High Speed FPGA Architectures for the Data

Encryption Standard

by
Jens-Peter Kaps

A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in
Electrical Engineering

May, 1998

Approved:

Prof. Christof Paar
ECE Department
Thesis Advisor

Prof. Yusuf Leblebici
ECE Department
Thesis Committee

Prof. Wayne P. Burleson
ECE Department,

University of Mass., Amherst
Thesis Committee

Prof. John Orr
ECE Department Head

Abstract

Most modern security standards and security applications are defined to be algorithm in-
dependent, that is, they allow a choice from a set of cryptographic algorithms for the same
function. Since the Data Encryption Standard (DES) is currently the most widely used
private-key encryption algorithm, DES is usually amongst them. Field Programmable Gate
Arrays (FPGA) are reconfigurable hardware devices. They can switch algorithms on-the-
fly. Thus, cryptographic algorithms which are implemented on FPGAs provide an an ideal
match for algorithm independent security applications. On FPGAs, cryptographic algo-
rithms can run much faster than on software while preserving the security of traditional
hardware solutions. At the same time, FPGAs allow potentially the same flexibility as
software does. Although there have been a few previous reports on DES implementations
on reconfigurable devices, there has been no systematic treatment of that matter.

We designed and implemented various architecture options with strong emphasis on
high-speed performance. Techniques like pipelining and loop unrolling were used and their
effectiveness for DES on FPGAs investigated. We also performed optimization on a lower
level. The most interesting result is that we could achieve data rates of up to 384 Mbit/s
using a standard Xilinx FPGA (speed-grade -3). This result is by factor 30 faster than
software implementations while we are still maintaining flexibility.

i1

Preface

I would like to thank the many people who contributed to this work. First, my advisor
Christof Paar for his advice and support throughout this entire project. He never lost faith
in my abilities and encouraged me to finish this work just in time. Not to mention his
contribution to the coffee maker in the lab which was badly needed. Next I would like to
thank Gregory Haskins who gave me a crash course on Workview Office and a thorough
introduction to this project. Martin Rosner worked on a different project but using the same
software tools. Together we overcame many hurdles with the tools and finally managed to
place and route and also simulate our designs. Many long and sleepless nights in the lab
also helped us to become good friends. Furthermore I want to thank the Algorithm Agile
MQP-group (Frank Wong, Pik-Ying Kwok and M. James Allred) for making me adjusting
my design so it runs in a real world application and not just in theory. This was a valuable
experience. Special thanks go to the system administrators here at the ECE Department
Murtaza Amiji and Brady Schulman. They managed to keep the systems alive in spite of
our continuous attacks. I also want to thank the National Science Foundation for partially
funding this research.

il

Contents

1 Introduction 1
1.1 Motivation e e 1
1.2 Thesis Outline o 3

2 Previous Work 5
2.1 Early Work 5
2.2 Current Implementations o 00000 6

3 Methodology 8
3.1 The Design Cycle 8
3.2 Tools. e 9

3.2.1 Xilinx Synopsys Interface00 10
3.2.2 Simulation and Verification 0000 10
3.2.3 Synthesis L 12
3.24 Placeand Route oo 13

4 DES Algorithm 14
4.1 The DES Core Function oo 15
4.2 DES Key Scheduling 17
4.3 Decryption e 19
4.4 DES Modes of Operation 20
4.5 DES Enhancements L Lo 22

5 Architecture 23
5.1 Structuring DES 23
5.2 Loop Unrolling e 25
5.3 Pipelining 26
5.4 Combination of Pipelining and Loop Unrolling 28
5.5 Comparison and Design Decisions 28

6 DES Design 31
6.1 DES Function Blocks oo 31
6.2 Logic Resources 32

6.2.1 Permutation Boxes and Expansion Boxes 32

v

6.2.2 Registers Lo

6.2.3 Multiplexers
6.2.4 Standard Logic Functions
6.2.5 S-Boxes
6.2.6 Shift Registers o
6.3 Optimizations
6.3.1 LogiBLOX e
6.3.2 Timing Analysis
6.3.3 Improved Sub-Key-Generation Logic
6.3.4 Encryption — Decryption L.
6.4 Control Logic e
6.5 Filling Pipelines
DES Implementation
7.1 FPGA Choice e
7.2 VHDL-Source
7.3 LogiBLOX e
7.4 Designs Implementedo 0oL
741 DES16 e
742 DESEDI6 e
743 DESMQP
74.4 DESEDS e
745 DESED4
74.6 DESEDI6X2
747 DESEDI6x4 e
74.8 DESEDSx2
Results
8.1 Loop Unrolling e
8.2 Pipelining L
8.3 Combination of Pipelining and Loop Unrolling
8.4 Chip Dependencies
84.1 Chip Sizes o e
8.4.2 Speed Grades
8.4.3 Device Families o oo
8.5 Summary and Overview
Conclusion
9.1 Design Recommendations
9.2 Summary of Results
9.3 Recommendations for Future Work o000

46
46
46
48
48
50
50
o1
52
52
54
95
56

58
58
99
60
61
61
62
62
63

Simulation Script Files
A.1 RTL-Level Simulation Script

A.2 Post Place and Route Simulation Script

Synthesis Script

C Floor Plans

Timing Diagrams

D.1 Encryption
D.2 Encryption e e

Test Bench

vi

69
69
70

72

79

82
83
89

95

List of Tables

4.1

5.1

6.1

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7

DES sub-key shift schedule 0000000 20
Implemented DES architectures 0oL 30
Loading pipelines Lo 45
VHDL source files and their function00 47
LogiBLOX and their function 0 oL 49
Comparison of loop unrolled architectures 59
Comparison of pipelined architectures 60
Comparison of a combined architecture with others 61
Comparison of different chip sizes L. 61
Comparison of different speed grades L. 62
Comparison of different chip families 63
Complete table of all implemented architectures 64

vil

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
9.3
5.4
9.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6

C.1
C.2

XSIdesign flow e 11
Overview of DES 14
Functional block diagram of DES 16
DES Feistel network Lo 17
DES f-function 18
DES key schedule 19
Electronic Codebook Mode oo 20
Cipher Block Chaining Mode 21
Cipher Feedback Mode o 21
Triple encryption 22
Flowchart of DES 24
DES block diagram 24
Block diagram of DES with 2 unrolled loops 26
Block diagram of DES with 2 pipelines 27
Block diagram of DES with 2 unrolled loops within 2 pipelines 29
Implementation of shift registers 0L 36
Detailed block diagram of DES 37
Rough timing diagram of DES 0000, 38
New sub-key generation 40
Encryption decryption sub-key generation 41
Encryption — decryption timing diagram oL L. 42
DES control state machine L 0 Lo oL 43
Control signals for DES_ED16 51
Control signals for DES_EDS 53
Control signals for DES_EDj e 54
Control signals for DES_ED16z2 59
Control signals for DES_ED16x4 o 56
Control signals for DES_ED8z2 57
Floor Plan of DES_ED16 on the Chip 4008E-3-PG191 80
Floor Plan of DES_ED16 on the Chip 4025E-3-PG223 81

viil

D.1 Encryption with DES_ED16 on the Chip 4008E-3-PG191 84

D.2 Encryption with DES_ED16 on the Chip 4008E-3-PG191 85
D.3 Encryption with DES_ED16 on the Chip 4008E-3-PG191 86
D.4 Encryption with DES_ED16 on the Chip 4008E-3-PG191 87
D.5 Enrcyption with DES_ED16 on the Chip 4008E-3-PG191 88
D.6 Decryption with DES_ED16 on the Chip 4008E-3-PG191 90
D.7 Decryption with DES_ED16 on the Chip 4008E-3-PG191 91
D.8 Decryption with DES_ED16 on the Chip 4008E-3-PG191 92
D.9 Decryption with DES_ED16 on the Chip 4008E-3-PG191 93

D.10 Decryption with DES_ED16 on the Chip 4008E-3-PG191 94

X

Chapter 1

Introduction

1.1 Motivation

We are in the midst of a shift toward an information society. In a recent study [10]
Dataquest reports that at the end of 1997 82 million computers were connected to
the Internet. They projected the number of computers connected to the Internet for
the year 2001 to be 268 million. With this immense growth the Internet also be-
comes more and more attractive as a market place. Other areas of communications
are growing too, e.g., the wireless communication market, electronic payment systems
(home banking), to name just a few. At the same time security aspects of information
and communication systems are of growing concern. Tapped mobile phone conversa-
tions, stolen credit card numbers, faked bank transactions are just a few examples of
threats imposed by an unprotected communication infrastructure. The central tool
for achieving the desired security is cryptography.

Already in 1972, the National Bureau of Standards, now the National Institute
of Standards and Technology (NIST), was aware of the potential thread to computer
and communications data. They initiated a program to develop a standardized en-

cryption algorithm. In 1976 the Data Encryption Standard (DES) was released. Since

CHAPTER 1. INTRODUCTION 2

then DES was approved by the American National Standards Institute (ANSI X3.92)
and renamed Data Encryption Algorithm (DEA), by the International Standards Or-
ganization (ISO) and many bank standards. DES is being reviewed every five years
for renewed approval. The next review is scheduled for this year and it is expected
that DES will not be reapproved for another five years. DES is currently the most
widely used private-key algorithm and it is also part of many other standards e.g.,
for ATM cell encryption, the Secure Socket Layer protocol, and for various ANSI
banking standards. Even if DES is not being reapproved, it is still important and will
continue to play a major role for several more years.

Most new security standards and security applications are defined to be algo-
rithm independent. That is, for a given security service such as privacy, a number of
different algorithms can be used alternatively. This situation applies to public-key
based services as well as to private-key services. It is fairly easy to switch crypto
algorithms in software, but it is difficult in hardware. On the other hand, hardware
solutions provide a better speed and higher physical security. One answer to this
problem is reconfigurable hardware, based on modern field programmable gate array,
or FPGA, devices. FPGAs can switch algorithms, they can thus be used to build
algorithm agile applications. This means that the same device can be used for dif-
ferent algorithms, the nature of the algorithms does not matter. In cryptographic
applications, an FPGA can be used for the realization of several different encryption
algorithms. Although at a given time only one algorithm is configured, the FPGA can
be reconfigured with a different algorithm on-the-fly if needed. Moreover the same
FPGA can therefore be used for public-key and private-key algorithms. In summary,

cryptographic algorithms on FPGAs bear a number of advantages such as:

e Algorithm agility, the same FPGA can be reprogrammed on the fly to support
different algorithms,

e Scalable security, through different versions on the same algorithm (e.g., DES

CHAPTER 1. INTRODUCTION 3

and triple-DES),

e Alterable architecture parameters, e.g., desirable features such as variable
S-boxes, variable number of rounds, or different modes of operation can easily

be realized,

e Resource efficient the same resource can be used for private and public-key

algorithms.

Although there have been a few previous reports on DES implementations on re-
configurable devices, there has been no systematic treatment of the matter. In this
thesis, several architectural options for DES implementation on FPGAs are investi-

gated and implemented with a strong emphasis on high-speed architectures.

1.2 Thesis Outline

Chapter 3 describes the design and implementation cycle. Furthermore it gives an
overview of the hardware and software tools we used for our research. In addition it

includes some remarks on the performance and effectiveness of the tools.

Chapter 4 provides an introduction to the Data Encryption Standard. It also

concerns the modes of operation and enhancements to DES.

Chapter 5 explores different architecture options for DES like loop unrolling and
pipelining. At the end it provides an overview of the architecture versions we decided

to implement.

Chapter 6 is concerned with the design of the circuit. DES is broken down into

small elementary computational units and some optimizations are performed.

CHAPTER 1. INTRODUCTION 4

Chapter 7 describes the implemented architectures in detail. It explains our choice
of device and gives an overview of the source code. The signals of the control logic

for each architecture are discussed in detail.

Chapter 8 presents the results of our implementations of the different architec-
tures. We compare the achievements of pipelining and loop unrolling and discuss the

influence of chip parameters.

Chapter 9 concludes this work with a short summary of the results and some

recommendations for further research.

Chapter 2

Previous Work

This chapter summarizes previous work on hardware implementations of DES. It
distinguishes between ASIC and FPGA implementations and also mentions future

technologies which might become important for DES implementations.

2.1 Early Work

Early references for custom hardware implementations are [6] and [11]; both papers
were presented at CRYPTO 8/. [6] describes an DES implementation which supports
all four modes of operation. The maximum speed of this chip is said to be 20 Mbit /sec.

The paper [11] concerns an LSI digital encryption processor. It enables a user to
program any mode of operation. The maximum speed is given as 4.72 Mbit /sec.

In 1988 [8] was published. It describes a CMOS chip in 3-pum double-metal tech-
nology which can achieve a data rate of 32 Mbit/sec. This is 60% faster than the
implementation shown in [6]. It also supports all modes of operation.

Earlier reference [3] is the first paper which is mainly concerned with increasing
the performance of DES by restructuring the algorithm. This paper mentions the

one-round sub-key precomputation as a speed-up technique. Another interesting idea

CHAPTER 2. PREVIOUS WORK 6

that is presented in this paper is XOR rearrangement which takes one XOR-delay
out of the critical path. We did not employ this approach in our design, as modern
FPGA synthesizing tools optimize the low level logic themselves. The data rate of

the implementation was not mentioned.

2.2 Current Implementations

Modern custom hardware implementations can achieve data rates of 1 Gbit/sec and
beyond. Reference [2] was the first report of a custom chip, employing modern Gal-
lium Arsenide technology to achieve 1 Gbit/sec. In a later publication of the same
research group [5] they describe this design in more detail. They also mention that
the fasted chip they tested could run at 1.4 Gbit/sec. One major disadvantage of this
design is, that only a 7 bit wide port is available for loading the master key. That
means that frequent key changes slow this chip down significantly.

