECRET KEY FUNCTIONS 130

R3

R4

R2

SBox

R1

R0

Rcon

Enc/H Keys

Data

Key Expansion
da

ta
bu

s

Mix Column

Figure 6.8: Block Diagram of our Implementation of the AES Datapath

to conserve power. The state memory has separate write and read addresses so that

one value can be read while a value at another address can be written. All stages take

advantage of this functionality due to the pipelined architecture. The key memory

uses the same address for read and write.

6.4.2 Message Schedule

Initial AddRoundKey–SubBytes–ShiftRows During this first stage the 128-

bit message block and the secret key are read from main memory. If used in CBC-

mode, the message is XORed with the previous result. Then the the first AddRound-

Key, SubBytes and ShiftRows operations are applied.

AddRoundKey–SubBytes–ShiftRows This stage is run nine times for AES.

The round keys for the AddRoundKey operation are computed on the fly. This

forces us to read data in column order from the state memory. The starting row is

immaterial. The read order is Sr,0, Sr,1, Sr,2, Sr,3, . . . which translates to addresses

CHAPTER 6. SECRET KEY FUNCTIONS 131

for the state memory. As we merged the AddRoundKey operation and the ShiftRows

operation the write order is predetermined. In order not to overwrite an element

before its being read, we have to store four elements. Therefore the depth of our

pipeline is four: R1, R2, R3, and R4.

Mix Columns Feldhofer et. al. [38] described a very efficient way for performing

the MixColumns operation in an 8-bit architecture. It uses the minimum amount of

registers needed for this operation. We used the same method, however we use an

additional 8-bit register and are now able to reschedule the order of operations. The

additional register (R4) is available from the merging of AddRoundKey and ShiftRows

operation. The new order of operations is shown in Equation 6.1.

S3,c ⊕ S2,c ⊕ (S1,c • {03}) ⊕ (S0,c • {02}) = S ′0,c

S0,c ⊕ S3,c ⊕ (S2,c • {03}) ⊕ (S1,c • {02}) = S ′1,c

S1,c ⊕ S0,c ⊕ (S3,c • {03}) ⊕ (S2,c • {02}) = S ′2,c

S2,c ⊕ S1,c ⊕ (S0,c • {03}) ⊕ (S3,c • {02}) = S ′3,c

(6.1)

This order of operations results in the read order: S0,c, S1,c, S2,c, S3,c, S0,c, S1,c,

S2,c, This order of addresses is now very similar to the one needed for the Ad-

dRoundKey function with row and column addresses swapped. This simplifies the

address computation in the control logic.

Final AddRoundKey In this stage we perform the final round key computation

and AddRoundKey operation. Then the result is written back to memory. Hence,

the cipher can be used for encryption in CBC mode, as well as hash function in

CBC-MAC mode.

CHAPTER 6. SECRET KEY FUNCTIONS 132

6.5 Analysis and Comparison

All our designs were described in VHDL and verified by simulation with ModelSim

and test vectors from the respective standards [97, 99]. We synthesized the VHDL

code using Synopsys and used ModelSim for further verification and switching activity

analysis. Our target library is a 0.13µm, VDD = 1.2 V ASIC library from TSMC,

which is characterized for power. The final results for power, area, and delay were

reported by Synopsys Power Compiler at the gate level. We would like to emphasize

that our contribution is on the algorithmic and architectural level. Implementing

our designs using an ultra-low power ASIC library or a full custom chip design will

enable higher energy and power savings. We implemented SHA-1 once with a carry

look ahead adder (CLA) and once with a carry propagate adder (CPA). The results

for both SHA-1 implementations and for AES are shown in Table 6.1. All designs

consume a similar amount of area and power. However, the critical path delay in

SHA-1 (CPA) is more than twice as long as for AES. The critical path in AES

includes the S-Box, which is the most complex part of the circuit. The delay of SHA-

1 (CPA) is caused by a 32-bit CPA, also called ripple carry adder. We implemented

a carry look ahead adder (CLA) for SHA-1 in order to reduce the critical path delay.

However, our SHA-1 (CLA) implementation exhibits both, higher leakage power due

to the increase in area caused by the additional logic for the carry look ahead, and

larger dynamic power consumption. Therefore, we consider only SHA-1 (CPA) for the

following comparisons. The power consumption of the SHA-1 (CPA) and AES designs

is computed for a 500 kHz clock, which is far below their maximum frequency. The

total power consumption of SHA-1 is about 10 % higher than that of AES. Within

534 clock cycles AES can encrypt 128 bits of plaintext. SHA-1 needs 405 clock cycles

to compute the hash of 512 bits of data.

Feldhofer et.al. presented two related AES designs in [38] and [37] consuming

26.9 µW and 4.5 µW respectively with a 100kHz clock. These numbers are difficult to

CHAPTER 6. SECRET KEY FUNCTIONS 133

Table 6.1: Results for SHA-1 and AES

SHA-1 (CLA) SHA-1 (CPA) AES

Maximum critical delay 3.17 ns 5.72 ns 2.19 ns

Clock cycles for one operation 405 405 534

Area (NAND equiv.) 4362 4276 4070

Static Power 23.55 µW 23.00 µW 20.23 µW

Dynamic Power (at 500 kHz) 3.95 µW 3.74 µW 3.60 µW

Total Power (at 500 kHz) 27.49 µW 26.73 µW 23.83 µW

compare with our design as the results for power consumption are highly technology

dependent. The encryption only design in [38] consumes an area of 3595 NAND equiv.

and needs 1016 clock cycles. The design in [37] needs 3400 NAND equiv. and 1032

clock cycles. Both designs do not support CBC mode which requires extra hardware.

It can easily be seen that our implementation uses 20% more hardware resources than

their smallest design while using 48% less clock cycles, i.e. it is almost twice as fast.

The slight increase in hardware resources leads to large decrease in computation time

which reduces the energy consumption while still being an ultra-low power circuit.

For a fair comparison of AES and SHA-1, we used the same implementation and

optimization techniques with the same ASIC library.

In order to explore the energy consumption of our AES and SHA-1 implementa-

tions we focus on the TinySec [69] protocol. Table 6.2 shows the results assuming the

TinySec packet format and a payload of 29 bytes.

Table 6.2: Energy Results for SHA-1 and AES (29 bytes/packet, 500 kHz)

MAC Encryption Encryption & MAC

AES SHA-1 AES SHA-1 AES SHA-1

Energy [nJ] 76.42 43.32 50.95 43.32 127.36 86.64

Power [µW] 23.85 26.74 23.85 26.74 23.85 26.74

Time [ms] 3.20 1.62 2.14 1.62 5.34 3.24

Energy/bit [nJ] 0.33 0.19 0.22 0.19 0.55 0.37

CHAPTER 6. SECRET KEY FUNCTIONS 134

6.5.1 Message Authentication Codes

Due to the lossy nature of low power wireless transmission it is not feasible to compute

a single MAC for multiple packets. Therefore, SPINS [108] computes a MAC for each

packet using RC5 [122] in CBC-MAC mode and appends it to the original packet.

TinySec defines a packet format for authenticated messages (TinySec-Auth) that can

carry up to 29 Bytes of payload. The MAC is computed over the payload and the

packet header which is four bytes long. Table 6.2 shows that using AES to compute

the MAC over 29+4 bytes consumes 76.42 µJ and SHA-1 consumes 43.32 µJ. Even

though SHA-1 consumes 10% more power than AES, the running time of AES is

larger by a factor of two, leading to the higher energy consumption. Fig. 6.9 shows

the energy consumption for MAC computation over different payload sizes, each time

assuming a four byte overhead. Until the payload reaches 29 bytes AES consumes

less or almost equally as much energy as SHA-1. For payloads of 29 bytes or larger

AES has to run more than twice while for SHA-1 two iteration are sufficient, due to

its longer input size.

6.5.2 Encryption

Even though TinySec does not specify an encryption only format we still consider it

for comparison purposes. We assume that only the payload has to be encrypted and

the packet header is transmitted in the clear. Table 6.2 shows that the difference in

Energy consumption between SHA-1 and AES are less dramatic for encryption than

for MAC computation. Fig. 6.10 shows that SHA-1 follows AES closely. This comes

from the fact that the input size of AES is 128 bits and of SHA-1 in encryption mode

(SHACAL-1) is 160 bits.