The first paper to show an implementation of DES on FPGAs is [9]. Their ap-
proach generates key-specific circuitry for the Xilinx FPGAs. One drawback of this
approach is that a binary image (bit-stream) for each key has to be precomputed be-
fore it can be used in the device. We experienced run times of the synthesis and place
and route tools from 4 hours to longer than weeks on high power workstations. This
is a task that can not be accomplished on the fly. Hence, prestored binary images
limits the number of keys that can be used drastically. Furthermore even their fastest
implementation without decryption and adjusted to one key, is in the same device
(although a slower speed grade) by factor three slower and requires almost twice as
much logic resources as the design we present in this paper DES_ED16.

A very interesting technology, especially for algorithm agile implementations is
presented in [4]. The new technology Dynamically Programmable Gate Arrays (DP-

GAs) support a single cycle, array wide context switch. That means that it take

CHAPTER 2. PREVIOUS WORK 7

only one clock cycle for the device to switch to an entirely different algorithm. With
current FPGAs this takes 10’s of milliseconds due to limited bandwidth to off-chip
memories [14]. Although [4] does not target cryptographic applications in particular,

DPGAs seem highly attractive for these purposes.

Chapter 3

Methodology

This chapter describes the design procedure we applied for our research. It also
describes our choice of tools in hardware and software as well as it includes some

remarks on the performance and effectiveness of the tools.

3.1 The Design Cycle

The general design cycle for this work consisted of the following steps:

1. Research of DES algorithm

2. Researching architecture options

3. Optimizing the DES architecture

4. VHDL implementation of basic DES function blocks

5. Creating multiple versions of the DES design employing different architecture

options

6. Verifying each version on the register-transfer-level (RTL)

CHAPTER 3. METHODOLOGY 9

7. Synthesis and logic optimization
8. Place and Route for a specific device

9. Back-annotated verification of the design

The steps outlined above were performed more or less in this order. Steps 1
trough 4 were performed first and sometimes even concurrently; e.g., during the
VHDL implementation of the basic function blocks some more ideas for optimization
developed.

Steps 5 to 9 were performed in this order for each design separately. The next
design was started usually while the current design was in the Place and Route stage,
because this particular stage took the longest time. In case a verification step did not
give the desired results, we had to go back some steps, usually till step 5 or even 4,
to fix that problem and start the design process again from there.

Early in the design we decided upon a FPGA vendor and a device family as
described in Subsection 7.1. That decision was based majorly on previous work in
this area done by Haskins (see [7]). Availability of the actual Chip and the tools were
another important reason. This enabled us to use vendor specific macros (LogiBLOX,

see Chapter 6.3.1).

3.2 Tools

The entire design, with the exception of the LogiBLOX, was implemented using
VHDL. Each design was tested at the register-transfer-level (RTL), i.e., right from
the VHDL files and LogiBLOX VHDL simulation models. This way we could find
logical errors and major timing problems early in the design phase. For the rtl-level

simulation Synopsys VHDL analyzer (vhdlan) version 1997.08 was used.

CHAPTER 3. METHODOLOGY 10

The next step is to synthesis the design and create an optimized netlist describing
the gate level design in Xilinx format. Synopsys fpga_analyzer version 1997.08
accomplished this task.

The netlist is used by Xilinx to place and route the design for a specific device.
The result is a bit-stream to program the chip, a simulation model as well as exact
timing results. The Xilinx design-manager dsgnmgr version M1.3.7 was employed for
this.

The final step is to verify the design once again, this time with the simulation
model generated by the Xilinx tools. This simulation model contains the actual
physical net, CLB, and pad delays introduced from the device. The Synopsys VHDL

analyzer (vhdlan) was used once again to verify this back-annotated design.

3.2.1 Xilinx Synopsys Interface

The Xilinz-Synopsys-Interface (XSI) design tool kit allows to implement Xilinx Field
Programmable Gate Arrays (FPGA) designs using the Synopsys FPGA Compiler. It
includes all libraries necessary for Synopsys fpga_analyzer to optimize the design for
the FPGA and for Synopsys vhdlan to read the back-annotated designs from Xilinx
for past place and route verification. Figure 3.1 presents a flow chart diagram of the

design flow with the XSI tools.

3.2.2 Simulation and Verification

As stated before, the design is verified twice during the design process. First the
RTL-level simulation of the VHLD source code and the behavioral models of the
LogiBLOX and second after place and route.

For both simulations the same test bench can be used. The test bench is a VHDL
file which contains test vectors and the order and timing of how they are going to

be applied to the design. A sample test bench can be found in Appendix E and the

CHAPTER 3. METHODOLOGY

VHDL Design

Synopsys
Script Libs 2

'

'

'

Synopsys FPGA Analyzer ver. 1997.08

C Model

Testbench

'

'

[design

constr.j [design netlist j

[user constr j

' Y

XILIX

(BUILD, MAP, TRACE, PLACE,
ROUTE, TRACE, BACK_ANNOTATE)

'

/ '
[back_anno.vhd j [back_anno.sdf j

bitstream

To PROM

Synopsys Simulator ver. 1997.08

A

Figure 3.1: XSI design flow

CHAPTER 3. METHODOLOGY 12

result of a past place and route timing simulation in Appendix D.

The test vectors for the design were generated by a DES design written in C. This
program also provides results from within the DES design, so that smaller entities
could be tested and errors could be tracked down easily to single VHDL files.

The Synopsys simulator can work in two different modes: compiled mode and
interpreted mode. In order to run in compiled mode a C-compiler is necessary. On the
HP-Workstation on which Sysnopsys is installed, a C-compiler was not available to us.
Therefore we had to run the simulator in interpreted mode. That required editing of
all the library files used by the design: mvlutil.vhd, mvlarith.vhd, logiblox.vhd,
simprim_Vcomponents.vhd, simprim_Vpackage.vhd, and simprim_VITAL.vhd and of
course time_sim.vhd, which is the result of the past place and route timing simulation.

Sample script files to invoke the simulation are presented in Appendix A.1 and

Appendix A.2.

3.2.3 Synthesis

In the middle of our research we switched synthesis tools from Workview Office to
Synopsys. That also included a shift from Windows to UNIX. It was found that
the Synopsys tools are much more powerful than the Workview Office environment,
but also much more difficult to learn. The documentation accompanying Synopsys is
quite extensive and very helpful.

One interesting result of that switch is that the design DES16 v1.1 (see 6.3) syn-
thesized with Workview Office could run at a maximum speed of 62 Mbit /sec, whereas
adjusted to Synopsys and synthesized the same design could run at a maximum speed
of 88 Mbit/sec.

Another major advantage of Synopsys is the ability to run script files. All neces-
sary steps to synthesize and optimize a design, prepare summaries and specifying the

setup parameters, can be included in a script file. A sample script file is provided in

CHAPTER 3. METHODOLOGY 13

Appendix B.

3.2.4 Place and Route

The Xilinx place and route tools were used on the HP Workstations as well as on
Windows computers. The Windows computers were Pentium based PCs running at
200 Mhz, whereas the HPs are running at 60 MHz and at 75 Mhz. Therefore the
Xilinx tools were much faster on the PCs, but still the pace and route process took
in some cases more than a week. The results achieved using the Xilinx tools on the
PCs were comparable with the results achieved using the Xilinx tools on the HPs.
The input to the place and route tools is a design netlist and constraints file
generated by Synopsys, as well as user constraints, specifying the maximum clock
period desired and pin assignments. The output of this process is a bit-stream file
that can be used to program the FPGAs and the back-annotated design.
Furthermore the Xilinx tools perform a timing analysis after place and route
which shows the minimum clock period for the given design. This clock period is
guaranteed by Xilinx for the design and therefore is to be seen as rather pessimistic.

We are using this timing result for our speed calculations.

Chapter 4

DES Algorithm

The Data Encryption Standard was published by the National Bureau of Standards
in 1975. DES is a so-called Block Cipher, i.e., it encrypts or decrypts a whole block of
data bits at once as opposed to stream ciphers which encrypt or decrypt a bit-stream

bit by bit. Figure 4.1 shows a basic I/O diagram of DES.

64 64

Data In Data Out
t —/—» DES —/—» 2

T

Key
k

Figure 4.1: Overview of DES

DES encrypts blocks of 64 bits length (plaintext) with a 56 bits long key. The
result is a ciphertext of equal length to the plaintext. During the explanation of
DES in this chapter we will concentrate on the encryption function The decryption,
which is almost identical to the encryption function. function will be discussed in
Section 4.3. Our description will highlight the internal functions of DES which are

important for a hardware implementation.

14

CHAPTER 4. DES ALGORITHM 15

Here is a small example of how DES works. Alice and Bob are sharing the same
key k. Alice encrypts the plaintext x and sends the encrypted version y over the
network to Bob. Bob uses the same key and the inverse of the DES function to

recover the plaintext x.

DES,(X) =Y DES, '(Y) =X
4.1 The DES Core Function

Figure 4.2 shows an overview of the whole DES-Algorithm. The plaintext input of
DES x gets permuted by the initial permutation 1P resulting in xy. For the next step
xo is split up into the higher (first) 32 bits L, and the lower (last) 32 bits Ry (little
endian): IP(z) = LyRy.

This is the input for the main DES function, the so called Feistel Network. 1t
contains an iterative structure; a certain function is executed 16 times where the
input of the next round is the output of the previous round. Figure 4.3 shows one
round of DES.

The index ¢ indicates for the current iteration and can therefore take the values

1 <1 < 16. The result of one round of the DES algorithm can be described as:

Li=R;
Ri=Li 1 f(Ri 1, K))

where @ denotes the exclusive-or of two bit-strings. The f-function of each round
is dependent on R; ; and the sub-key K; of the 56-bit key. After the 16th round

R and L get swapped resulting in RigL and the final permutation IP~! which

CHAPTER 4. DES ALGORITHM

round 1

round 16

Message X

64
Y

Initial Permutation
IP(X)

Key K

56

Transform 1

64
Y
Lo RO
32
32 48
O
32 K,
» 69
32
L1 ‘ R1
4 v
Lis ‘ Ri15
32
1 48
®
32 Kis
32 G}
32
L6 ‘ R16

Final Permutation

-1
P! R 6L

Cipher Y =DES (X)

Transform 16

Figure 4.2: Functional block diagram of DES

CHAPTER 4. DES ALGORITHM 17

TM

Ly Riy
32 32
K, 48
<ﬁL Transform;
32
L; R;

— 64

y

Round ;

Round;

Figure 4.3: DES Feistel network

is inverse to the initial permutation is applied. This generates the final ciphertext
y =IP Y (RisL1s).

The f-function (see Figure 4.4) takes the 32 bits of R; ; as input and expands it
to 48 bits; 16 bits of R; ; are appearing twice at the output E(R; ;). The 48 bits are
combined via an exclusive-or with the 48 bits sub-key K; from the key transformation:
E(R; 1) ® K;. This result is split into 8 blocks of 6 bits each which form the input of
the S-Boxes. The S-Boxes are basically look-up tables which assign each 6-bit input
value a 4-bit value. The eight 4-bit values get combined to 32 bits and a permutation

P is applied. The resulting bit-string is f(R; 1, K;).

4.2 DES Key Scheduling

Each round of DES requires a distinct sub-key K;. These sub-keys are generated
from the key K. The key K is 64 bits long and contains eight parity check bits, so

CHAPTER 4. DES ALGORITHM 18

Tse

ExpansionE (R,)

K
4% Transform

6
SBOX SBOX, SBOXy
4 4 4

32

Permutation P

Jrsz

Figure 4.4: DES f-function

the effective key is 56 bits long. The 56 bit key is also the input the design described
here expects.

The sub-key generation is also an iterative process comprising 16 rounds. The
56-bit key gets permuted by the permutation PC-1 and then split up into two halfs,
each 26 bits long: PC-1(K) = CyDy, where Cj denotes the higher (first) 32 bits and
D, the lower (last) 32 bits (little endian).

For each round of the Feistel network a new sub-key is being generated. Figure 4.5
shows one iteration of the DES key schedule. With each iteration C;_; and D;_; are
rotated left (cyclic shift left) denoted as LS;. Depending on i, C; ; and D; ; are

shifted one position (for i = 1,2,9,16) or two positions (otherwise).

CHAPTER 4. DES ALGORITHM 19

The result C; and D; are passed as input to the next round and are also permuted

with the permutation PC-2 to form the sub-key: K; =PC-2(CiDi). This permutation

J‘rsa

Cii Dy,

#28 28
56
<7L Rotate LS, Rotate LS,

%28 28
C.

i Di

reduces the number of bits from 56 to 48.

Permutation PC-2

—1 56

Y

Figure 4.5: DES key schedule

4.3 Decryption

DES decryption uses the same algorithm as encryption. The only difference is that
the sub-keys have to be generated in a reverse order Ky, ..., K;. The result will be
the plaintext x. In order to create the sub-keys in the reverse order, C; ; and D, ;
have to be cyclicly shifted right, as opposed to left for encryption, depending on 1.
The following Table 4.1 shows how many positions C;_; and D; ; have to be shifted.

CHAPTER 4. DES ALGORITHM 20

Iteration 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Encryption |1 1 2 2 2 2 2 2 1 2 2 2 2 2 2
Decryption 12 2 2 2 2 2 1 2 2 2 2 2 2 1

Table 4.1: DES sub-key shift schedule

4.4 DES Modes of Operation

Four modes of operation have been standardized for DES (see [13] page 83): elec-
tronic codebook mode (ECB), cipher block chaining mode (CBC), cipher feedback mode
(CFB), and output feedback mode (OFB).