CHAPTER 6. SECRET KEY FUNCTIONS 135

0 10 20 30 40 50 60
0

50

100

150

200

250

Payload Data (bytes)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

AES

SHA−1

Figure 6.9: Energy Consumption of MAC Computation with AES and SHA-1 De-

pending on Payload Size

0 10 20 30 40 50 60
0

50

100

150

200

250

Payload Data (bytes)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

AES

SHA−1

Figure 6.10: Energy Consumption of Encryption with AES and SHA-1 Depending on

Payload Size

CHAPTER 6. SECRET KEY FUNCTIONS 136

0 10 20 30 40 50 60
0

50

100

150

200

250

Payload Data (bytes)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

AES

SHA−1

Figure 6.11: Energy Consumption of Encryption and MAC Computation with AES

and SHA-1 Depending on Payload Size

6.5.3 Authentication and Encryption

The packet format for Authentication and Encryption (TinySec-AE) specifies a pay-

load of upto 29 bytes and a packet header of eight bytes length. Only the payload has

to be encrypted but the MAC is computed over the payload and the message header.

Assuming a 29-byte payload, AES consumes almost 1/3 more energy than SHA-1

(see Table 6.2. For larger payloads the SHA-1 consumes significantly less power (see

Fig. 6.11).

6.6 Conclusion

In this Chapter we presented a novel ultra-low power implementation of SHA-1 and an

ultra-low power and low energy AES design. Both circuits consume less than 30 µW

of power and could therefore be powered by scavenger circuits. We analyzed the

energy consumption of SHA-1 and AES based encryption and message authentication

CHAPTER 6. SECRET KEY FUNCTIONS 137

functions. The result of our analysis is that SHA-1 and AES seem to be equally well

suited for ultra-low power applications if the payload size is below 17 bytes. For

payloads of 17 bytes or above SHA-1 needs significantly fewer iterations than AES

and therefore a shorter running time which conserves energy. We want to emphasize

that the power consumption of both algorithms is about the same.

Chapter 7

Security Protocols

Security in wireless sensor networks was until recently provided exclusively through

symmetric key cryptography. In this Chapter we show that the special purpose ultra-

low power hardware implementations of public key algorithms from Chapter 5 can be

used on sensor nodes to enable services like broadcast authentication and to reduce

the protocol overhead of other services. This translates into less packet transmissions

and hence, power savings. We provide an in-depth comparison of three popular public

key implementations and describe how four fundamental security services benefit from

PKC.

7.1 Introduction

Most publications, seemed to preclude that public key cryptography (PKC) is not

feasible on severely resource constrained sensor nodes, and therefore revert to em-

ulation of asymmetry using symmetric key techniques in security protocols such as

µTESLA [108]. Most, if not all, implement cryptographic primitives in software on

general purpose micro-controllers. In this Chapter we present the two most popular

cryptographic protocols for WSN and show that PKC tremendously simplifies the im-

138

CHAPTER 7. SECURITY PROTOCOLS 139

plementation of many typical security services and additionally reduces transmission

power due to less protocol overhead. Moreover, the capture of a single node would

not compromise the entire network, since no globally shared secrets are stored on

it. Our approach to overcome the difficulty in implementing PKC in sensor nodes is

based on providing a custom-designed low-power co-processor that can be embedded

in the node and that handles all of the compute-intensive tasks.

In section 7.3 we identify four fundamental security services that would partic-

ularly benefit from PKC. Based on the analysis of the three low-complexity PKC

architectures presented in Chapter 5 we estimate the overall power and bandwidth

requirements of encryption and signature primitives in Section 7.4. The analysis of

the results in Section 7.4.2 with respect to the previously mentioned security services

can serve protocol designers as a guideline for incorporating public key-based services

into their WSN protocols.

7.2 Popular Protocols

7.2.1 SPINS with SNEP and µTESLA

SPINS is a security protocol optimized for sensor networks and was presented in [108].

It consists of two parts: SNEP and µTESLA which run ontop of TinyOS [80][55].

TinyOS is a small, event driven operating systems for sensor nodes with 8-bit low

end microprocessors.

SNEP SNEP stands for Secure Network Encryption Protocol and is used to provide

confidentiality through encryption and authentication as well as integrity through a

message authentication code. It uses a counter to provide the service called freshness

which allows detection of replayed messages. Encryption is provided through the

block cipher RC5 in counter mode and MAC computation through the same block

CHAPTER 7. SECURITY PROTOCOLS 140

cipher in CBC-MAC mode (see Section 6.2.3).

µTESLA is the “micro” version of the Timed Efficient Stream Loss-tolerant Au-

thentication (TESLA) scheme proposed in [107]. It emulates asymmetry through a

delayed disclosure of symmetric keys and serves as the broadcast authentication ser-

vice of SNEP and TinySec. Unlike TESLA, which authenticates the initial packet

using a digital signature, µTESLA relies solely on delayed disclosure. While Car-

man et al. acknowledge in [19] that symmetric key techniques are attractive due to

their energy efficiency, they also conclude that all symmetric key based key exchange

protocols analyzed by them exhibit limitations in their flexibility.

µTESLA and other schemes based on delayed key disclosure suffer from a serious

denial of service attack [117]. The µTESLA specification states that the base station

sends broadcast packets with a message authentication code for which the key has

not been disclosed. Each node is required to store all messages received during one

time interval for which the key has not been disclosed and forward them to other

nodes in the tree. In the subsequent time interval, the base station is disclosing the

old key, and the nodes can verify all messages in their buffer. The requirement that

each node has to buffer and relay all messages for which it has not received a valid

key can easily be exploited by an attacker. He can flood the network with arbitrary

messages, claiming that they belong to the current time interval. Only in the next

time interval the nodes are able to verify that these messages are not authentic. This

can lead to buffer overflows in the nodes and to battery exhaustion as all messages

have to be forwarded to other nodes.

The use of public key cryptography would eliminate the need for complicated

protocols and at the same time would also increase the security of the entire system,

since only the public key of the base station would have to be embedded into the

nodes.

CHAPTER 7. SECURITY PROTOCOLS 141

7.2.2 TinySec

TinySec [69] replaces SNEP. Therefore it provides similar services, namely authenti-

cation, integrity, confidentiality and replay protection. Unlike SNEP, it does not use

counters. It uses CBC mode with ciphertext stealing [129] for encryption and CBC-

MAC for authentication. In order to make the CBC-MAC secure for variably sized

messages TinySec XORs the encryption of the message length with the first plain-

text block [10]. TinySec defines two packet formats: TinySec-Auth (section 6.5.1)

for authenticated messaged and TinySec-AE (section 6.5.3) for authenticated and

encrypted messages. Furthermore, TinySec is integrated into TinyOS.

7.3 Security Services

In this section we state our assumptions regarding the structure of the WSN and

define an exemplary subset of four security services that would particularly benefit

from the use of PKC.

Sensor networks typically consist of a number of tiny nodes communicating with

a base station [108]. The base station collects the data from the sensors and commu-

nicates with the outside world. The sensor nodes only have limited power and can

therefore communicate directly only with nodes in close proximity. They establish a

routing tree with the base station at its root. The base station is assumed to have

sufficient power for all computations and communications with the nodes and the

outside world.

Broadcast Authentication In this scenario, a base station would, for example,

broadcast a set of commands, to all sensor nodes at once. Each sensor node would

need to verify that this message originated from the trusted base station and not

from an adversary. This scenario is a typical application for PKC. All nodes would

CHAPTER 7. SECURITY PROTOCOLS 142

need to have the base station’s public key embedded. Data recovered from captured

nodes would not be helpful to the adversary in forging messages. Previously published

schemes either require large amounts of data to be sent or a complicated symmetric

key release scheme [108] which is vulnerable to a denial of service attack.

Data Encryption Data encryption using PKC is much more expensive than using

secret key cryptography. However, in certain cases where no secret key is established,

it can be useful. One case is node-to-node key distribution described below. Another

scenario could be, that a sensor node has to send some data all the way to the base

station. The node just needs the base station’s public key for this operation.

Node-to-Node Key Distribution Another typical PKC application is key dis-

tribution and key agreement. Key agreement refers to a protocol where two parties

jointly establish a key, whereas key distribution is defined as a protocol where one

party securely transmits a key to another party. Here we are assuming that each

node knows the public key of its neighbors. The private key could be distributed

during the routing setup phase or by querying the base station. If two nodes want to

establish a session key a node simply encrypts it using its neighbors public key and

sends it. Unlike other schemes, the base station does not need to get involved, which

saves transmission power.