Electronic Codebook Mode (ECB) is the simplest approach for using a block
cipher. The plaintext is divided into 64 bit long blocks X; and each block is encrypted
separately (see Figure 4.6). Identical plaintext blocks result in identical ciphertext
blocks: Y; = ex(X;). The major problem with this simple mode of operation is that

ciphertext substitution attacks can be performed.

1 Xy —— © —% % % — I e Xy X X,

Figure 4.6: Electronic Codebook Mode

Cipher Block Chaining Mode (CBC) employs an initialization vector IV and a
feedback loop. Each block of ciphertext depends on all previous blocks of ciphertext
(see Figure 4.7). The first block of the plaintext is XORed with the initialization
vector before it is encrypted. All consecutive blocks is XORed with the encrypted
previous block before they are encrypted: Yy = ex(Xo @ IV) and Y; = e, (X; @ Y; 1)

for ¢ > 1.

CHAPTER 4. DES ALGORITHM 21

~ I\%

Figure 4.7: Cipher Block Chaining Mode

Cipher Feedback Mode (CFB) is often employed to encrypt messages smaller
than 64 bits; it does not require padding. Figure 4.8 shows a schematic of the CFB. A
shift-register is preloaded with an initialization vector IV in stage i = 0. The parallel

output of this 64 bits wide shift register is encrypted: Zy = e (IV).

Figure 4.8: Cipher Feedback Mode

The leftmost [bits are taken z; — z; and XORed with the [bits long plaintext to
generate the ciphertext: Y; = X; @ z;. The shift register is then shifted by [bits and
Y; loaded into the rightmost position. Encryption of the new shift register contents

creates the new z;, .

CHAPTER 4. DES ALGORITHM 22

Output Feedback Mode is similar to CFB except that output of the encryption

function is used as feedback and not the ciphertext.

4.5 DES Enhancements

DES can be made more secure if it is used three times (¢riple encryption) in a row.

Two different type of triple encryption are very common: encrypt-decrypt-
encrypt and encrypt-encrypt-encrypt.

For the encrypt-decrypt-encrypt type usually only two keys are used. The plain-
text X gets encrypted with the first key eg(X), decrypted with the second key
e (ex1(X)) and then encrypted again with the first key: Y = e (e, (ex1(X))).

Figure 4.9 shows the encrypt-encrypt-encrypt type. The plaintext X gets en-
crypted three times in a row with a different key for each: Y = ej3(exa(ex1(X))).

Y
@
\
@

X —»| ¢ =Y

Figure 4.9: Triple encryption

Please note that double encryption does not result in a significantly larger key
space than single encryption due to the meet-in-the-middle attack. Due to this attack,

the key space of triple encryption is roughly 22%56 = 2112 [1],

Chapter 5

Architecture

The first step for an effective implementation of DES is to structure the algorithm

and evaluate the resulting architecture options.

5.1 Structuring DES

As described in Section 4 the DES algorithm contains an iterative structure. Data
is passed through the Feistel Network, as shown in Figure 4.3, 16 times, each time
with a different sub-key from the key transformation. Figure 5.1 shows this using a
flow-chart. The plaintext is the input and the iteration counter ¢ is set to 1. The
Feistel Network is shown as a box labeled Round;. After each round, 7 is tested if it is
smaller than 16 and if so, ¢ is incremented by one, the current output is fed-back into
the Feistel Network, and the next iteration starts. After 16 rounds the calculation of
the ciphertext y is done.

From the flowchart we can derive the block diagram of DES which is closer to the
hardware implementation and therefore enables us to investigate further enhance-
ments. The block diagram shown in Figure 5.2 comprises the same design as the

flowchart.

23

CHAPTER 5. ARCHITECTURE 24

Figure 5.1: Flowchart of DES

‘Data ‘Key

| Initial Permutations |

AN vV

Multiplexer | Multiplexer

Y Y

Combinatorial Logic

Y {

| Register | Register |
4‘ L
| Final Permutations

‘Encrypted Data

Figure 5.2: DES block diagram

As we have seen in Section 4, the incoming data and key are passed through initial

permutations. Then the data passes 16 times through the Feistel Network and also

CHAPTER 5. ARCHITECTURE 25

16 sub-keys are generated simultaneously. Both, the Feistel Network operation and
the sub-key generation is denoted in the block diagram as Combinatorial Logic (CLU,
combinatorial logic unit). In order to be able to loop the output back to the input
of the combinatorial logic unit we need Registers and Multiplexers. The multiplexer
switches the inputs of the combinatorial logic unit between data from the previous
round and new input data and key. The registers store the results of each loop and
pass them on to the multiplexer. The output of the data register passes through the
Final Permutation. For simplicity the result of each loop passes through the final
permutation and then to the output. It is the responsibility of a control logic to

signal an external entity if the output is valid or not.

5.2 Loop Unrolling

In this section we will discuss the first general technique for accelerating a DES
hardware implementation. Loop Unrolling is the concatenation of two combinatorial
units in order to half the number of iterations. This means that with one clock cycle
two rounds of DES will be calculated. Figure 5.3 shows the block diagram. This
block diagram differs from Figure 5.2 only in the 2nd combinatorial logic unit. The
initial and final permutations as well as the registers and multiplexers are the same.

Where is now the speed improvement? In the not unrolled version, one iteration
of DES has the following simple timing model: T},,, + T,y + 1;.4 where T}, denotes
the time a signal needs to pass through a multiplexer, T, the delay introduced by the
combinatorial logic, and T,., the delay introduced by the register. So for the whole
16 rounds this sums up to: 16 * Ty, + 16 % Ty + 16 * T.4.

The equation for the loop unrolled version looks like this: T5;,,; +2%T+T,¢,. This
has to be executed 8 times, so that the over-all delay is now: 8%T},,, + 16T +8*T,.,.

The same principle can be applied to four unrolled DES rounds. The following list

CHAPTER 5. ARCHITECTURE 26

* Data * Key

| Initial Permutations |

A vV

Multiplexer | Multiplexer

Y Y

Combinatorial Logic 1

v v

Combinatorial Logic 2

Y Y

| Register | Register |

[

Y

| Final Permutations |

* Encrypted Data

Figure 5.3: Block diagram of DES with 2 unrolled loops

shows the timing for each case.

DES not unrolled : 16 * Typq + 16 % Toy + 16 x The
2 unrolled loops : 8% Typyy + 16 % Ty + 8 % Theyg
4 unrolled loops : 4% Tipyy + 16 x Ty + 4 % Theq

Obviously we can not reduce the delay introduced by the combinatorial logic
units but we reduced the runs through the multiplexers and buffers by half. But
there is another motivation for speed increase if modern design methods are applied.
It is possible that the synthesis tools can optimize an unrolled design better, and

therefore the logic can potentially be reduced. Also the routing can be more effective.

5.3 Pipelining

We now discuss the second architectural principle for accelerating DES. Pipelining

tries to achieve a speed improvement in a different way. Instead of processing one

CHAPTER 5. ARCHITECTURE 27

block of data at a time, a pipelined design can process two or more data blocks. A
design with two pipelines is shown in Figure 5.4. The block diagram in Figure 5.4 is
very similar to the one with the two unrolled loops (Figure 5.3). The only difference
is the additional buffer between the combinatorial logic units.

* Data * Key

| Initial Permutations |

A vV

Multiplexer | Multiplexer

Y Y

Combinatorial Logic 1

v v

| Register 1 | Register 1 |

Combinatorial Logic 2

Y Y

| Register 2 | Register 2 |

[

Y

| Final Permutations |

* Encrypted Data

Figure 5.4: Block diagram of DES with 2 pipelines

The first block of data x; and the associated key k; are loaded and passed through
the initial permutations and the multiplexer. The 1st combinatorial logic unit com-
putes x1; and k;; which is stored into the 1st register block. On the next clock cycle
x1,1 and k;; leave the 1st registers and the 2nd combinatorial logic unit computes
219 and kp o which is put into the 2nd register block. At the same time the second
block of data x, and key ky are loaded and passed through the initial permutations,
and the multiplexer, and the 1st combinatorial unit computes x5, and ky; which get

moved into the 1st register block.

CHAPTER 5. ARCHITECTURE 28

Now the pipeline is filled and with each clock cycle another iteration for two pairs
of data and key are computed. The data which has entered the pipeline first, will
also exit it first. At that time the next data and key pair can be loaded.

The advantage of this design is that two or more data key pairs can be worked
upon at the same time. As there is still only one instance of the initial permutations,
the multiplexer and the final permutation, the cost in terms of resources on the chip
will not be twice as high as if we implemented two full non pipelined DES designs.
Also there has to be only one control logic which is just slightly more complicated than
for a non pipelined DES design. The maximum clock speed should be roughly the
same as during one clock cycle the same amount of logic resources has to be traversed
as in the non pipelined design. It is also straight forward to design pipelines with

more than two stages, e.g., with four.

5.4 Combination of Pipelining and Loop Unrolling

It is possible to combine both architecture acceleration techniques that we just de-
scribed. Each pipeline would contain two unrolled loops. The resulting block diagram
shown in Figure 5.5 looks similar to Figure 5.4 except that each combinatorial logic
unit is duplicated. During one clock cycle two iterations of two data—key pairs get
computed: x4 and k; 4 get computed from z;5 and k; 9, and z99 and kg5 get com-

puted from x5 and ks.

5.5 Comparison and Design Decisions

As described in Section 4.4 some DES modes of operation require that the output
of DES is used to compute the next input (e.g., the CFB mode). If such a mode is
to be used, a pipelined design would not work, as it processes two data—key pairs at

the same time. A loop unrolled design would work fine and is the only method for

CHAPTER 5. ARCHITECTURE 29

* Data * Key

| Initial Permutations |

A vV

Multiplexer | Multiplexer

v v

Combinatorial Logic 1

Y Y

Combinatorial Logic 2

v v

| Register 1 | Register 1 |

Combinatorial Logic 3

Y Y

Combinatorial Logic 4

v v

| Register 2 | Register 2 |
|

Y

| Final Permutations |

* Encrypted Data

Figure 5.5: Block diagram of DES with 2 unrolled loops within 2 pipelines

speed-up that can be applied for such modes. In an application that is not subject
to this constraint, like ECB-mode or ATM-counter mode, the pipelined versions can
be used. A pipelined design should result in a higher speed-up than a loop unrolled
design.

One major objective of this thesis was to obtain a realistic comparison of the differ-
ent acceleration methods (loop unrolling, pipelining, combination of both). Table 5.1

shows the architecture versions we decided to implement.

CHAPTER 5. ARCHITECTURE

DES_ED8x2

Name Description

DES_ED16 standard DES (16 iterations)

DES_EDS8 DES with 2 unrolled loops (8 iterations)
DES_ED4 DES with 4 unrolled loops (4 iterations)

DES_ED16x2 DES with 2 pipelines
DES_ED16x4 DES with 4 pipelines

DES with 2 pipelines each containing 2 unrolled loops

Table 5.1: Implemented DES architectures

30

Chapter 6

DES Design

This section is concerned with the design of the circuit. The next step after analyzing
the architecture of DES is to break DES down into small elementary computational
units, so called function blocks and then to analyze how they can be implemented

efficiently. After this some further optimization can be done.

6.1 DES Function Blocks

In this section we will only describe a not-unrolled and not-pipelined version of DES.
Also, only encryption is possible. The function blocks developed can then also be
used for the more advanced designs.

In the previous section we have shown that the DES design comprises the initial
permutation, the final permutation, registers and multiplexers. The combinatorial
logic unit needs to be investigated further. It contains the Feistel network and the
key scheduling.

The Feistel network, as shown in Figure 4.3, comprises a 32-bit XOR and the
f-function. The f-function is composed of an expansion box, a 48-bit XOR, eight

S-Boxes and a permutation box.

31

CHAPTER 6. DES DESIGN 32

The key schedule needs shift registers and a permutation box. The shift registers
have to rotate the bits by one or two positions depending on the round and change
directions if the mode changes between encryption or decryption. The basic function

blocks for all these operations are

e Permutation Boxes and Expansion Boxes

Registers

Multiplexers

Standard Logic Functions (XOR)

S-Boxes

Shift Registers

6.2 Logic Resources

Every function block listed in the previous section will be analyzed here and ways to

implement them will be shown.

6.2.1 Permutation Boxes and Expansion Boxes

Permutation boxes reorder the bits of a bit-string. Expansion boxes are a special form
of permutation boxes; they also duplicate bits. Reordering and duplication of bits
requires no logic resources, it can be implemented by wiring only. The outputs of the
previous logic block are wired in a different (permuted) order to the next logic block.
If the permutation is directly at the input or at the output of the device, which is the
case for the initial permutations and the final permutation, the reordering takes place

in the wiring of the 1/O pins of the device and the logic blocks they are connected

CHAPTER 6. DES DESIGN 33

to. Therefore a permutation or expansion causes no additional delays, except some
wiring delays if it complicates the wiring. Following is an example of the VHDL

description of the PC1BOX, which is the initial permutation for the key.

library ieee;
use ieee.std_logic_1164.all;

ENTITY pclbox IS PORT

(CD : IN std_logic_vector (56 downto 1);
KS : OUT std_logic_vector (56 downto 1));
END pclbox;

ARCHITECTURE behave OF pclbox IS

BEGIN
KS(1) <= CD(53); KS(2) <= CD(46); KS(3) <= CD(39); KS(4) <= CD(32);
KS(5) <= CD(52); KS(6) <= CD(45); KS(7) <= CD(38); KS(8) <= CD(31);
KS(9) <= CD(24); KS(10) <= CD(17); KS(11) <= CD(10); KS(12) <= CD(3);
KS(13) <= CD(51); KS(14) <= CD(44); KS(15) <= CD(37); KS(16) <= CD(30);
KS(17) <= CD(23); KS(18) <= CD(16); KS(19) <= CD(9); KS(20) <= CD(2);
KS(21) <= CD(50); KS(22) <= CD(43); KS(23) <= CD(36); KS(24) <= CD(29);
KS(25) <= CD(22); KS(26) <= CD(15); KS(27) <= CD(8); KS(28) <= CD(1);
KS(29) <= CD(25); KS(30) <= CD(18); KS(31) <= CD(11); KS(32) <= CD(4);
KS(33) <= CD(54); KS(34) <= CD(47); KS(35) <= CD(40); KS(36) <= CD(33);
KS(37) <= CD(26); KS(38) <= CD(19); KS(39) <= CD(12); KS(40) <= CD(5);
KS(41) <= CD(55); KS(42) <= CD(48); KS(43) <= CD(41); KS(44) <= CD(34);
KS(45) <= CD(27); KS(46) <= CD(20); KS(47) <= CD(13); KS(48) <= CD(6);
KS(49) <= CD(56); KS(50) <= CD(49); KS(51) <= CD(42); KS(52) <= CD(35);
KS(53) <= CD(28); KS(54) <= CD(21); KS(55) <= CD(14); KS(56) <= CD(7);

END behave;

6.2.2 Registers

Registers (data buffers) can be implemented either in combinatorial logic or using
RAM elements. Most modern FPGAs have RAM/ROM elements built in which are

more effective than combinatorial logic for these purposes.

CHAPTER 6. DES DESIGN 34

6.2.3 Multiplexers

Multiplexers can easily be implemented using combinatorial logic. The synthesizing
tools will try to use predefined functions from the FPGA vendor to implement them.
The same is valid for the registers too. Here is an example of the VHDL description

of a 32-bit multiplexer.

library ieee;
use ieee.std_logic_1164.all;

ENTITY mux32 IS PORT

(A : IN std_logic_vector (31 downto 0);
B : IN std_logic_vector (31 downto 0);
0 : OUT std_logic_vector (31 downto 0);
sel : IN std_logic);
END mux32;

ARCHITECTURE behave OF mux32 IS
signal element : std_logic_vector (31 downto 0);
BEGIN

0 <= element;
element <= B WHEN sel = ’1’ ELSE
A;

END behave;

6.2.4 Standard Logic Functions

Standard logic functions, such as AND, OR, XOR are composed of basic gates. Their
performance does not depend of the width of the bit-string they have to operate upon,
e.g., the 32-bit XOR performs equally to the 48-bit XOR used in the Feistel network.
Following is a VHDL example of the 32-bit XOR.

library ieee;
use ieee.std_logic_1164.all;

ENTITY xormod IS PORT
(A : IN std_logic_vector (31 downto 0);
B : IN std_logic_vector (31 downto 0);

CHAPTER 6. DES DESIGN 35

Q : OUT std_logic_vector (31 downto 0));
END xormod;

ARCHITECTURE behave OF xormod IS

BEGIN
Q <= A XOR B;
END behave;

6.2.5 S-Boxes

S-Boxes are look-up tables which are of size 6 x 4 and therefore contain 64 4-bit values
(see Section 4.1). The implementation of the S-Boxes is cruical for an efficient DES
design [7]. If they are implemented via combinatorial logic they need hundreds of
logic elements. A study by Greg Haskins [7] shows that using ROM elements is the

most efficient way to implement S-Boxes.

6.2.6 Shift Registers

The shift registers' used in the key schedule can be classified as combinatorial shifters,
decisive shifters and directional shifters. Figure 6.1 shows an overview of the different

shifters. All these shifters rotate a four-bit bit-string by at most 1 bit.

Combinatorial Shifters shift by a fixed number of positions and they shift always,

not depending on a clock. They are essentially permutations.

Decisive Shifters have an additional input upon which they decide if the data

should be shifted or not. A decisive shifter can be realized with a multiplexer.

Directional Shifters are very similar to decisive shifters. They also have the
additional input upon which they decide if the data has to be shifted right or left. A

directional shifter can also be realized with a multiplexer.

shift registers are used here synonymously for rotators

CHAPTER 6. DES DESIGN 36

1 2 3 4

1 2 3 4
1 2 3 4 1 2 3 4 |left/right
Multiplexer
1 2 3 4 ‘L IJ_'I ‘L IJ_'I
Combinatorial 1 2 3 4
Shifter Directional Shifter
1 2 3 4

1 2 3 4 1 2 3 4 |shift/notshift

Multiplexer
1 2 3 4

Decisive Shifter

Figure 6.1: Implementation of shift registers

6.3 Optimizations

Figure 6.2 shows a detailed block diagram of standard DES. It is a refinement of the
high-level diagram in Figure 5.2. It contains all the function blocks discussed in the
previous section. This design has been implemented under the name DES16 Version

1.1.

6.3.1 LogiBLOX

One simple way of optimizing the design is to use LogiBLOX. LogiBLOX are precon-
figured, optimized modules for Xilinx FPGAs. The performance of the LogiBLOX
does not depend on the quality of the synthesizing tool, as modules described in
VHDL would.

We created a design using LogiBLOX named: DES16 Version 1.2. The functional

CHAPTER 6. DES DESIGN

ipnorm Initial Permutations | P¢!P%%
Data Loop MY_IP MY_PCI Key Loop
/ X
mux64 . . mux56
Multiplexer Multiplexer
MY_MUX64 MY_MUX56
! .
Combinatorial Logic */*
la_rot la_rot
STAGE_IC STAGE_ID
ebox Im_rot Im_rot
MY_EXPANS. STAGE_2C STAGE_2D
xormod48 pc2box
MY_XOR_MOD PC2B
keygen
sox1 S0Xx2 o S0x8
MY_SBOXI MY_SBOX2 MY_SBOX8
pbox
MY_PERMUT.
ffunc
xormod
MY_XOR_MOD
feistel
A [3
y v y v
TR Register Register TS
DATA_BUF KEY_BUF
Data Loop T Key Loop
[
ipinv
MY_FINAL Final Permutation

Figure 6.2:

Detailed block diagram of DES

37

CHAPTER 6. DES DESIGN 38

blocks we implemented in this version as LogiBLOX have a light grey background in
the block diagram shown in Figure 6.2.

6.3.2 Timing Analysis

Before the actual implementation we can do a rough timing analysis of the design
shown in Figure 6.2. Boxes with a white background denote permutation and ex-
pansion boxes as well as combinatorial shifters. They are just wiring resources so
they can be assumed to be very fast. Boxes with a background color are using logic
resources, so it will take some time for data to propagate through them.

Each iteration, except the 1st, starts with the data and the key coming out of the
registers and through the multiplexers. Then the data passes through an expansion
box and into an 48-bit XOR. The key passes through a combinatorial shifter and then
through a decisive shifter. The result of this goes through a permutation and also to
the 48-bit XOR.

The data XOR-ed with the sub-key is applied to the S-Boxes, another permutation
and finally through another XOR. After this data and key are at the input of the
registers. Figure 6.3 shows how these function elements are executed in successive
order from left to right. Function elements executed concurrently are shown in the

same column.

la_rot Im_rot regS6
STAGE_ID STAGE_2D KEY_BUF
mux56 la_rot Im_rot c2box
Key Path: - - P
MY_MUX56 STAGE_IC STAGE_2C PC2B
mux64 ebox xormod48 sox1-8 box xormod reg64
Data Path: P 3
MY_MUX64 MY_EXPANS. MY_XOR_MOD MY_SBOX1-8 MY_PERMUT. MY_XOR_MOD DATA_BUF

time

Figure 6.3: Rough timing diagram of DES

CHAPTER 6. DES DESIGN 39

This diagram shows a problem. The 48-bit XOR, (xormod48) can not be executed?

until the key is propagated through the conditional shifters (Im_rot).

6.3.3 Improved Sub-Key-Generation Logic

The problem shown in the timing analysis section (Section 6.3.2) leads to a different
approach for the sub-key generation. As Figure 6.3 shows, the problem is that the
current sub-key is generated too late and the data path has to “wait”. After the
sub-key generation is done the data-path has to execute more steps. That time is
unused on the key-path. A higher level of parallelism would be valuable.

The solution to this problem is to perform the sub-key computations while the
data moves through the S-Boxes and the final XOR. That means, that the sub-key
would have to be precomputed by one clock cycle and send to the XOR (xormod48)
right at the beginning of the next clock cycle.

In order for this to work we have to be able to give the f-function during the 16th
round the 16th sub-key and at the same time load a new key and pre-compute the 1st
sub-key for the next data packet. Therefore we have to move the multiplexer between
the permutation (pc2box) and the rest of the key generation. Figure 6.4 shows how

a sub-key generation according to this schema would look like.

6.3.4 Encryption — Decryption

As we are generating the sub-key during the time the data moves through the S-
Boxes and the final XOR, we have more time than we would need for just a sub-key
generation for encryption.

It is possible to include the logic for decryption too at the expense of more logic
resources, but with the same time constraints. As described in Subsection 4.3 de-

cryption means that we have to shift the key right, either none times, or one time, or

2executed means that it will produce the final result

CHAPTER 6. DES DESIGN

40

pclbox
MY_PCI
Key Loop
SEb‘key pc2box
PC2B
mux56
MY_MUX56
la_rot la_rot
STAGE_1C STAGE_I1D
/ \
Im_rot Im_rot
STAGE_2C STAGE_2D
reg56
KEY_BUF
| Key Loop

Figure 6.4: New sub-key generation

CHAPTER 6. DES DESIGN 41

two times. Therefore we can not use combinatorial shifters but only decisive shifters.
The key propagates through two branches. In the first branch it is shifted left by 1
or 2 positions, depending on the round, for encryption. In the second branch the key
is shifted right by 0, 1, or 2 positions, depending on the round, for decryption. A
multiplexer at the end switches between the results of the two branches and therewith
switches between encryption or decryption. This way a simple directional shifter is

implemented. Figure 6.5 shows the block diagram for this.

1st branch 2nd branch

s la_rot la_rot rm_rot rm_rot .
shift 1 - - = = shift 0 or 1
LSHIFT_I1C LSHIFT_ID RSHIFT_1C RSHIFT_1D
/ \ \ \
. Im_r Im_r Tm_ri rm_re .
shift 0 or 1 _rot _rot _rot _rot shift O or 1
LSHIFT_2C LSHIFT_2D RSHIFT_2C RSHIFT_2D

sub-key for
encryption

sub-key for
decryption

mux56
MY_MUXS56

Figure 6.5: Encryption — decryption sub-key generation

The functional blocks named rm_rot are decisive right shifters, the blocks named
la_rot are combinatorial left shifters and Im_rot are decisive left shifters. The timing
diagram for this design is shown in Figure 6.6.

The white permutation boxes are assumed to be free of delay. The grey boxes are
assumed to have all the same delay. As the sub-key is ready immediately the data-
path and the key-path are almost independent. As opposed to the timing diagram
shown in Figure 6.3 which had 6 grey boxes in a row (5 in the data path and 1 wait

CHAPTER 6. DES DESIGN 42

rm_rot rm_rot
STAGE_1C/D STAGE_2C/D
pc2box mux56 la_rot Im_rot mux56 reg56
Key Path:
PC2B MY_MUX56 STAGE_IC/D STAGE_2C/D MY_MUX56 KEY_BUF
Data Path: mux64 ebox xormod48 sox1-8 pbox xormod reg64
MY_MUX64 MY_EXPANS. MY_XOR_MOD | |[MY_SBOXI-8 MY_PERMUT. MY_XOR_MOD | | DATA_BUF

time

Figure 6.6: Encryption decryption timing diagram

state for the sub-key) this diagram has only 5 grey boxes in a row. We implemented

this version of DES under the name: DES_ED16.

6.4 Control Logic

The control logic for this DES design is a simple state machine. A non loop unrolled
implementation of DES needs 16 iterations to compute the cipher text. This can be
realized with a state machine comprising 16 states ordered in one loop.

In Section 6.3.3 we showed the advantages of computing the sub-key one round
in advance. For this to work we need to create a state machine with an initial state
to preload the key before the data is loaded in state 1. In state 16, while the last
iteration of the data is calculated, the key for the next operation is preloaded. The
state machine does not need to return to the initial state but can continue right to
state 1. Figure 6.7 shows the state transition diagram.

The transition from one state to the next in sequence is triggered by the clock.
A clock enable signal is also implemented which makes it possible to stop the state
machine in any given state for as many clock cycles as wanted. A reset signal in any
state causes the state machine to return to the INIT state.

The control signals the state machine controls are not shown in the diagram as
they vary from design to design. However, here is a short overview about the control

signals the state machine has to provide.

CHAPTER 6. DES DESIGN 43

reset reset

Figure 6.7: DES control state machine

KE key expected, signals an external entity that a key is expected at the inputs (KE
= high)

IE wnput expected, signals an external entity that the data is expected at the inputs
(IE = high)

OV output valid, signals an external entity that the output data is valid (OV = high),

otherwise the data at the output is not valid (OV = low)

Data_Sel signal for the input multiplexer of the data path to either load new data

(data_sel = low) or forward data from the data loop (data_sel = high)

Key_Sel signal for the input multiplexer of the key path to either load a new key

(key_sel = high) or forward the key from the key loop (key_sel = low)

SFT shift, signals the sub-key generation logic to not shift the key (SEFT = low) if

in decryption mode (ST1 has to signal one position).

CHAPTER 6. DES DESIGN 44

ST1 shift two signals the sub-key generation logic to shift the key by one (ST1 =
low) or two positions (ST1 = high).

Other control signals are needed for different versions of the design. These are de-
scribed in the respective sections. The state machine for a design with loop unrolling
contains as many states as iterations needed plus one initial state. That means, the
state machine for a design with 2 unrolled loops comprises 16/2 + 1 = 9 states and
for a design with 4 unrolled loops only 16/4 4+ 1 = 5 states. Therefore loop-unrolling

results in simpler state machines.