Addition of new Nodes New legitimated nodes might need to be added to a

WSN at any point in time. These nodes must be included into the security scheme

of the WSN. Again, PKC offers an elegant solution. Each sensor node has its own

public/private key pair and additionally the base stations public key. The public keys

of the new nodes can be sent via the outside communications link to the base station.

Now the base station can trust the new nodes and vice versa. The base station can

encrypt a secret session key with the node’s public key and send it, or the node can

CHAPTER 7. SECURITY PROTOCOLS 143

announce its arrival in the network by sending a signed message to the base station.

There is no need for additional bootstrapping information.

7.4 Feasibility Study

In Section 7.3 we identified four security services that would benefit from an efficient

ultra-low power PKC implementation. Here we identify which PKC function is needed

for each of these services. Broadcast Authentication uses signature verification on the

node using the base station’s public key. In order to provide the Data Encryption

service for sending data to the base station, the node has to encrypt data, again using

the base station’s public key. Node-to-Node Key Distribution requires encryption as

well as decryption. Addition of New Nodes is based on a node having a private key.

The node would either sign a message and send it to the base station, or decrypt

a message received from the base station. Table 7.1 provides an overview of these

functions for the three PKC systems that we consider.

7.4.1 Public Key Schemes

Now we are showing which PKC can support the above mentioned services and provide

estimates on the power consumption and throughput.

Rabin’s Scheme as defined in [115] can be used for all four methods. Chapter 5.2.2

shows how it can be used for data encryption. This is the same function as signature

verification. Data decryption, as well as signature generation, requires solving the

equation Dn(x) ≡ √
y mod n. If we set p ≡ q ≡ 3 mod 4 then the square root can

be computed elegantly using Euler’s criterion and Garner’s algorithm as follows. We

compute the solution for y(p+1)/4 = c1 mod p and y(q+1)/4 = c2 mod q separately.

Using a slightly modified Garner’s algorithm we compute the result x as x = ±c1 +

CHAPTER 7. SECURITY PROTOCOLS 144

[(±c2 ± c1) · p(p−1 mod q)] mod n. The exponents (p + 1)/4 and (q + 1)/4 as well

as the factor p(p−1 mod q) can be precomputed and hard wired, just like the keys.

A decryption takes two exponentiations with an exponent of at most 255 bits and

one multiplication mod n. We ignore the cost of the additions as it is negligible

compared to the multiplication cost. The decryption will need 762 multiplications on

average with 255-bit coefficients and one 512-bit multiplication. If we employ the same

circuit as we use for encryption (which is not an optimal solution) then one decryption

would take on average 544,753 clock cycles. That means a single decryption or signing

would take 1.09 seconds. This new circuit would require more storage for c1 and c2,

additional multiplexers for the precomputed constants and a more complex control

logic. Conservative estimates result in a total power consumption of 191.5µW.

NtruEncrypt and NtruSign Our basic NtruEncrypt encryption primitive pro-

vides us with representative data from which we can extrapolate power and energy

requirements for the decryption, signature generation and signature verification pro-

cedure. In our original architecture we fixed the public key as a constant in a very

compact look-up table. For our estimates of the other primitives we therefore add

an overhead of around 40 µW of static power to our simulation results that caters for

the additional storage requirements. We base our estimates further on the number

of cyclic convolutions that are required by the respective primitive, since that is the

central arithmetic operation in all Ntru schemes.

Based on [59, 58] we found the number of convolution operations to be 1, 2, 4

and 1 for encryption, decryption, signature generation and verification, respectively.

Convolution is by far the most complex operation in NtruEncrypt and NtruSign, so it

is safe to assume that time and energy are proportional to the number of convolutions.

The figures for energy consumption are the products of the time and power estimates.

CHAPTER 7. SECURITY PROTOCOLS 145

ECMV and ECDSA The elliptic curve based encryption and signature algorithms

we selected are all based upon scalar point multiplications. According to the descrip-

tion of these algorithms in several standards and publications, the encryption and

signature verification primitives of ECMV and ECDSA each require two scalar point

multiplications, while for decryption and signature generation a single scalar point

multiplication is sufficient. We base our time estimates on these findings, coupled

with the performance figures for our baseline ECC architecture.

7.4.2 Comparison

Table 7.1 compares the PKC functions with regards to speed, power, energy and

message length. The transmission power for the messages is not included as we did not

consider a particular transmission system. However, the length of the ciphertext and

signature can be used for an estimate for a particular transmitter. For encryption and

decryption the ratio of payload length vs. ciphertext length is important. Signatures

are transmitted in addition to the original message.

Typical packet sizes on WSN are 30 bytes [108] and 56 bytes. Due to its asym-

metry, Rabin’s scheme is particularly suitable if only encryption and signature ver-

ification are performed on the node. Otherwise it is comparable to ECC. Ntru has

the smallest average power consumption, but the largest message size of 5 packets.

In environments where transmission power is not the most dominant part, Ntru has

an advantage. ECC has a small message expansion for encryption and a high power

consumption but requires the smallest number of packets. Also, the message content

(key material) rarely exceeds 200 bits. On most WSN nodes, transmitting a single

bit costs as much power as executing 1000 instructions. Small message sizes and low

overhead is of utmost importance which is a feature of ECC.

Broadcast Authentication can benefit greatly from using a PKC. With ECC only

one additional packet needs to be sent to authenticate a message from the base station.

CHAPTER 7. SECURITY PROTOCOLS 146

Protocols like µTESLA [108] require a complicated delayed key disclosure scheme

which is vulnerable to denial of service attacks, requires constant key updates, the

nodes have to store keys, and be time synchronized. Bootstrapping a new node be-

comes especially difficult. Node-to-Node Key Distribution can now be done with only

two (ECC) or three (Rabin) packets between the nodes. Involving the base station

in this key setup becomes especially expensive if the communicating nodes are many

hops away. The scheme presented in [108] requires at least four messages, three of

which involve the base station. The details of when Data Encryption is advantageous

and how the Addition of new Nodes is handled is dependent on the specific protocol.

However, our results indicate, that only very few packets are necessary with PKC.

CHAPTER 7. SECURITY PROTOCOLS 147

Table 7.1: Comparison of PKC Functions (Packets of 30 bytes)

NtruEncrypt
Encryption/Decryption Rabin NtruEncrypt

parallel
ECMV

- Message Payload < 512 bits < 265 bits < 265 bits < 200 bits

- Ciphertext 512 bits (3) 1,169 bits (5) 1,169 bits (5) 400 bits (2)

Encryption

Time per Message 2.88 ms 58.45 ms 0.87 ms 817.7 ms

Avg. Power 148.18 µW 19.13 µW 118.7 µW 394.4 µW

Energy per Message 426.76 nJ 1,118.15 nJ 102.79 nJ 322.5 µJ

Decryption

Time per Message 1.089 s 116.9 ms 1.732 ms 411.54 ms

Avg. Power 191.5 µW 58.73 µW 158.3 µW 394.4 µW

Energy per Message 208.64 µJ 6,865.54 nJ 274.18 nJ 162.31 µJ

NtruSign
Sign / Verify Rabin NtruSign

parallel ECDSA

- Signature Length 512 bits (3) 1,169 bits (5) 1,169 bits (5) 200 bits (1)

Sign

Time per Message 1.089 s 233.8 ms 3.464 ms 410.45 ms

Avg. Power 191.5 µW 58.73 µW 158.3 µW 394.4 µW

Energy per Message 208.64 µJ 13.73 µJ 548.35 nJ 161.88 µJ

Verify

Time per Message 2.88 ms 58.45 ms 0.87 ms 822.5 ms

Avg. Power 148.18 µW 19.13 µW 118.7 µW 394.4 µW

Energy per Message 426.76 nJ 1,118.15 nJ 102.79 nJ 324.39 µJ

Chapter 8

Conclusion

This Chapter summarizes the results of the research presented in this dissertation

and suggests directions for future work in this area.

8.1 Summary and Conclusion

Wireless Sensor Nodes (WSN) and Radio Frequency Identification Devices (RFIDs)

belong to a new set of ultra-low power applications which make computing ubiquitous.

WSN and RFIDs are quickly becoming a vital part of our infrastructure [29]. Security

is a critical factor for these ultra-low power devices due to their impact on privacy,

trust and control. Both technologies impose severe power and area constraints on the

underlying hardware devices. Traditional cryptographic algorithms are considered

too bulky, complex and power hungry for these devices. The goal our research was

to develop a suite of cryptographic functions for authentication, encryption, and

integrity that is specifically fashioned to the needs of ultra-low power devices. This

includes public key cryptography, secret key cryptography, message authentication

codes and secure hash functions.