6.5 Filling Pipelines

A pipelined design introduces an initial delay. The reason is that the pipelines have
to be filled first. In an ideal 4 pipeline design it would take 4 clock cycles to fill the
pipelines.

The designs of type DES_ED* listed in Table 5.1 and the design DES_M@P with
encryption and decryption mode, perform key precomputation. As described in Sec-
tion 6.3.4 the key has to be loaded one clock cycle before the data. Therefore it is
possible to use the same input pins for key and data. The data multiplexer and key
multiplexer can demultiplex the combined input at no additional cost. The advantage
is that less 10-pins are used.

The multiplexed data-key input complicates the loading of pipelines. The key has
to be loaded first and then the associated data. This requires that during the clock
cycle after half the pipelines are filled nothing is loaded. Starting with the following
clock cycle the rest of the pipelines can be filled. Table 6.1 shows how the pipelines
can be filled the most efficient way. In the states not shown no key or data is loaded.
The state R16 behaves the same way as the state INIT.

From Table 6.1 it can be seen that a design with eight pipelines could not be

CHAPTER 6. DES DESIGN 45

State | INIT R1 R2 R3 R4 R5 R6 R7 R8 R9
Input for 2 pipeline design | K1 D1 K2 D2
Input for 4 pipeline design | K1 D1 K2 D2 K3 D3 K4 D4

Table 6.1: Loading pipelines

implemented in this way. It would take eight states (INIT R7) to load the first four
key data pairs, and during R8 nothing could be loaded. It would take another eight
states to load the remaining four key-data pairs. But during state R16 the next K1
is to be loaded. Therefore only seven out of eight pipelines could be used. A solution

to this problem is to have separate key and data busses.

Chapter 7

DES Implementation

We implemented various architecture versions of DES (see Table 5.1) and a modified
version for an MQP (Major Qualifying Project or senior thesis). These architectures

were also ported to different chips.

7.1 FPGA Choice

We have chosen FPGAs from Xilinx for our implementation. This decision was based
on research described in [7]. The major relevant discovery in [7] was that it is difficult
to implement more than one set of S-boxes with other commercial available reconfig-
urable devices such as Altera EPLDs. However, multiple sets of S-boxes are needed
for loop unrolling and for pipelining. We therefore had to choose a vendor who could

supply us with devices large enough for this task.

7.2 VHDL-Source

For each function block (see Section 6.1) a separate VHDL file was created, except for

the ones implemented using LogiBLOX. Table 7.1 lists the files and their function.

46

CHAPTER 7. DES IMPLEMENTATION

Filename Function

bigbuff.vhd 64 bit data buffer and 56 bit key buffer with one clock each
bigmux.vhd 64 bit data and 56 bit key multiplexer with two switches
control.vhd Control Logic (state machine)

des.vhd Top level description file for DES

ebox.vhd Expansion permutation

feistel.vhd One iteration of the feistel network

ffunc.vhd F-Function

initial.vhd The initial permutations for the plaintext and key
ipinv.vhd inverse initial permutation

ipnorm.vhd
iteration.vhd
keylgen.vhd
keygen.vhd
la_rot.vhd

Im_rot.vhd

module_pack.vhd
mux32.vhd
mux56.vhd
mux64.vhd
pbox.vhd
pclbox.vhd
pc2box.vhd
ra_rot.vhd

reg28.vhd
regh6.vhd
reg64.vhd
rm_rot.vhd

sboxes.vhd
xormod.vhd
xormod48.vhd

Initial Permutation

One complete iteration inc feistel and sub-key generation
Key generation first round only

Key generation

Combinatorial Rotation Unit. Performs a 1 bit cyclic left
shift automatically

Combinatorial Left Rotation Unit. Performs a 1 bit cyclic
left shift or a pass through, depending on the mode bit
module definition file

32 bit 2x1 multiplexer

56 bit 2x1 multiplexer

64 bit 2x1 multiplexer

Permutation box

PC-1 DES Key Scheduler permutation

PC-2 Key Scheduler permutation

Combinatorial Rotation Unit. Performs a 1 bit cyclic right
shift

28 bit register

56 bit register

64 bit register

Combinatorial Left Rotation Unit. Performs a 1 bit cyclic
right shift or a pass through, depending on the mode bit
Main SBOX module

32 bit XOR Module

48 bit XOR Module

Table 7.1: VHDL source files and their function

47

CHAPTER 7. DES IMPLEMENTATION 48

These files can be divided into files that describe core functions and are not de-
pending on other files, and files that describe higher level modules. The file mod-
ule_pack.vhd contains the component instantiation of all the components (modules).
The core function files are: ebox.vhd, ipinv.vhd, ipnorm.vhd, la_rot.vhd, Im_rot.vhd,
mux32.vhd, pbox.vhd, pclbox.vhd, pc2box.vhd, ra_rot.vhd, reg28.vhd, rm_rot.vhd,
xormod.vhd, and xormod48.vhd. Some files are written in two versions, one using
VHDL to describe the core functions and the other employing LogiBLOX to provide
the core function: mux56.vhd, mux64.vhd, regh6.vhd, and reg64.vhd. The other files
are depending on these core modules or LogibBLOX.

The same files are used in different revisions for the various implementations. In
order to keep track of which revision of a certain file is used in which version of the

DES implementation a revision control system RCS was employed.

7.3 LogiBLOX

We created LogiBLOX versions for registers, multiplexers, S-Boxes and some shifters.
The LogiBLOX were not subject to frequent changes, so there was no need to have
them managed by RCS. Furthermore the LogiBLOX are all instantiated from within
VHDL files. Table 7.2 lists the LogiBLOX created and their function.

LogiBLLOX can be created by the interactive graphical tool lbgui. The tool creates
* ngo files which are inferred by the Xilinx design manager, VHDL simulation models,

and instantiation templates.

7.4 Designs Implemented

We implemented DES in several versions to compare the different architectures and
the influence of the size of the FPGAs on the maximum speed. Many designs were

implemented in the chip: XC4013-3-PG223. This device offers enough resources even

CHAPTER 7. DES IMPLEMENTATION

Filename Function

mux161 16 bit multiplexer

mux32] 32 bit multiplexer

mux8l 8 bit multiplexer

regl6e 16 bit register with clock enable

regl6l 16 bit register

reg32c 32 bit register with clock enable

reg32l 32 bit register

reg8c 8 bit register with clock enable

reg8l 8 bit register

shift2 2 bit shift register with clock enable, MSB out, LLSB in, and
parallel out

shift4 4 bit shift register with clock enable, MSB out, LLSB in, and
parallel out

sox1 S-Box 1

sox2 S-Box 2

sox3 S-Box 3

sox4 S-Box 4

soxb S-Box 5

sox6 S-Box 6

sox'7 S-Box 7

sox8 S-Box 8

Table 7.2: LogiBLOX and their function

49

CHAPTER 7. DES IMPLEMENTATION 50

for more advanced designs than the simple DES16. Furthermore a group of students
is using this device for their MQP. The design DES_M@QP was tailored to their specific

needs.

7.4.1 DES16

This is the very first design we implemented. One encryption requires 16 clock cycles,
no pipelining or unrolling techniques were employed. DES16 only supports encryption
and the sub-keys are not precomputed.

We implemented two versions of DES16. In version 1.1 only the S-Boxes were im-
plemented using LogiBLOX. In version 1.2 LogiBLOX were used also for the registers
and multiplexers.

The schematic of DES16 for both versions is shown in Figure 6.2. The target for
both versions is the chip XC4013E-3-PG223.

7.4.2 DES_ED16

DES_ED16 is the first design using the one round sub-key precomputation technique
described in Chapter 6.3.3 and the modification for encryption — decryption shown in
Chapter 6.3.4. All subsequent designs are employing these features. One encryption
or decryption takes 16 clock cycles.

DES_ED16 was implemented in three different versions. The difference between
the three versions is only the target device. Version 1.1 is implemented on the device
XC4013E-3-PG223, version 1.2 on the device XC4008E-3-PG233 and version 1.3 on the
device XC4025E-3-PG223, these devices differ in the amount of logic resources they
provide.

The control logic for this design has to provide the following signals: ke, ie, owv,
data_sel, key_sel, SFT, and ST1 (for a description see Chapter 6.4). Figure 7.1 shows

the timing diagram for these signals.

CHAPTER 7. DES IMPLEMENTATION 51

INITR1 R2 R3 R4 R5 R6 R7 R8 R9 RI0ORI1R12R13R14R15R16 R1
srhhhnGhGRGGRLGRIE
ke [1
E| [—

oV []
key_sel J _’7
data_sel —_[L
ser || L
ST1 [1-1 12|13 14 1-5 1-6 1-7 1-8|1-9|1-10 1-11 1-12 1-13 1-14 l—lSM

Figure 7.1: Control signals for DES_ED16

The signal OV is without any function for this design. The output is valid at
the same time new data gets loaded. The signal /F is to be used for both purposes,
output valid and data input expected. The numbers shown next to the signal ST1
denote the sub-key computed during the respective state. In state INIT the 1st sub-
key is generated, during state R1 the 2nd sub-key, and so on. During state R16 the
1st sub-key of the next key is computed which is indicated through light shade of

gray.

7.4.3 DES_MQP

The design DES_M@P is a special design for an MQP based on the DES_ED16 design.
The only difference is that it uses a bidirectional 64-bit bus for data and key input
and data output.

DES_MQ@P was implemented in 2 different versions. The only difference be-
tween these versions is the target device. Version 1.1 was implemented on the device
XC4013-3-PG223 with speed grade -3, version 1.2 on a device with speed grade -2:
XC4013-2-PG233 .

The control signals are the same as for DES_ED16 shown in Figure 7.1. The

CHAPTER 7. DES IMPLEMENTATION 52

signal OV indicates that the output is put on the bidirectional bus. If OV is low the
output is tri-stated. This means that this chip is accessing the bus for only three clock
cycles, loading key, loading data and output result. During the remaining 16 —3 = 13
clock cycles the bus is tri-stated. While the bus is try-stated by one chip other chips
could access that it. Up to 5 chips could be run in parallel of the same bus (16 clock
cycles divided by 3 clock cycles for I/O per chip) if their loading and output cycles

are scheduled in the right order.

7.4.4 DES_EDS

This is the first loop unrolled design. One encryption or decryption takes 8 clock
cycles, therefore the state machine has to support only 9 states. DES_EDS8 was
targeted for the XC4013-3-PG223 device in which it fits comfortably.

The control logic has one additional signal ST2. It has basically the same function
as ST1 but operates on the second sub-key generator. Figure 7.2 shows the timing
diagram. During the state RS the 16th sub-key gets generated in the 2nd sub-key
generator and the 1st sub-key generator calculates the 1st sub-key for the next data
packet, indicated through a light shade of gray. The mode (encryption or decryption)
of the next data packet is entirely independent of the mode for the current one.

During state R1 data is first encrypted with the precomputed first sub-key from
the previous state. At the same time the second sub-key is precomputed in the second
sub-key generator. As soon as the second sub-key generator is finished the first sub-
key generator produces the third sub-key to be used in the next state and the data

is encrypted with the precomputed second sub-key.

7.4.5 DES_ED4

This is the second loop unrolled design with 4 unrolled loops. One encryption or de-

cryption takes 4 clock cycles. The state machine supports 5 states. DES_ED/ was tar-

CHAPTER 7. DES IMPLEMENTATION 53

INIT RI1 R2 R3 R4 RS R6 R7 R8 R1 R2

ek [LI LU rL L ririr
1

KE
IE [1 [1
oV [[
key_sel 4 \—,7

SFT
ST1 1-1 1-3 1-5 1-7 1-9 1-11 1-13 1-15
ST2 1-2 1-4 1-6 1-8 1-10 1-12 1-14 1-16

Figure 7.2: Control signals for DES_EDS§

geted for the XC4028EX-3-PG299 device. An implementation on the XC4025E-3-PG223
device failed even though it has enough logic resources. The lack of wiring resources
made a change from the XC4000E series to the XC4000EX series necessary.

The control logic has three additional signals S72, ST3, and ST)4. These signals
operate on the second, third and fourth sub-key generators. Figure 7.3 shows the
timing diagram. During state R4 the 14th, 15th, and 16th sub-key get generated
by the second, third and fourth sub-key generator, and the first sub-key generator
generates the first sub-key for the next data packet, indicated through light shade
of gray. The mode (encryption or decryption) of the next data packet is entirely
independent of the mode for the current one.

During the state R1 data is first encrypted with the precomputed first sub-key
from the previous state. At the same time the second sub-key is created by the second
sub-key generator. As soon as the second sub-key generator is finished the third sub-
key generator generates the third sub-key and at the same time data is encrypted

with the second sub-key and so on.

CHAPTER 7. DES IMPLEMENTATION 54

INIT RI1 R2 R3 R4 R1
ok [1L L L LT L]
KE
IE
(0)%

key_sel

T

data_sel
SFT | |

STL [11 [15 | 19 [113 | | \

sT2 | a2 [e 10| s | o |

ST3 1-3 1-7 1-11 1-15

ST4 1-4 1-8 1-12 1-16

Figure 7.3: Control signals for DES_ED/,

7.4.6 DES ED16x2

DES_ED16x2 is the first pipelined design. One encryption or decryption takes 16
clock cycles, two operations can run at the same time. The modes of both operations
(encryption or decryption) are independent of each other; one data block can be
encrypted while the other is being decrypted, or both can be encrypted or decrypted.
DES_ED16x2 was targeted for the XC4013E-3-PG223 device.

DES_ED16x2 has one additional signal: ST2 which operates on the second sub-
key generator. Figure 7.4 shows the timing diagram. As this is a pipelined design it
can work on 2 data blocks at the same time, hence the notation 2-1/ which denotes
the 14th sub-key for the 2nd data block. The key for the first data block gets loaded
during state R16 or INIT followed by the first data block in the next state. The key
for the second data block gets loaded during state R& followed by the second data
block in the next state.

During state R16 the 14th sub-key for the second data block is being generated

by the second sub-key generator, and the first sub-key generator computes the 1st

CHAPTER 7. DES IMPLEMENTATION 55

sub-key of the new first data block. In state R1 the first sub-key generator computes
the 15th sub-key for the second data block and the second sub-key generator the 2nd

sub-key of the new first data block, and so on.

INITR1 R2 R3 R4 R5 R6 R7 R8 R9 R1I0R11R12R13R14RI15R16 R1 R2 R3 R4 RS

cx MUy uuyUyyyyyyyyy L L L

KE [] [1 [1] [1

E| [[[] I

ov [1] [1 [1] [
key_sel J _[_[_[
data_sel —_[_[_[_,7

SFT || | | |

STI1 |1-1 1-3(2-1(1-5 23 1-7 251927 1-11] 2-9 |1-13 2-11 1-15/2-13 2-15
ST2 1-2 1-42-2|1-6 24 1-8 2-6 1-10 2-8 1-12/2-10 1-14 2-12|1-16|2-14 2-16

Figure 7.4: Control signals for DES_ED16x2

7.4.7 DES_ED16x4

This is the second pipelined design, comprising 4 pipelines. Each encryption or de-
cryption takes 16 clock cycles; 4 operations can be handled at the same time. The
modes of the operations are independent from each other; the mode (encryption or
decryption) can be selected for each operation separately.

DES_ED16x/ was implemented in 2 different versions. The only difference be-
tween these versions is the target device. Version 1.1 was implemented on the
XC4025E-3-PG223 device and version 1.2 a device of a different family: XC4028EX-3-PG299.

The control logic provides three additional signals: ST2, STS3, and ST/ which
operate on the second, third and fourth sub-key generator. Figure 7.5 shows the
timing diagram. The sub-key generation is straight forward and can be seen in the

Figure.

CHAPTER 7. DES IMPLEMENTATION 56

The key for the first data block gets loaded during state R16 or INIT followed by
the first data block in the next state. The key for the second data block gets loaded
during state R2 followed by the second data block in the next state. The key for the
fourth and fifth block get loaded during the states R5 and R7 respectively, the data
blocks follow one stage later R6 and RS. Initially it takes 8 clock cycles for all the
pipelines to get filled.

INITRI R2 R3 R4 R5 R6 R7 R8 R9 RIOR11R12R13R14R15R16 R1 R2 R3 R4 R5 R6

CLK

kL1 1 L 1
e| L o
v ML mEnEN
evsel | L L | EnlanlE
el [L L EnEmal
sr| L Bl
ST1 |10 i i i
ST2 12 22 16 [3-2[26 [42 [1-10 3:6 210 46 114 3-10 2-14 4-10] 1 2 [3-14] 22 [4-14] 1 6] 20
ST3 13 23 17 33 27 | 43 1-11 37 2-11 47 1-15 3-11 215 4-11 315 00 415
ST4 1-4 24 1834 28 44 1-12 38 212 48 [1-16[3-12[2-16[4-12 1+ |3-16] 2+ |4-16

Figure 7.5: Control signals for DES_ED16x4

7.4.8 DES _ED8x2

This design is a mixture between a pipelined and a loop unrolled design. It contains
two pipelines with each two unrolled loops. Each encryption or decryption takes 8
clock cycles, 2 operations can be processed at the same time. The modes of both
operations (encryption or decryption) are independent from each other. DES_ED8z2
was targeted for the XC4028EX-3-PG299 device.

The loading of the keys and the data packets is similar to the design DES_ED16z2.

But after 8 clock cycles the result is already computed and the next loading cycle

CHAPTER 7. DES IMPLEMENTATION 57

begins.

The control logic provides three additional signals: ST2, ST%, and ST/ which
operate on the second, third and fourth sub-key generator. Figure 7.6 shows the
timing diagram. The sub-key generation is straight forward and can be seen in the

diagram.

INIT RI1 R2 R3 R4 RS R6 R7 R8 R1 R2 R3

CLK

KE []]]
)]]
ov]] 1

keysel || | L L
data_sel u u u
st | L L L
ST1 | 11 1-5 2-1 1-9 25 1413 | 29 2-13
ST2 | 12 | 16 | 22 [110 26 114 210 | 10 | 2-14
ST3 1-3 1-7 2-3 1-11 2-7 1-15 | 2-11 2-15

ST4 1-4 1-8 2-4 1-12 2-8 1-16 2-12 2-16

Figure 7.6: Control signals for DES_EDS8z2

Chapter 8

Results

We implemented multiple versions of each architecture option listed in Table 5.1 in
order to evaluate their effectiveness. We also implemented some designs multiple times
with varying chip parameters in order to judge their influence on the performance.
In the following sections we compare the different designs. In most cases the designs
are compared to the design DES_ED16 which serves as our reference model.

The unit CLB stands for combinatorial logic block which is employed by Xilinx to
measure the amount of logic resources on a device. We are using it here to compare
the amount of logic resources used by a given design.

The abbreviation CLU stands for combinatorial logic unit (see Chapter 5).

8.1 Loop Unrolling

We implemented two loop unrolled versions: DES_ED8 and DES_ED/. The design
DES_EDS8 contains two combinatorial logic units (CLU, see Section 5.2) and therefore
encrypts or decrypts one data block in 8 clock cycles. The design DES_ED/ contains
four CLUs and provides the result after 4 clock cycles. Both designs are compared

with the design DES_ED16 in Table 8.1.

28

CHAPTER 8. RESULTS 09
Min | Data Rate
Design Chip CLBs ngC]iSU CLK | per CLU Di:t;bi?:e
in ns in Mbit/s
DES_ED16 | XC4008E-3-PG223 262 262 40.4 94.5 94.5
DES_EDS XC4013E-3-PG223 443 222 54.0 70.6 141.3
DES_ED/, XC4028EX-3-PG299 722 241 86.7 44.0 176.0

Table 8.1: Comparison of loop unrolled architectures

The design DES_EDS8 is 50% faster than DES_ED16 whereas the resource con-
sumption (in CLBs) increases by 69%. The design DES_ED/ is only 25% faster than
DES_EDS, the speed increase is only half as much as from the first unrolling. The
resource consumption increases by 63%.

The number of CLBs divided by the number of CLLUs indicates that the amount
of logic resources consumed per unrolled CLU is almost constant. The speed divided
by the number of CLUs shows that the speed for one CLU in the design DES_ED/
is less then half the speed of DES_ED16. From this we can see that the further we

unroll the design the lesser amount of speed-up we can gain.

8.2 Pipelining

We implemented two pipelined designs, DES_ED16x2 and DES_ED16z4. The design
DES_ED16x2 contains two CLUs and therefore 2 pipelines and the design DES_ED 16z
contains four CLUs and therefore 4 pipelines. The encryption or decryption of one
block of data takes in both cases 16 clock cycles. Table 8.2 compares both designs
with the design DES_ED16.

The speed divided by the number of CLUs shows that is stays almost constant for
all designs. The lower speed for the design DES_ED16x2 is caused by the lack of wiring
resources on the device which results in a less efficient design. This phenomenon is

further examined in Section 8.4.3.

CHAPTER 8. RESULTS 60
Min | Data Rate
Design Chip CLBs pSrL(iSU CLK | per CLU Diit;bfi:?:e
in ns in Mbit/s
DES_ED16 XC4008E-3-PG223 262 262 40.4 94.5 94.5
DES_ED16x2 | XC4013E-3-PG223 433 217 43.5 87.7 175.3
DES_ED16z4 | XC4028EX-3-PG299 741 185 39.7 96.0 384.0

Table 8.2: Comparison of pipelined architectures

The amount of logic resources consumed per implemented CLB is decreasing if we
create more pipelines. This is due to the fact that the control unit does not get more
complicated if we implement more pipelines. Also the multiplexers are implemented
only once.

It is interesting to compare the pipelined designs with the loop unrolled designs.
It can be seen that DES_ED16x2 is both faster and smaller than the loop unrolled
DES_EDS. The difference is even more dramatically if the DES_ED16z4 is compared
with the DES_ED/. DES_ED16 is more than twice as fast as DES_ED/ and utilizes

almost the same amount of CLBs.

8.3 Combination of Pipelining and Loop Unrolling

A design that contains loop unrolling as well as pipelining is in the simplest ver-
sion already as large as the largest designs we have implemented so far which were
DES_ED16x4 and DES_ED/. Therefore we implemented only the design DES_ED8z2
which contains 4 CLUs; 2 in each of the 2 pipelines. Table 8.3 compares this design
with DES_ED16x2 and DES_EDS.

It is not easy to compare this mixed design with the two other designs. The
minimum clock period shows that the time it takes for two CLUs (loop unrolled) to
execute in the design DES_EDS8z2 is faster than in the design DES_EDS. 1t is of
course slower, but surprisingly not much, than one CLU in the design DES_1622.

CHAPTER 8. RESULTS

Min | Data Rate

Design Chip CLBs | CLK | p. pipeline | D2t Rate
. . . in Mbit/s
in ns in Mbit/s

DES_ED8x2 XC4028EX-3-PG299 733 48.0 158.8 317.6

DES_ED16z2 | XC4013E-3-PG223 433 43.5 87.7 175.3

DES_EDS XC4013E-3-PG223 443 54.0 141.3 141.3

61

Table 8.3: Comparison of a combined architecture with others
8.4 Chip Dependencies

During implementation of our designs we experienced that the result of an implemen-

tation is depending on the chip parameters. These are investigated further here.

8.4.1 Chip Sizes

We implemented the design DES_ED16 on chips of three different sizes. Table 8.4

compares these implementations. The size of a chip is measured in number of CLBs.

Min
] . CLBs | CLBs Data Rate
Design Chip on Chip | used (_jLK in Mbit/s
1mn ns
DES_ED16 | XC4008E-3-PG223 324 262 40.4 94.5
DES_ED16 | XC4013E-3-PG223 576 262 41.8 91.2
DES_ED16 | XC4025E-3-PG223 1024 262 45.5 83.9

Table 8.4: Comparison of different chip sizes

The interesting result is that the bigger a chip is, the slower the design gets.
Even though a bigger chip provides more logic and routing resources, and the place
and route tool has an easier job of optimizing, the time it takes for data to prop-
agate through the chip is longer. The floor plans of the XC4025E-3-PG223 and

XC4008E-3-PG223 can be found in Appendix C.

CHAPTER 8. RESULTS 62

8.4.2 Speed Grades

The speed grade is defined by Xilinx as the time it takes for a signal to propagate
through one combinatorial level (see [15]). We implemented the design DES_MQP
for three different speed grades: -1, -2, and -3.

The Xilinx Timing Analyzer has a feature that enables the user to calculate the
minimum clock period for any selected speed grade based on a placed and routed
design. These results are unfortunately not comparable to the results we go when we
synthesized and placed and routed a design from scratch for a new speed grade. The

results presented in Table 8.5 are generated using the later approach.

Min
Design Chip ngja]::te CLBs (?LK Diit;/[b]i;/iste
in ns
DES_MQ@P | XC4013E-3-PG223 -3 294 | 409 93.3
DES_MQP | XC4013E-2-PG223 -2 294 36.5 104.6
DES_MQ@P | XC4013E-1-PG223 -1 294 29.3 130.1

Table 8.5: Comparison of different speed grades

The change of speed grades from -8 to -2 resulted in a 10% performance increase.

The change from -2 to -1 resulted in a further performance increase of 24%.

8.4.3 Device Families

The XC4000EX series offers almost twice the routing capacity of the XC4000E series
(see [14]). As seen in Section 8.2 the routing resources can influence the performance
of the design. To examine this further we implemented the design DES_ED16x4 on
the devices XC4025E-3-PG223 and XC4028EX-3-PG299. Table 8.6 compares the two
implementations.

This comparison shows clearly the influence of the wiring resources on the per-

formance of the design. The implementation on the XC4000EX family device is more

CHAPTER 8. RESULTS 63

Min
) . Chip Data Rate
Design Chip Family CLBs QLK in Mbit /s
1n ns
DES_ED16z4 | XC4025E-3-PG223 XC4000E 741 61.5 248.3
DES_ED16z4 | XC4028EX-3-PG299 | XC4000EX 741 39.7 384.0

Table 8.6: Comparison of different chip families

than 54% faster for our largest design. It is to be noted that both devices provide
the same amount of logic resources (CLBs).

Even tough the design DES_ED16z4 is our largest design, it is not the most
routing intensive. The most routing intensive design is DES_ED/; the Xilinx tools

were not able to place and route this design in the XC4025E-3-PG223 device.

8.5 Summary and Overview

Table 8.7 summarizes the results of all the implemented designs. Our fastest im-
plementation with loop unrolling is DES_ED/ with 176.0 Mbit/sec, the fastest
employing pipelines is DES_ED16z4 with 384.0 Mbit /sec.