Developing hardware implementations of cryptographic algorithms for ultra-low

148

CHAPTER 8. CONCLUSION 149

power devices is not as straightforward as compiling existing VHDL code for an low-

power ASIC library. We carefully selected several algorithms that seemed promis-

ing for a ultra-low power implementation. We made extensive use of power saving

techniques on the architectural, logic, and system level (e.g. clock gating, operand

isolation) when we implemented the algorithms. In most cases the speed of the al-

gorithm is not as important as the power consumption. At the low clock frequencies

of these devices leakage power is dominant. Therefore, we minimized the power con-

sumption by minimizing the circuit size. Furthermore, we have to look at security

protocols and evaluate if a specific algorithm might save on the overall transmissions

as transmission power is very expensive.

Universal Hash Functions for Ultra-Low Power Devices Protecting the in-

tegrity of data is of utmost importance for many application scenarios of ubiquitous

computing. In many cases the data transmitted between sensor motes or an RFID

tag and the reader is not confidential but its authenticity and integrity are very im-

portant. Universal hash functions, first introduced by Carter and Wegman provide a

unique solution to the aforementioned security problems. A universal hash function

family can be used to build an unconditionally secure MAC. When we implemented

a universal hash function family (NH) we identified several possible hardware opti-

mizations. Some of them involved removing registers, multiplexers and several gates.

The result was a new hash function family (WH) which we could prove to provide

better security characteristics than NH. This approach of developing new algorithms

seems very promising. Furthermore we investigated techniques like multi-hashing,

and the Toeplitz approach to reduce the energy consumption through leakage power

even more. Our work is described in [153] which describes the development of WH

and in [68] which describes how we achieve energy scalability for our universal hash

function family.

CHAPTER 8. CONCLUSION 150

Public-Key Cryptography for Ultra-Low Power Devices It was widely be-

lieved that public key cryptography is not feasible on sensor nodes. Many elaborate

wireless security protocols have been designed to emulate public key features using

only secret key functions. However, recent results [117] have shown that this can

lead to vulnerabilities. Our work on public-key cryptography for ultra-low power de-

vices published in [42] was to our knowledge the first that addressed this issue and is

now heavily cited. We designed proof-of-concept hardware implementations of three

distinct fundamental functions covering the three major areas of public key cryptogra-

phy. We followed up on this work by showing how the use of these functions can lead

to very simple and energy efficient security protocols, saving expensive transmission

power [41].

Secret Key Cryptography To complete our suit of cryptographic functions for

ultra-low power devices we analyzed and implemented AES and SHA-1 for authenti-

cation and encryption. SHA-1 has a larger input size than AES so one would expect

that in order to encrypt a large block of data SHA-1 needs less iterations than AES.

The same applies for computing the message authentication code of the same block of

data. Our surprising result was, that this property manifests itself already for small

inputs of only 17 bytes, i.e., our SHA-1 design is more energy efficient than our AES

design for any data block larger than 17 bytes.

In summary, we presented several ultra-low power proof-of-concept implementations

of cryptographic algorithms covering all basic cryptographic services. We see our

work as a foundation for future research.

CHAPTER 8. CONCLUSION 151

8.2 Recommendations for Future Research

In this dissertation a suite of cryptographic functions for ultra-low power applications

was developed. During this process ideas have surfaced that expand the scope of the

original goals. This section provides the reader with an overview of these ideas which

represent possible areas in which further work could be pursued.

Technological Level Optimizations In this dissertation, we made extensive use

of power saving techniques at the architectural, logic, and system level. Power opti-

mizations of the technological level can lead to further power savings. It would also

enable us to investigate the effects of different technologies for memory implementa-

tions that have the potential of consuming less power than flip-flops [114]. Ultra-low

power memory can offer interesting tradeoffs for serialization and precomputation.

Another important point would be to invesigate how our results will scale to future

CMOS technologies.

Investigating other Algorithms and Applications So far, we analyzed the

most important cryptographic algorithms. In the near future this can be expanded

to other algorithms like Hyper Elliptic Curves, XTR, Kasumi, etc. This topic can

also be expanded applications other than WSN and RFID which might have different

power, area, or transmission requirements.

Making Ultra-Low Power Cryptographic Devices Tamper Proof This topic

covers the physical security of the devices as well as side channel attacks. Many ap-

plications of wireless sensor nodes and RFID tags makes them vulnerable to attacks.

The physical implementation of cryptographic algorithms can leak information about

secret data to an attacker through side channels e.g., fluctuation in power consump-

tion, electro magnetic radiation, etc. Techniques to thwart these attacks are currently

being developed. One area for research could be to study how these techniques can

CHAPTER 8. CONCLUSION 152

be applied for ultra-low power implementations without exceeding power and area

limitations.

Ultra-Low Power True Random Number Generators The security of almost

all cryptographic systems depends on the randomness, unpredictability and secrecy

of the key. Many cryptographic protocols require random numbers also for purposes

other than the key. Therefore, a true random number generator (TRNG) must meet

stringent requirements. Designing TRNGs is the subject of current research. Most

published implementations have large hardware requirements. It would therefore be

very interesting to study how a TRNG can be built within the constraints of ultra-low

power applications.

Application to Secure Wireless Networks The research presented in this dis-

sertation resulted in proof-of-concept implementations for ultra-low power cryptogra-

phy. As a next step we could deploy the cryptographic hardware implementations in

actual WSN motes or on RFID tags. Through this, we would obtain clearer definitions

and constraints for further research.

Bibliography

[1] TI celebrates 10 year aniversary of RFID. http://www.ti.com/rfid/docs/

manuals/RFIDNews/Tiris_NL20.pdf, 2000. RFID News, Issue 20, Texas In-

struments.

[2] Wal-Mart details RFID requirement. RFID Journal, Nov 2003. http://www.

rfidjournal.com/article/articleprint/642/-1/1/.

[3] Katherine Albrecht and Liz McIntyre. Spychips : How Major Corporations and

Government Plan to Track Your Every Move with RFID. Nelson Current, 2005.

[4] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou.

Precomputation-based sequential logic optimization for low power. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 2(4):426–436, Dec

1994.

[5] R Amirtharajah and A. P. Chandrakasan. Self-powered signal processing us-

ing vibration-based power generation. IEEE Journal of Solid-State Circuits,

33(5):687–695, May 1998.

[6] R. Anderson, E. Biham, and L. Knudsen. Serpent: A proposal for the ad-

vanced encryption standard. In First Advanced Encryption Standard (AES)

Conference, Ventura, California, USA, 1998.

153

http://www.ti.com/rfid/docs/manuals/RFIDNews/Tiris_NL20.pdf
http://www.ti.com/rfid/docs/manuals/RFIDNews/Tiris_NL20.pdf
http://www.rfidjournal.com/article/articleprint/642/-1/1/
http://www.rfidjournal.com/article/articleprint/642/-1/1/

BIBLIOGRAPHY 154

[7] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,

H. Cao, M. Demirbas, M. Gouda, Y. Choi, T Herman, S. Kulkarni, U. Aru-

mugam, M. Nesterenko, A. Vora, and M. Miyashita. A line in the sand: a

wireless sensor network for target detection, classification, and tracking. Com-

puter Networks, 46(5):605–634, Dec 2004.

[8] D. Bailey, D. Coffin, A. Elbirt, J. Silverman, and A.Woodbury. NTRU in

constrained devices. In Ç. Koç, D. Naccache, and C. Paar, editors, Workshop

on Cryptographic Hardware and Embedded Systems—CHES 2001, volume 2162

of Lecture Notes in Computer Science (LNCS), pages 266–277, Berlin, May

2001. Springer-Verlag.

[9] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for mes-

sage authentication. In Neal Koblitz, editor, Advances in Cryptology, Crypto

’96, volume 1109 of Lecture Notes in Computer Science (LNCS), pages 1–15.

Springer Verlag, 1996.

[10] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher

block chaining message authentication code. Journal of Computer and System

Sciences, 61(3):362–399, 2000.

[11] Luca Benini and Giovanni De Micheli. System-level power optimization: Tech-

niques and tools. ACM Transactions on Design Automation of Electronic Sys-

tems, 5(2):115–192, April 2000.

[12] Luca Benini, Giovanni De Micheli, and Enrico Macii. Designing low-power

circuits: Practical recipes. IEEE Circuits and Systems Magazine, 1(1):6–25,

2001.

BIBLIOGRAPHY 155

[13] F. Bennett, D. Clarke, J. B. Evans, A. Hopper, A. Jones, and D. Leask. Piconet:

Embedded mobile networking. IEEE Personal Communications, 4(5):8–15, Oct

1997.

[14] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.

UMAC: Fast and secure message authentication. In Advances in Cryptology

- CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science (LNCS),

pages 216–233. Springer-Verlag, 1999.

[15] M. Borah, R.M. Owens, and M.J. Irwin. Transistor sizing for low power CMOS

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 15(6):665–671, Jun 1996.

[16] S.M. Brennan, A.M. Mielke, D.C. Torney, and A.B. Maccabe. Radiation detec-

tion with distributed sensor networks. Computer, 37(8):57–59, Aug 2004.

[17] R. Burne et al. Self-organizing cooperative sensor network for remote surveil-

lance: improved target tracking results. In Proceedings of the SPIE - The Inter-

national Society for Optical Engineering, volume 4232, pages 313–321, Boston,

2001. SPIE, SPIE-Int. Soc. Opt. Eng, USA.

[18] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla,

S. M. Matyas Jr., L. O’Connor, M. Peyravian, D. Safford, and N. Zunic. Mars

- a candidate cipher for AES. In First Advanced Encryption Standard (AES)

Conference, Ventura, California, USA, 1998.

[19] D. W. Carman, P. S. Kruus, and B. J. Matt. Constraints and approaches

for distributed sensor network security. Technical report, NAI Labs, Security

Research Division, Glenwood, MD, Sep 2000.

[20] L. Carter and M. Wegman. Universal classes of hash functions. Journal of

Computer and System Sciences, 18(2):143–154, Apr 1979.

BIBLIOGRAPHY 156

[21] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton,

and Jerry Zhao. Habitat monitoring: application driver for wireless commu-

nications technology. SIGCOMM Comput. Commun. Rev., 31(2 supp):20–41,

2001.

[22] Haowen Chan, A. Perrig, and D. Song. Random key predistribution schemes for

sensor networks. In Symposium on Security and Privacy, 2003, pages 197–213,

May 2003.

[23] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power CMOS digital

design. IEEE Journal of Solid-State Circuits, 27(4):473–484, Apr 1992.

[24] Chee-Yee Chong and P. Kumar, Srikanta. Sensor networks: Evolution, oppor-

tunities, and challenges. Proceedings of the IEEE, 91(8):1247–1256, Aug 2003.

[25] Margery Conner. Energy harvesters extract power from light, vibrations. EDN,

pages 45–50, Oct 27 2005. http://www.edn.com/article/CA6275407.html.

[26] Michael Crichton. Prey. HarperCollins, 2002.

[27] D. Culler, D. Estrin, and M. Srivastava. Guest editors’ introduction: Overview

of sensor networks. Computer, 37(8):41–79, Aug 2004.

[28] David E. Culler and Wei Hong. Wireless sensor networks. Commun. ACM,

47(6):30–33, Jun 2004.

[29] David E. Culler and Hans Mulder. Smart sensors to network the world. Scien-

tific American, pages 84–91, Jun 2004.

[30] Vivek De and Shekhar Borkar. Technology and design challenges for low power

and high performance [microprocessors]. In International Symposium on Low

Power Electronics and Design (ISLPED) 1999, pages 163–168, 1999.

http://www.edn.com/article/CA6275407.html

BIBLIOGRAPHY 157

[31] S. Devadas and S. Malik. A survey of optimization techniques targeting low

power VLSI circuits. In Proceedings of the 32nd ACM/IEEE Conference on

Design Automation, pages 242–247, 1995.

[32] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transac-

tions on Information Theory, IT-22(6):644–654, Nov 1976.

[33] T. ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,

Jul 1985.

[34] Michael Epstein, Laszlo Hars, Raymond Krasinski, Martin Rosner, and Hao

Zheng. Design and implementation of a true random number generator based

on digital circuit artifacts. In Colin D. Walter, Çetin K. Koç, and Christof

Paar, editors, Proceedings of the 5th International Workshop on Cryptographic

Hardware and Embedded Systems, CHES 2003, volume 2779 of Lecture Notes in

Computer Science (LNCS), pages 152–165, Berlin, Sep 2003. Springer-Verlag.

[35] Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for dis-

tributed sensor networks. In Proceedings of the 9th ACM conference on Com-

puter and communications security, pages 41–47. ACM Press, 2002.

[36] M. Etzel, S. Patel, and Z. Ramzan. SQUARE HASH: Fast message authentica-

tion via optimized universal hash functions. In M. Wiener, editor, Advances in

Cryptology - CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science

(LNCS), pages 234–251, New York, 1999. Springer-Verlag.

[37] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES implementation on a grain

of sand. Information Security, IEE Proceedings, 152(1):13–20, Oct 2005.

[38] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong au-

thentication for RFID systems using the AES algorithm. In Marc Joye and

BIBLIOGRAPHY 158

Jean-Jacques Quisquater, editors, Proceedings of the 6th international work-

shop on cryptographic hardware and embedded systems CHES 2004, volume

3156 of Lecture Notes in Computer Science (LNCS), pages 357–370. Springer,

Aug 2004.

[39] Benjamin Fulford. Sensors gone wild. Forbes Global, Oct 2002. http://www.

forbes.com/global/2002/1028/076_print.html.

[40] Prasanth Ganesan, Ramnath Venugopalan, Pushkin Peddabachagari, Alexan-

der Dean, Frank Mueller, and Mihail Sichitiu. Analyzing and modeling en-

cryption overhead for sensor network nodes. In Proceedings of the 2nd ACM

international conference on Wireless sensor networks and applications, pages

151–159, 2003.

[41] Gunnar Gaubatz, Jens-Peter Kaps, Erdinç Öztürk, and Berk Sunar. State of

the art in ultra-low power public key cryptography for wireless sensor networks.

In Third IEEE International Conference on Pervasive Computing and Commu-

nications Workshops, Workshop on Pervasive Computing and Communications

Security–PerSec’05, pages 146–150. IEEE Computer Society, Mar 2005.

[42] Gunnar Gaubatz, Jens-Peter Kaps, and Berk Sunar. Public key cryptography in

sensor networks—revisited. In Hannes Hartenstein, Claude Castellucia, Christof

Paar, and Dirk Westhoff, editors, 1st European Workshop on Security in Ad-Hoc

and Sensor Networks (ESAS 2004), volume 3313 of Lecture Notes in Computer

Science (LNCS), pages 2–18, Heidelberg, August 2004. Springer.

[43] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of average switch-

ing activity in combinational and sequential circuits. In Proceedings of the 29th

Design Automation Conference, pages 253–259, Jun 1992.

http://www.forbes.com/global/2002/1028/076_print.html
http://www.forbes.com/global/2002/1028/076_print.html

BIBLIOGRAPHY 159

[44] P. Girard, C. Landrault, S. Pravossoudovitch, and D. Severac. A gate resizing

technique for high reduction in power consumption. In ISLPED ’97: Proceedings

of the 1997 international symposium on Low power electronics and design, pages

281–286, New York, NY, USA, 1997. ACM Press.

[45] Tim Good and Mohammed Benaissa. AES on FPGA from the fastest to the

smallest. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware

and Embedded Systems - CHES 2005, volume 3659 of Lecture Notes in Computer

Science (LNCS), pages 427–440. Springer, 2005.

[46] James Goodman and Anantha P. Chandrakasan. Low power scalable encryption

for wireless systems. Wireless Networks, 4(1):55–70, Jan 1998.

[47] P.F. Gorder. Sizing up smart dust. Computing in Science & Engineering,

5(6):6–9, Nov.-Dec. 2003.

[48] Tim Grembowski, Roar Lien, Kris Gaj, Nghi Nguyen, Peter Bellows, Jaroslav

Flidr, Tom Lehman, and Brian Schott. Comparative analysis of the hardware

implementations of hash functions SHA-1 and SHA-512. In Agnes Hui Chan

and Virgil Gligor, editors, Information Security, 5th International Conference,

ISC 2002, volume 2433 of Lecture Notes in Computer Science (LNCS), pages

75–89. Springer-Verlag, 2002.

[49] S. Halevi and H. Krawczyk. MMH: Software message authentication in the

Gbit/second rates. In 4th Workshop on Fast Software Encryption, volume 1267

of Lecture Notes in Computer Science (LNCS), pages 172–189. Springer, 1997.