CHAPTER 8. RESULTS 64
Min | Data Rate
Design Chip CLBs p(eer(isU CLK | per CLU Diit;bfitj‘:e
in ns in Mbit/s
DES16, vl.1 XC4013E-3-PG223 200 200 43.4 88.0 88.0
DES16, v1.2 | XC4013E-3-PG223 198 198 41.8 91.3 91.3
DES_MQP XC4013E-3-PG223 294 294 40.9 93.3 93.3
DES_MQP XC4013E-2-PG223 294 294 36.5 104.6 104.6
DES_MQP XC4013E-1-PG223 294 294 29.3 130.1 130.1
DES_ED16 XC4013E-3-PG223 262 262 41.8 91.2 91.2
DES_ED16 XC4025E-3-PG223 262 262 45.5 83.9 83.9
DES_ED16 XC4008E-3-PG223 262 262 40.4 94.5 94.5
DES_EDS XC4013E-3-PG223 443 222 54.0 70.6 141.3
DES_ED/ XC4028EX-3-PG299 722 241 86.7 44.0 176.0
DES_ED16z2 | XC4013E-3-PG223 433 217 43.5 87.7 175.3
DES_ED16z4 | XC4028EX-3-P(G299 741 185 39.7 96.0 384.0
DES_ED16z4 | XC4025E-3-PG223 741 185 61.5 62.1 248.3
DES_ED8x2 XC4028EX-3-PG299 733 184 48.0 79.4 317.6

Table 8.7: Complete table of all implemented architectures

Chapter 9

Conclusion

This chapter concludes the thesis. It lists some recommendations for the design of
DES on FPGAs and presents a summary of the results. Finally some recommenda-

tions for future work are given.

9.1 Design Recommendations

During our research and the implementation phase of the designs, we formulated some

recommendations for an efficient DES design on Xilinx FPGAs.

e S-Bozes should be implemented in ROM for maximum performance; a fast
implementation of the S-Boxes is crucial for the over-all performance of the

design.
e Permutations and erpansions are implemented using only wiring resources.

o Shift registers can be implemented using only wiring resources, or for decisive

and directional shifters a multiplexer.

e LogiBLOX ease the design entry and are already well optimized.

65

CHAPTER 9. CONCLUSION 66

We could also show that our technique of one-round sub-key precomputation results
in a faster design and enables us to generate sub-keys for encryption and decryption
at no performance penalty (as opposed to just generate sub-keys for encryption).

The split up of the design into small basic function blocks simplified design mod-
ifications. In order to create a new architecture we had to modify only some files.

Each new architecture needed a new control logic.

9.2 Summary of Results

We implemented all designs based on devices from Xilinx (see Section 7.1). Here are

our most important findings.

e Maximum speed: We achieved speeds of up to 384.0 Mbit/sec.

e Performance Comparison: If we compare the reported DES speeds for
ASICs (1600 Mbit/sec) [12] and Software (12 Mbit/sec) [12], with our best
result of 384.0 Mbit/sec we conclude that the speed-up factor from software to
FPGAs is 32.0, and from FPGAs to ASICs is 4.3.

We explored the architecture options loop unrolling and pipelining in detail for

FPGAs. Here are our most important results.

e Loop unrolling: With the first unrolling we gained 50% higher encryption
rate and used 69% more logic resources; with the second unrolling we gained
only 25% speed over the first unrolling and used 63% more logic resources.
Conclusion: the amount of logic resources consumed rises linearly, whereas

the speed increases much slower.

e Pipelining: With two pipelines we gained 86% more speed at the expense

of 65% more logic resources; with four pipelines we gained 120% more speed

CHAPTER 9. CONCLUSION 67

over two pipelines and used 71% more logic resources. This speed-up is a little
distorted due to the limited amount of wiring resources on the chip we imple-
mented the two pipeline design. Conclusion: the amount of logic resources

consumed rises linearly and the speed too.

e Combined Design: Results in a fast overall design. The result is a mixture

of both base designs this is comprised of.

Loop unrolling does not result in the highest speeds but it is can be used in any
mode of operation. Pipelined designs are faster but can only be used in modes which
are not based on a feedback of the result of DES or a derivation therefrom. A pipelined
design can therefore only be used in ciphers that employ ECB or counter mode (e.g.,
Counter Mode specified for ATM-networks). This holds also for the combined design
as it contains a pipeline.

If the pipelines are demultiplexed external to the FPGA a pipelined design com-
prising two pipelines could be used as two separate DES chips, and then every mode
of operation is possible within each pipeline.

The influence of Xilinx chip parameters is summarized below:
e Chip size: A bigger chip results in a slower design.

e Speed grades: A migration from a speed grade -8 to -2 results in a 10%

higher performance.

e Device family: The amount of routing resources on the chip is crucial for the

implementation.

9.3 Recommendations for Future Work

For this thesis we implemented DES just in ECB mode. It can be used in other

modes as well but at the expense of additional external hardware. It would be very

CHAPTER 9. CONCLUSION 68

interesting to explore the issues involved in enhancing this design so that it supports
all modes defined for DES within the same FPGA and its final speed.

Future work will also investigate applications for the designs presented here. In-
teresting areas would be ATM-encrypters and key-search machines. A natural ap-
plication area for our design would be encryption modules that provide algorithm
agility, i.e., encryption algorithm switch on-the-fly. A possible system might be a PC

plug-in board with fast bus interface which supports a variety of encryption schemes.

Appendix A

Simulation Script Files

RTL-level simulation requires that the used libraries are analyzed first, then all VHDL
source files and behavioural description of the LogiBLOX, and at the end the test
bench.

For past place and route simulation also the libraries have to be analyzed first,
then the time_sim.vhd file which comprises the whole back-annotated design, and at

the end the test bench.

A.1 RTL-Level Simulation Script

+H+

everything to get ready for the rtl-level simulation
#

Jens-Peter Kaps February 23rd, 1998
#

$Log: make_rtl_sim,v $

Revision 2.1 1998/02/25 03:09:18 kaps

#

#

#

#

#

updated for encrypt / decrypt des

Revision 1.1 1998/02/23 05:05:17 kaps
Initial revision

+H+

vhdlan -i ./rtl_sim/mvlutil.vhd \
./rtl_sim/mvlarith.vhd \

69

APPENDIX A. SIMULATION SCRIPT FILES

./rtl_sim/logiblox.vhd \
./logiblox/sox1l.vhd \
./logiblox/sox2.vhd \
./logiblox/sox3.vhd \
./logiblox/sox4.vhd \
./logiblox/sox5.vhd \
./logiblox/sox6.vhd \
./logiblox/sox7.vhd \
./logiblox/sox8.vhd \
./logiblox/reg32c.vhd \
./logiblox/regl6c.vhd \
./logiblox/reg8c.vhd \
./logiblox/mux321.vhd \
./logiblox/mux161.vhd \
./logiblox/mux81.vhd \
./src/sboxes.vhd \
./src/ebox.vhd \
./src/ipinv.vhd \
./src/ipnorm.vhd \
./src/la_rot.vhd \
./src/1m_rot.vhd \
./src/ra_rot.vhd \
./src/rm_rot.vhd \
./src/mux56.vhd \
./src/mux64.vhd \
./src/pbox.vhd \
./src/pclbox.vhd \
./src/pc2box.vhd \
./src/regh6.vhd \
./src/reg64.vhd \
./src/xormod.vhd \
./src/xormod48.vhd \
./src/ffunc.vhd \
./src/feistel.vhd \
./src/keygen.vhd \
./src/control.vhd \
./src/des.vhd \
./rtl_sim/testbench.vhd

A.2 Post Place and Route Simulation Script

vhdlan -i ./ppr_sim/simprim_Vcomponents.vhd \
./ppr_sim/simprim_Vpackage.vhd \
./ppr_sim/simprim_VITAL.vhd \
./time_sim.vhd \
./rtl_sim/testbench.vhd

70

APPENDIX A. SIMULATION SCRIPT FILES

afterwards invoke the simulator with the following command line:
#
vhdldbx -sdf_top testbench/uut -sdf time_sim.sdf CFG_TB &

71

Appendix B

Synthesis Script

This is the script file for Synopsys to synthesis the design DES_ED16 for the device

XC4013E-3-PG223.
K mm - *x/
/* Script file for Synopsys FPGA Compiler x/
/* targeting a XC4013E device using Logiblox for the S-Boxes */
K */
/* $Log $
*/
[k m */
/* Defining the Paths */
K m */
SRC_PATH = "src/"
DB_PATH = "db/"
DC_PATH = "dc/"

REPORT_PATH = “reports/“
SXNF_PATH = "sxnf/"
LOGI_PATH = "logiblox/"

K mm - *x/
/* Defining the Logiblox Elements No Need but..... */
K m */

SBOX1 = soxl

SB0OX2 = sox2

SBOX3 = sox3

SB0OX4 = sox4

SBOX5 = soxb

SBOX6 = sox6

SBOX7 = sox7

72

APPENDIX B. SYNTHESIS SCRIPT

SB0OX8 = sox8
REG8C = reg8c
REG16C = regl6c
REG32C = reg32c
MUX8L = MUX8L
MUX16L = MUX16L
MUX32L = MUX32L
K mm -
/* Name for the design’s top-level and other
K m
TOP = des
MODULS = module_pack
CONTROL = control
KEY1GEN = keylgen
FEISTEL = feistel
FFUNC = ffunc
K mm -

/* Name for the design’s modules containing Loginlox

K m
MUX56 = mux56
MUX64 = mux64
REGb56 = regb6
REG64 = regb4
SBOXES = sboxes
K mmm -
/* Low level modules (don’t contain other modules)
K mm -
EBOX = ebox
IPINV = ipinv
IPNORM = ipnorm
LAROT = la_rot
LMROT = Im_rot
RMROT = rm_rot
PBOX = pbox
PC1BOX = pclbox
PC2BOX = pc2box
XORMOD = xormod
X0RMOD48 = xormod48
K m
/* Design Group and Part Number
K mm -
designer = "Jens-Peter Kaps"
company = "WPI Crypto Group"

part = "4013EPG223-3"

73

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

APPENDIX B. SYNTHESIS SCRIPT

K mm - *x/

/* Analyze the Module Package x/

K mm - */
analyze -f vhdl -1ib WORK SRC_PATH + MODULS + ".vhd"

K m */

/* Analyze and elaborate the low level files first x/

K mm - *x/

analyze -f vhdl -1ib WORK SRC_PATH
analyze -f vhdl -1ib WORK SRC_PATH
analyze -f vhdl -1ib WORK SRC_PATH
analyze -f vhdl -1ib WORK SRC_PATH + LAROT
analyze -f vhdl -1ib WORK SRC_PATH + LMROT

+ +
+ IPINV +
+ +
+ +
+ +
analyze -f vhdl -1ib WORK SRC_PATH + RMROT + ".vhd"
+ +
+ +
+ +
+ +
+ +

IPNORM

analyze -f vhdl -1ib WORK SRC_PATH + PBOX
analyze -f vhdl -1ib WORK SRC_PATH + PC1BOX
analyze -f vhdl -1ib WORK SRC_PATH + PC2BOX
analyze -f vhdl -1ib WORK SRC_PATH + XORMOD
analyze -f vhdl -1ib WORK SRC_PATH + XORMOD48

elaborate EBOX
elaborate IPINV
elaborate IPNORM
elaborate LAROT
elaborate LMROT
elaborate RMROT
elaborate PBOX
elaborate PC1BOX
elaborate PC2B0X
elaborate XORMOD
elaborate XORMOD48

K mmm - */
/* Analyze and elaborate the design files containing Logiblox x/
K mmm - *x/
K m */
/* SBOXES */
K m */

analyze -f vhdl -1ib WORK SRC_PATH + SBOXES + ".vhd"

elaborate SBOXES

K m */
/* set don’t touch on LogiBLOX x/
K mmm - */

set_dont_touch find(cell, "MY_SBOX1")
set_dont_touch find(cell, "MY_SB0OX2")
set_dont_touch find(cell, "MY_SB0OX3")

APPENDIX B. SYNTHESIS SCRIPT

/*
/*

/*
/*
/%

/*
/ *
/ *

/ *
/ *
/*

/*
/*
/*

/*
/ *
/ *

/*
/ *

set_dont_touch find(cell, "MY_SB0X4")
set_dont_touch find(cell, "MY_SBOX5")
set_dont_touch find(cell, "MY_SBOX6")
set_dont_touch find(cell, "MY_SBOX7")
set_dont_touch find(cell, "MY_SB0OX8")

analyze -f vhdl -1ib WORK SRC_PATH + REG64 + ".vhd"

elaborate REG64

set_dont_touch find(cell, "LEFT_REG")
set_dont_touch find(cell, "RIGHT_REG")

analyze -f vhdl -1ib WORK SRC_PATH + REG56 + ".vhd"

elaborate REG56

set_dont_touch find(cell, "BUF_8")
set_dont_touch find(cell, "BUF_16")
set_dont_touch find(cell, "BUF_32")

analyze -f vhdl -1ib WORK SRC_PATH + MUX64 + ".vhd"

elaborate MUX64

set_dont_touch find(cell, "LEFT_MUX")
set_dont_touch find(cell, "RIGHT_MUX")

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

7

APPENDIX B. SYNTHESIS SCRIPT

/%
/ *
/ *

/ *
/*
/*

/ *
/*

/ *
/%
/*

/ *
/ *
/*

/ *
/ *
/*

/ *
/ *

analyze -f vhdl -1ib WORK SRC_PATH + MUX56 + ".vhd"

elaborate MUX56

set don’t touch on LogiBLOX

set_dont_touch find(cell, "MY_MUX_8")
set_dont_touch find(cell, "MY_MUX_16")
set_dont_touch find(cell, "MY_MUX_32")

Analyze and elaborate some more design files

analyze -f vhdl -1ib WORK SRC_PATH + FFUNC +
analyze -f vhdl -1ib WORK SRC_PATH + FEISTEL +
analyze -f vhdl -1ib WORK SRC_PATH + KEY1GEN + ".vhd"
analyze -f vhdl -1ib WORK SRC_PATH + CONTROL +
analyze -f vhdl -1ib WORK SRC_PATH + TOP +
elaborate FFUNC

elaborate FEISTEL

elaborate KEY1GEN

elaborate CONTROL
elaborate TOP

include timing and timing constraints

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

76

APPENDIX B. SYNTHESIS SCRIPT

/*
/*
/ *

/ *
/*

/ *
/ *
/ *

/ *
/ *
/*

/ *
/ *
/*

/ *
/ *
/ *

/ *
/ *
/ *

/*
/ *
/ *

create_clock clk -period 40

set_input_delay 5 -clock clk { all_inputs()}
set_output_delay 5 -clock clk { all_outputs()}
set_wire_load "4013e-3_avg"
set_operating_conditions WCCOM

Indicate top-level module ports that shoud become i/o pads

set_port_is_pad "x*"

set_pad_type -clock clk

set_pad_type -slewrate HIGH all_outputs()
insert_pads

report_fpga > REPORT_PATH + TOP + ".fpga"
report_timing > REPORT_PATH + TOP + ".timing"

Write-out the timing constraints that were applied earlier.