[50] H. Handschuh and D. Naccache. SHACAL. Submission to the NESSIE project,

Gemplus, F-92447 Issy-les-Moulineaux, France, Oct 2000.

[51] H. Handschuh and D. Naccache. SHACAL: a family of block ciphers. Submission

to the NESSIE project, Gemplus, F-92447 Issy-les-Moulineaux, France, 2001.

BIBLIOGRAPHY 160

[52] Helena Handschuh, Lars R. Knudsen, and Matthew J. Robshaw. Analysis of

SHA-1 in encryption mode. In David Naccache, editor, Topics in Cryptology

CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science (LNCS),

pages 70–83. Springer Verlag, 2001.

[53] K. M. Heal, M. L. Hansen, and K. M. Rickard. Maple V Learning Guide.

Springer Verlag, New York, 1998.

[54] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The

platforms enabling wireless sensor networks. Commun. ACM, 47(6):41–46, Jun

2004.

[55] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and

Kristofer S. J. Pister. System architecture directions for networked sensors.

In Architectural Support for Programming Languages and Operating Systems,

pages 93–104. ACM, 2000.

[56] Jason Lester Hill. System Architecture for Wireless Sensor Networks. Phd.

dissertation, University of California at Berkeley, Spring 2003.

[57] J. Hoffstein and J. H. Silverman. Optimizations for NTRU. In Proceedings

of Public Key Cryptography and Computational Number Theory. de Gruyter,

Warsaw, September 2000.

[58] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman,

and William Whyte. NTRUSign: Digital signatures using the NTRU lattice.

In Marc Joye, editor, Topics in Cryptology–CT-RSA 2003, volume 2612 of Lec-

ture Notes in Computer Science, pages 122–140, Heidelberg, April 2003. RSA,

Springer Verlag.

[59] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based

public key cryptosystem. In J.P. Buhler, editor, Algorithmic Number Theory

BIBLIOGRAPHY 161

(ANTS III), volume 1423 of Lecture Notes in Computer Science (LNCS), pages

267–288, Berlin, Jun 1998. Springer-Verlag.

[60] Jeffrey Hoffstein, Joseph H. Silverman, and William Whyte. NTRU report 012,

version 2. estimated breaking times for NTRU lattices. Technical Report 12,

NTRU Cryptosystems, Inc., Burlington, MA, USA, June 2003.

[61] Fei Hu and Neeraj K. Sharma. Security considerations in ad hoc sensor net-

works. Ad Hoc Networks, 3(1):69–89, Jan 2005.

[62] P. Ienne and M.A. Viredaz. Bit-serial multipliers and squarers. IEEE Transac-

tions on Computers, 43(12):1445–1450, Dec 1994.

[63] International Technology Roadmap for Semiconductors. ITRS Executive Sum-

mary, 2005 edition. http://public.itrs.net/.

[64] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital

signature algorithm (ECDSA). International Journal of Information Security,

1(1):36–63, Aug 2001.

[65] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile

networking for ”smart dust”. In Proceedings of the fifth annual ACM/IEEE

international conference on Mobile computing and networking, pages 271–278.

ACM, 1999.

[66] B. Kaliski. The MD2 message-digest algorithm. RFC 1319, RSA Laboratories,

Apr 1992.

[67] Jens-Peter Kaps and Berk Sunar. Energy comparison of AES and SHA-1 for

ubiquitous computing. In Xiaobo Zhou et al., editor, Embedded and Ubiqui-

tous Computing (EUC-06) Workshop Proceedings, Lecture Notes in Computer

Science (LNCS). Springer, 2006. to appear.

http://public.itrs.net/

BIBLIOGRAPHY 162

[68] Jens-Peter Kaps, Kaan Yüksel, and Berk Sunar. Energy scalable universal

hashing. IEEE Transactions on Computers, 54(12):1484–1495, Dec 2005.

[69] Chris Karlof, Naveen Sastry, and David Wagner. TinySec: A link layer secu-

rity architecture for wireless sensor networks. In Second ACM Conference on

Embedded Networked Sensor Systems (SenSys 2004), pages 162–175, New York,

2004. ACM Press.

[70] Ralph Kling, Robert Adler, Jonathan Huang, Vincent Hummel, and Lama

Nachman. Intel mote-based sensor networks. Structural Control and Health

Monitoring, 12(3-4):469–479, 2005.

[71] N. Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1(3):139–150,

1989.

[72] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48(177):203–209, Jan 1987.

[73] H. Krawczyk. LFSR-based hashing and authentication. In Advances in Cryp-

tology - Crypto’94, volume 839 of Lecture Notes in Computer Science (LNCS),

pages 129–139. Springer-Verlag, 1994.

[74] H. Krawczyk. New hash functions for message authentication. In EURO-

CRYPT’95, volume 921 of Lecture Notes in Computer Science (LNCS), pages

301–310. Springer-Verlag, 1995.

[75] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message

authentication. RFC 2104, Network Working Group, Feb 1997.

[76] X. Lai and J. L. Massey. A proposal for a new block encryption standard. In

Ivan B. Damg̊ard, editor, Advances in Cryptology - EuroCrypt ’90, volume 473

BIBLIOGRAPHY 163

of Lecture Notes in Computer Science (LNCS), pages 389–404, Berlin, 1990.

Springer-Verlag.

[77] Jeremy Landt. The history of RFID. IEEE Potentials, 24(4):8–11, 2005.

[78] Y.W. Law, J. Doumen, and P. Hartel. Benchmarking block ciphers for wire-

less sensor networks. In IEEE International Conference on Mobile Ad-hoc and

Sensor Systems, pages 447–456. IEEE, Oct 2004.

[79] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. Journal

of Cryptology: The Journal of the International Association for Cryptologic

Research, 14(4):255–293, 2001.

[80] Philip Levis and David Culler. Maté: a tiny virtual machine for sensor networks.

In Proceedings of the 10th international conference on architectural support for

programming languages and operating systems (ASPLOS-X), pages 85–95, San

Jose, California, 2002. ACM Press.

[81] Xiaohua Luo, Kougen Zheng, Yunhe Pan, and Zhaohui Wu. Encryption algo-

rithms comparisons for wireless networked sensors. In IEEE International Con-

ference on Systems, Man and Cybernetics, volume 2, pages 1142–1146. IEEE,

Oct 2004.

[82] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John

Anderson. Wireless sensor networks for habitat monitoring. In First ACM

Workshop on Wireless Sensor Networks and Applications, Atlanta, GA, USA.,

Sep 2002.

[83] Stefan Mangard, Manfred Aigner, and Sandra Dominikus. A highly regular

and scalable AES hardware architecture. IEEE Transactions on Computers,

52(4):483–491, April 2003. Special Issue on Cryptographic Hardware and Em-

bedded Systems.

BIBLIOGRAPHY 164

[84] Y. Mansour, N. Nissan, and P. Tiwari. The computational complexity of uni-

versal hashing. In 22nd Annual ACM Symposium on Theory of Computing,

pages 235–243. ACM Press, 1990.

[85] M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits. Shooter localization in

urban terrain. Computer, 37(8):60–61, Aug 2004.

[86] K. Martinez, J.K. Hart, and R. Ong. Environmental sensor networks. Computer,

37(8):50–56, Aug 2004.

[87] R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer

Academic Publishers, 2nd edition, 1989.

[88] MDx-MAC and Building Fast MACs from Hash Functions. Preneel, b. and van

oorschot, p. c. In Don Coppersmith, editor, Advances in Cryptology, Crypto

’95, volume 963 of Lecture Notes in Computer Science (LNCS), pages 1–14.

Springer-Verlag, 1995.

[89] S. Meininger, J.O. Mur-Miranda, R. Amirtharajah, A.P. Chandrakasan, and

J.H. Lang. Vibration-to-electric energy conversion. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 9(1):64–76, Feb 2001.

[90] A. J. Menezes, P. C. van Oorschot, and S. Vanstone. Handbook of Applied

Cryptography. CRC Press Inc., 1997.

[91] V. S. Miller. Uses of elliptic curves in cryptography. In Hugh C. Williams,

editor, Advances in Cryptology — CRYPTO ’85, volume 218 of Lecture Notes

in Computer Science (LNCS), pages 417–426, Berlin, 1986. Springer-Verlag.

[92] National Institute of Standards and Technology (NIST), FIPS Publication 81.

DES modes of operation, Dec 1980. http://csrc.nist.gov/publications/

fips/fips81/fips81.htm.

http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://csrc.nist.gov/publications/fips/fips81/fips81.htm

BIBLIOGRAPHY 165

[93] National Institute of Standards and Technology (NIST), FIPS Publication

113. Computer Data Authentication, May 1985. http://www.itl.nist.gov/

fipspubs/fip113.htm.

[94] National Institute of Standards and Technology (NIST), FIPS Publication 185.

Escrowed Encryption Standard (EES), Feb 1994. http://www.itl.nist.gov/

fipspubs/fip185.htm.

[95] National Institute of Standards and Technology (NIST). Complete SKIPJACK

and KEA specification, Jun 1998. http://csrc.nist.gov/CryptoToolkit/

skipjack/skipjack-kea.htm.

[96] National Institute of Standards and Technology (NIST), FIPS Publication 46-

3. Data Encryption Standard (DES), Oct 1999. http://csrc.nist.gov/

publications/fips/fips46-3/fips46-3.pdf.

[97] National Institute of Standards and Technology (NIST), FIPS Publication 197.

Advanced Encryption Standard (AES), Nov 2001. http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

[98] National Institute of Standards and Technology (NIST), FIPS Publication 198.

The Keyed-Hash Message Authentication Code (HMAC), Mar 2002. http:

//csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.

[99] National Institute of Standards and Technology (NIST), FIPS Publication

180-2. Secure Hash Standard (SHS), Aug 2002. http://csrc.nist.gov/

publications/fips/fips180-2/fips180-2.pdf.

[100] Wim Nevelsteen and Bart Preneel. Software performance of universal hash

functions. In EUROCRYPT’99, volume 1592 of Lecture Notes in Computer

Science (LNCS), pages 24–41, Berlin, 1999. Springer-Verlag.

http://www.itl.nist.gov/fipspubs/fip113.htm
http://www.itl.nist.gov/fipspubs/fip113.htm
http://www.itl.nist.gov/fipspubs/fip185.htm
http://www.itl.nist.gov/fipspubs/fip185.htm
http://csrc.nist.gov/CryptoToolkit/skipjack/skipjack-kea.htm
http://csrc.nist.gov/CryptoToolkit/skipjack/skipjack-kea.htm
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

BIBLIOGRAPHY 166

[101] E. Öztürk, B. Sunar, and E. Savaş. Low-power elliptic curve cryptography

using scaled modular arithmetic. In Marc Joye and Jean-Jacques Quisquater,

editors, Workshop on Cryptographic Hardware and Embedded Systems–CHES

2004, volume 3156 of Lecture Notes in Computer Science (LNCS), pages 92–

106. Springer, Aug 2004.

[102] Erdinç Öztürk. Low power elliptic curve cryptography. Msc in electrical

and computer engineering, Worcester Polytechnic Institute, Worcester, Mas-

sachusetts, USA, Apr 2005.

[103] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford

University Press, 2000.

[104] Massoud Pedram. Power minimization in IC design: Principles and applica-

tions. Transactions on Design Automation on Electronic Systems TODAES,

1(1):3–56, Jan 1996. Tutorial and Survey Paper.

[105] Massoud Pedram and Jan Rabaey. Power Aware Design Methodologies. Kluwer

Academic Publishers, Norwell, Massachusetts, 2002.

[106] Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar. Hyperelliptic

curve cryptosystems: Closing the performance gap to elliptic curves. In Colin D.

Walter, Çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and

Embedded Systems–CHES 2003, volume 2779 of Lecture Notes in Computer

Science (LNCS), pages 351–365, Berlin, September 2003. Springer Verlag.

[107] A. Perrig, R. Canetti, J.D. Tygar, and Dawn Song. Efficient authentication

and signing of multicast streams over lossy channels. In IEEE Symposium on

Security and Privacy, 2000, pages 56–73, May 2000.

[108] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS: security

protocols for sensor networks. Wireless Networks, 8(5):521–534, Sep 2002.

BIBLIOGRAPHY 167

[109] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor

networks. Commun. ACM, 47(6):53–57, Jun 2004.

[110] Joseph Polastre. Design and implementation of wireless sensor networks for

habitat monitoring. Master’s thesis, University of California at Berkeley, Spring

2003.

[111] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling ultra-low

power wireless research. In The Fourth International Conference on Information

Processing in Sensor Networks: Special track on Platform Tools and Design

Methods for Network Embedded Sensors (IPSN/SPOTS), pages 364–369, April

2005.

[112] P. Prasithsangaree and Prashant Krishnamurthy. Analysis of energy consump-

tion of RC4 and AES algorithms in wireless LANs. In IEEE Global Telecom-

munications Conference, GLOBECOM ’03, volume 3, pages 1445–1449. IEEE,

Dec 2003.

[113] Bart Preneel. The state of cryptographic hash functions. In I. Damg̊ard, editor,

Lectures on Data Security: Modern Cryptology in Theory and Practice, volume

1561 of Lecture Notes in Computer Science (LNCS), pages 158–182. Springer-

Verlag, 1999.

[114] J.M. Rabaey and M. Pedram. Low Power Design Methodologies. Kluwer Aca-

demic Publishers, Norwell, Massachusetts, 1996.

[115] M. O. Rabin. Digitalized signatures and public key functions as intractable as

factorization. MIT/LCS/TR-212, Massachusetts Institute of Technology, Jan

1979.

BIBLIOGRAPHY 168

[116] M.V. Ramakrishna, E. Fu, and E. Bahcekapili. A performance study of hashing

functions for hardware applications. In Proceedings of the ICCT ’94 Interna-

tional Conference on Computing and Information, pages 1621–1636, 1994.

[117] K. Ren, K. Zeng, and W. Lou. On broadcast authentication in wireless sensor

networks. In International Conference on Wireless Algorithms, Systems, and

Applications (WASA 2006), Xi’an, China, Aug 2006. to appear.

[118] R. Rivest. The MD4 message-digest algorithm. RFC 1320, MIT Laboratory for

Computer Science and RSA Data Security Inc., Apr 1992.

[119] R. Rivest. The MD5 message-digest algorithm. RFC 1321, MIT Laboratory for

Computer Science and RSA Data Security Inc., Apr 1992.

[120] R. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6TM block

cipher. In First Advanced Encryption Standard (AES) Conference, Ventura,

California, USA, 1998.

[121] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, Feb

1978.

[122] R.L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast Software

Encryption, volume 1008 of Lecture Notes in Computer Science (LNCS), pages

86–96, Berlin, 1995. Springer-Verlag.

[123] P. Rogaway. Bucket hashing and its application to fast message authetication.

In D. Coppersmith, editor, Proceedings Crypto ’95, volume 963 of Lecture Notes

in Computer Science (LNCS), pages 29–42. Springer-Verlag, 1995.

BIBLIOGRAPHY 169

[124] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mech-

anisms and leakage reduction techniques in deep-submicrometer CMOS circuits.

Proceedings of the IEEE, 91(2):305–327, 2003.

[125] Markku-Juhani O. Saarinen. Cryptanalysis of block ciphers based on SHA-

1 and MD5. In Thomas Johansson, editor, Fast Software Encryption, 10th

International Workshop, FSE 2003, volume 2887 of Lecture Notes in Computer

Science (LNCS), pages 36–44, Feb 2003.

[126] S. Sarma, D.L. Brock, and K. Ashton. The networked physical world - propos-

als for engineering the next generation of computing, commerce & automatic

identification. White paper, MIT: Auto-ID Center, Oct 2000.

[127] Sanjay E. Sarma, Stephen A. Weis, and Daniel W. Engels. RFID systems

and security and privacy implications. In Burton S. Kaliski Jr., Çetin K. Koç,

and Christof Paar, editors, Cryptographic Hardware and Embedded Systems -

CHES 2002, volume 2523 of Lecture Notes in Computer Science (LNCS), pages

454–469, Aug 2002.

[128] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson.

Twofish: A 128-bit block cipher. AES proposal, Counterpane Systems, Min-

neapolis, MN, USA, June 1998.

[129] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 2nd edition, 1995.

[130] V. Shoup. On fast and provably secure message authentication based on univer-

sal hashing. In Advances in Cryptology - CRYPTO ’96, volume 1109 of Lecture

Notes in Computer Science (LNCS), pages 74–85, New York, 1996. Springer-

Verlag.

[131] G. J. Simmons, editor. Contemporary Cryptology. IEEE Press, 1992.

BIBLIOGRAPHY 170

[132] Frank Stajano and Ross Anderson. The resurrecting duckling: Security issues

for ad-hoc wireless networks. In B. Christianson, B. Crispo, and M. Roe, edi-

tors, Security Protocols, 7th International Workshop, Berlin, Heidelberg, 1999.

Springer Verlag.

[133] D. R. Stinson. Universal hashing and authentication codes. In Joan Feigenbaum,

editor, Advances in Cryptology - CRYPTO ’91, volume 576 of Lecture Notes in

Computer Science (LNCS), pages 74–85, 1992.

[134] D. R. Stinson. Cryptography: Theory and Practice. CRC Press, Boca Raton,

1995.

[135] Douglas R Stinson. Cryptography: Theory and Practice, volume 36 of Discrete

Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, 3rd

edition, 2005.

[136] Synopsys Inc. Design Compiler User Guide, version 2002.05 edition, Jun 2002.

[137] Synopsys Inc. Power Compiler User Guide, release 2002.05 edition, May 2002.

[138] Synopsys Inc. Power Compiler User Guide, release 2004.06 edition, Jun 2004.

[139] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan

Mainwaring, and Deborah Estrin. Habitat monitoring with sensor networks.

Commun. ACM, 47(6):34–40, Jun 2004.

[140] J. J. Thomas, J. M. Keller, and G. N. Larsen. The calculation of multiplicative

inverses over GF(p) efficiently where p is a mersenne prime. IEEE Transactions

on Computers, 5(35):478–482, 1986.

[141] S. Turgis, N. Azemard, and D Auvergne. Explicit evaluation of short circuit

power dissipation for CMOS logic structures. In Proceedings of the 1995 Inter-

national Symposium on Low Power Design, pages 129–134, 1995.

BIBLIOGRAPHY 171

[142] H.J.M Veendrick. Short-circuit dissipation of static CMOS circuitry and its

impact on the design of buffer circuits. IEEE Journal of Solid-State Circuits,

19(4):468–473, Aug 1984.

[143] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Collision search attacks on

SHA1. Internet, Feb 2005.

[144] R Want. Enabling ubiquitous sensing with RFID. Computer, 37(4):84–86, 2004.

[145] B. Warneke, M. Last, B. Liebowitz, and K.S.J. Pister. Smart dust: communi-

cating with a cubic-millimeter computer. Computer, 34(1):44–51, Jan 2001.

[146] Brett A. Warneke. Ultra-Low Energy Architectures and Circuits for Cubic Mil-

limeter Distributed Wireless Sensor Networks. Phd. dissertation, University of

California at Berkeley, Spring 2003.

[147] Brett A. Warneke and Kristofer S.J. Pister. An ultra-low energy microcontroller

for smart dust wireless sensor networks. In IEEE International Solid-State

Circuits Conference, 2004, 2004. Digest of Technical Papers.

[148] M. Wegman and L. Carter. New hash functions and their use in authentication

and set equality. Journal of Computer and System Sciences, 22(3):265–279, Jun

1981.

[149] A. Weimerskirch, C. Paar, and S. Chang Shantz. Elliptic curve cryptography

on a palm os device. In Y. Mu V. Varadharajan, editor, The 6th Australasian

Conference on Information Security and Privacy (ACISP 2001), volume 2119

of Lecture Notes in Computer Science (LNCS), pages 502–513, Heidelberg, Jul

2001. Springer-Verlag.

BIBLIOGRAPHY 172

[150] Stephen A. Weis. Security and privacy in radio-frequency identification devices.

Master’s thesis, Massachusetts Institute of Technology, May 2003. Master’s

Thesis.

[151] Stephen A. Weis, Sanjay E. Sarma, Ronald L. Rivest, and Daniel W. Engels.

Security and privacy aspects of low-cost radio frequency identification systems.

In 1st Annual Conference on Security in Pervasive Computing, Mar 2003. http:

//www.dfki.de/SPC2003/.

[152] David Wheeler and Roger Needham. TEA extensions. Technical report, Cam-

bridge University, England, Oct 1997.

[153] Kaan Yüksel, Jens-Peter Kaps, and Berk Sunar. Universal hash functions for

emerging ultra-low-power networks. In Proceeding of The Communications Net-

works and Distributed Systems Modeling and Simulation Conference (CNDS),

San Diego, CA, January 2004.

[154] Sencun Zhu, Shouhuai Xu, S. Setia, and S. Jajodia. Establishing pairwise keys

for secure communication in ad hoc networks: a probabilistic approach. In

11th IEEE International Conference on Network Protocols, pages 326–335, Nov

2003.

http://www.dfki.de/SPC2003/
http://www.dfki.de/SPC2003/

Appendix A

References for Cryptographic

Algorithms

A.1 Block Ciphers

• DES/3DES [96]

• IDEA [76]

• RC5 [122]

• AES (Rijndael) [97]

• RC6 [120]

• MARS [18]

• Serpent [6]

• Twofish [128]

173

APPENDIX A. REFERENCES FOR CRYPTOGRAPHIC ALGORITHMS 174

A.2 Stream Cipher

• RC4, description can be found in [129]

A.3 Hash Functions

• MD2 [66]

• MD4 [118]

• MD5 [119]

• Secure Hash Standard (SHS) [99]

• NH [14]

• WH [153]

• see also [113] and [133]

A.4 Public Key Cryptosystems

• RSA [121]

• ElGamal [33]

• Rabin’s Scheme [115]

• Elliptic curve cryptography (ECC) [72, 91]

• Hyperelliptic curve cryptography (HECC) [71]

• NtruEncrypt system [59]

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Wireless Sensor Networks
	Radio Frequency Identifiers
	Security Concerns
	Security Services

	Previous Work
	Thesis Outline

	Ultra-Low Power Hardware Design
	Sources of Power Dissipation
	Dynamic Power
	Switching Power
	Short Circuit Power
	Static Power
	Glitching

	Design Guidelines
	Power Optimization at the Technological Level
	Voltage Scaling
	Dual Vt
	Transistor Sizing

	Power Optimization at the Architectural Level
	Path Equalization
	Clock Gating
	Operand Isolation
	Re-timing
	Local Transformations
	Serialization
	Precomputation

	Design Flow for Ultra-Low Power

	Survey of Cryptographic Algorithms
	Survey
	Block Ciphers
	Stream Ciphers
	Hash Functions
	Public Key Cryptosystems

	Analysis
	Algorithm Structure
	Functional Primitives
	Storage Requirements
	Implementation Considerations

	Recommendations for Designing new Algorithms
	Conclusion

	Universal Hash Functions
	Motivation
	Preliminaries
	Notations
	Universal Hashing

	Hash Function Families
	NH
	NH - Polynomial (PH)
	NH-Polynomial with Reduction (PR)
	Weighted NH-Polynomial with Reduction (WH)
	Analysis

	Implementations
	NH
	NH - Polynomial (PH)
	NH-Polynomial with Reduction (PR)
	Weighted NH-Polynomial with Reduction (WH)
	Control Logic
	Implementation Results

	Multi-Hashing and Toeplitz Construction
	Toeplitz Construction
	WH with Toeplitz Construction
	Analysis & Results of WH with Various Block Sizes
	Analysis of WH with Toeplitz

	Conclusion

	Public Key Functions
	Motivation
	Introduction
	Parameter Selection
	Rabin's Scheme
	The NtruEncrypt Public Key Cryptosystem
	Elliptic Curve Cryptography

	Implementations
	Rabin's Scheme
	NtruEncrypt and NtruSign
	Elliptic Curve Architecture

	Analysis
	Rabin's Scheme
	NtruEncrypt
	Elliptic Curve Architecture
	Comparison

	Conclusions

	Secret Key Functions
	Motivation
	Introduction
	AES
	SHA-1
	Message Authentication Codes
	Encryption

	SHA-1 Implementation
	Message Scheduler
	Message Digest Unit

	AES Implementation
	Datapath
	Message Schedule

	Analysis and Comparison
	Message Authentication Codes
	Encryption
	Authentication and Encryption

	Conclusion

	Security Protocols
	Introduction
	Popular Protocols
	SPINS with SNEP and TESLA
	TinySec

	Security Services
	Feasibility Study
	Public Key Schemes
	Comparison

	Conclusion
	Summary and Conclusion
	Recommendations for Future Research

	Bibliography
	References for Cryptographic Algorithms
	Block Ciphers
	Stream Cipher
	Hash Functions
	Public Key Cryptosystems