And flatten the hierarchy

77

APPENDIX B. SYNTHESIS SCRIPT

K m
ungroup -all -flatten
write_script > DC_PATH + TOP + ".dc"

/* Save design in XNF format as <design>.sxnf */
write -f xnf -h -o SXNF_PATH + TOP + ".sxnf"

K mmm -

/* Call synopsys to Xilinx contraints translator DC2NCF

[k m
sh dc2ncf DC_PATH + TOP + ".dc"

78

Appendix C

Floor Plans

79

APPENDIX C. FLOOR PLANS

File Edit Yiew Place Route Tools Scripts Macros Mizc Help

1l
Es
B

i

fl

i
=

3T

11
H
=]
m
=)
m]

dd

w

=) autoroute

=] = = |- o |l | |e [
= = a = i @ @ — o
5 o = — | = = = @ o
o] o - = @ o 1 =
=] o o | = =
=]] o

i
- edithlock
-f] info
O,
AT
[_-_:;j
"]

Y
Script playback completed, =
Initialization completed,

Copyright ¢cy 1995-1937 Xilinx, Inc, ALl rights reserved, J
EFIC M1,3.7 - ready for input] Fi

Figure C.1: Floor Plan of DES_ED16 on the Chip 4008E-3-PG191

APPENDIX C. FLOOR PLANS

File Edit Yiew Place Route Tools Scripts Macros Mizc Help

ool
o

=
=

| R

£ b .o o oo

ERLA
ERLAE
o oo
o oo
o dd
o qd

oo oo
0.0 oA
0.0 oA
000 o]
ol.8 o o
oo oo |

= S
BB .A A A

o [0 0] 5] -

d

o

o o |o w w @
@ @ — o B
= = o o .
@ o w = o+
o i 3 =
@ =

= = S e B H

E
d
d
d
d
=
—~
—
o
u

94
BRI
ddd
qdd
qgd
—_—
— -
— -
g olg
oolg

o glp B.o.o.o.g.a

autoroute

-
o
o
i
—
o,
o
=
-]
ol.o
ar]

]
fiaf

i

e nT ks | M = 15 Rl AR | & &
o

O Tl ;

. | edltblockl
b | | Bl

find |

. — hilite |
: el offo[4 2= =
W =t= BRI I B :

== IR G EEE info
ete i of @ gl aage

B route
O=r= e df o g el d s
T =)= o of|= (= Ci ol o offol g g oo

: 4 E! ! : suap
= = a| offafe effled o ffo | <= olegdagas
= = 5o o | olle ol o glffo] @ =

L ; E,_._,. "y . unroute

L1

Script playback completed,

Initialization completed,

Copyright ¢cy 1995-1937 Xilinx, Inc, ALl rights reserved,
EFIC M1,3.7 - ready for input]

|

Figure C.2: Floor Plan of DES_ED16 on the Chip 4025E-3-PG223

Appendix D
Timing Diagrams

This appendix shows the timing diagram of one full encryption in Appendix D.1 and
one full decryption in Appendix D.2. These timing diagrams are past place and route
and therefore show the actuall delays.

The clock period is set to 44ns. The scale on top of the diagrams is in pico seconds.
During state 0 the key gets loaded and during stage I the data. Data and key are
provided on the KEY_DATA_IN(63:0) bus. The result of the operation appears on the
DATAQUT(63:0) bus during the first stage of the next operation.

The test bench used to test the design and generate these diagrams is in Ap-

pendix E.

82

APPENDIX D. TIMING DIAGRAMS

D.1 Encryption

83

APPENDIX D. TIMING DIAGRAMS

0 50000 100000 150000 200
L ‘ I I S | ‘ L (.

B> KEY_DATA_IN(63:0)

B> DATAOUT(63:0)
CLK

B> MY_CTRL_CURR_ST(4:0)

ED

CE

KE

IE

ov

NOTGBLRESET

DATA_SEL

KEY_SEL

ED1

SFT

ST1

FEISTEL1_IN(63:0)

FEISTEL1_OUT(63:1)

SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

000000000

0012695BC9B7B7F8 ‘ 0123456789ABCDEF ‘

‘ 0000000000000000 ‘ 0404015555015455 ‘4472457288EEDDEA ‘9DA4CEE104BCEECOH

A s [e N e |

N R R |

|
I

I

I

]

l | |

FOAAFOA?EF4A6544 H EF4A654?CC017709 H

H 0000000700000000 H ‘ CCO0CCF?FOAAF0*

‘ H 000000006C6C6DDE mﬂ”‘l 7855785577A532A2 HHH 77A532A26600BB84 HHH 6600BB84D12E05FA HH

‘ 000000000000 ‘ 1B02EFFC7072 ‘ 79AED9DBCYES ‘ 55FC8A42CF99 H

‘000000000*

FOCCAAF556678F ‘ E19955FAACCF1E ‘ C332ABF5599E3D ‘ 0CCAAFF56678F5 H

‘000000000*

E19955FAACCF1E‘ C332ABF5599E3D H 0CCAAFF56678F5 ‘ 332ABFC599E3D5 H

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

2:19:55 Page 1,1 of 1,1

Figure D.1: Encryption with DES_FED16 on the Chip 4008E-3-PG191

84

APPENDIX D. TIMING DIAGRAMS

20000 250000
L ‘ (.

300000 350000 400
I I S | \\\\\\\‘\\\\\\\\\‘\\\\\\\\\

B> KEY_DATA_IN(63:0)

B> DATAOUT(63:0)
CLK

B> MY_CTRL_CURR_ST(4:0)

ED

CE

KE

IE

ov

NOTGBLRESET

DATA_SEL

KEY_SEL

ED1

SFT

ST1

FEISTEL1_IN(63:0)

FEISTEL1_OUT(63:1)

SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

0123456789ABCDEF ‘

2E4C9996194999C1 ‘ 49D8632862D26382 ‘ 93F5975081A59244 ‘77BA3EE502587SCC ‘AA74689E0'

[N e s N s N &

« | s [e [2 | e |

L

CCo1 770?AZSCOBF4H A25C0BF?77220045 ‘ 7722004?78A4FAB37 ‘8A4FA63?E967CD69 HE967CD6?0*

512E05FA3B910022 HHH 3B910022C527D31B HM 4527D31BF4B3E6B4 HHH 74B3E6B483255D08 HWOSZSS D086*

72ADD6DB351D ‘ 7CEC07EB53A8 ‘ 63A53E507B2F ‘ EC84B7F618BC ‘F78A3AC13‘

332ABFCS99E3D5‘ CCAAFF06678F55 ‘ 32ABFC399E3D55 ‘ CAAFF0C678F556 ‘ZABFCSSQE*

CCAAFF06678F55 ‘ 32ABFC399E3D55 ‘ CAAFF0C678F556 ‘ 2ABFC339E3D559 ‘%S7F86G3C*

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

2:21:39 Page 1,1 of 1,1

Figure D.2: Encryption with DES_FED16 on the Chip 4008E-3-PG191

85

APPENDIX D. TIMING DIAGRAMS

40000 450000
L ‘ (.

500000 550000 600
I I S | \\\\\\\‘\\\\\\\\\‘\\\\\\\\\

B> KEY_DATA_IN(63:0)

B> DATAOUT(63:0)
CLK

B> MY_CTRL_CURR_ST(4:0)

ED

CE

KE

IE

ov

NOTGBLRESET

DATA_SEL

KEY_SEL

ED1

SFT

ST1

FEISTEL1_IN(63:0)

FEISTEL1_OUT(63:1)

SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

0123456789ABCDEF ‘

AA7468*

54ACC03C4B187449 ‘ A80DD4399371BD86 ‘ 544FFC2277E33E5D ‘ EBBAEC15BF9779EA |D*

I N e e e e

8 ‘ 9 ‘ 10 ‘ 11

o
Lw |

J |

064ABA1?D5694B90 ‘ D5694B97247CC67A ‘247CC67?B7D5D782‘ B7D5D7B?C5783C78 ‘C"

E967CD"

*

03255D* 62BC1E3C3ADESC*

6AB4A5C8123E633D H‘H1 23E633 DSBEAEBDQHH 5BEAEBD962BC1E*

F78A3A* 9*

EODBEBEDE781 ‘ B1F347BA464F ‘ 215FD3DED386 ‘ 7571F59467E9

2ABFC3* 7*

557F8663C7AAB3 ‘ 55FE199F1EAACC ‘ 57F8665C7AAB33 ‘ 5FE19951EAACCF

557F866* F*

55FE199F1EAACC ‘ 57F8665C7AAB33 ‘ 5FE19951EAACCF H 7F866557AAB33C

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

2:22:36 Page 1,1 of 1,1

Figure D.3: Encryption with DES_ED16 on the Chip 4008E-3-PG191

86

APPENDIX D. TIMING DIAGRAMS

60000 650000 700000 750000 800

I I S | ‘ I I I S | ‘ I I S | ‘ I Sy S |
B> KEY_DATA IN(63:0) 0123456789ABCDEF ‘ 0000451338957377 FH E2D3C4B"
B> DATAOUT(63:0) DO00D83F7F7AE3* | B411A46BEFA09330 ‘ 29661D938E006274 ‘42D028220D05DOA8 ‘85E813540F0*

CLK
B> MY_CTRL_CURR_ST(4:0)
ED
CE
KE
IE
ov
NOTGBLRESET
DATA_SEL
KEY_SEL
ED1
SFT
ST1
FEISTEL1_IN(63:0)
FEISTEL1_OUT(63:1)
SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

I e N

14 ‘ 15 ‘ ‘ 1

I

-
L

.
|

| |

C5783C7?75BD18*| 75BD185?718C3155A ‘ 18C3155?C28C960D H C28C960743423234 ‘H FOAAQF5?00%
BADE8C2C0C61 BANH 0C618AAD61464B06 HHH 61464B06A1A1191A HHH 21A1191A05266CCA ||/100667F99D*
97C5D1FABA41 ‘ 5F43B7F2E73A ‘ BF918D3D3F0A ‘ CB3D8BOE17F5 ‘ 0B02679B49*
7F866557AAB33C ‘ FE19955EAACCF1 ‘ F866557AAB33C7 H" FOCCAAOAACCF00 ‘E1 995415599*
FE19955EAACCF1 m F866557AAB33C7 H FOCCAAF556678F HH E1995415599E01 ‘0332A83AB3*

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

2:31:24

Page 1,1 of 1,1

Figure D.4: Encryption with DES_ED16 on the Chip 4008E-3-PG191

87

APPENDIX D. TIMING DIAGRAMS

70000 750000 800000 850000 900

I I S | ‘ I I I S | ‘ I I S | ‘ Iy S |
B> KEY_DATA IN(63:0) 0123456789* | 0000451338957377 ‘ OF1E2D3C4B5A6978 ‘
B> DATAOUT(63:0) P9661D938E*| 42DC2B220D05SDOA8 ‘ 85E813540F0AB405 ‘ 4FOF6D685F4B2D79 ‘CBSEDACSBADH B

CLK
B> MY_CTRL_CURR_ST(4:0)
ED
CE
KE
IE
ov
NOTGBLRESET
DATA_SEL
KEY_SEL
ED1
SFT
ST1
FEISTEL1_IN(63:0)
FEISTEL1_OUT(63:1)
SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

H

18C3155?7C2" C28C960743423234 H‘ H FOAAOFS?OOCCFFSS‘OOCCFF3?BD9057F7 ‘BD9057F?2FF6AAE9‘

61464B06A1*

BF918D3D3*

CB3D8BOE17F5 ‘ 0B02679B49A5 69A659256A26 ‘ 45D48AB428D2

B

%

21A1191A05266CCA ﬂﬂﬂﬂm00667F99DECG2BFBHHH5ECSZBFBQ7FBSS74HHH 17FB5574D0BA05*
F866557AA" ‘

FOCCAAOAACCF00 ‘ E1995415599E01 C332A83AB33C02 ‘ 0CCAAOFACCFO00A ‘
FOCCAAF55* ‘

E1995415599E01 ‘ C332A83AB33C02 H 0CCAAQFACCFO00A ‘ 332A83CB33C02A

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

2:32:6 Page 1,1 of 1,1

Figure D.5: Enrcyption with DES_ED16 on the Chip 4008E-3-PG191

88

APPENDIX D. TIMING DIAGRAMS

D.2 Encryption

89

APPENDIX D. TIMING DIAGRAMS

1400000 1450000 1500000 1550000 160(

I I S | ‘ I I I S | ‘ | I I | ‘ Iy S |
B> KEY_DATA IN(63:0) OF1E2D3C4B5A6978 ‘001269580987B7F8 85E813540F0AB405 ‘
B> DATAOUT(63:0) BQD4AASQBB1¢ 22A91166726AFADO ‘5446260DF4COF4BS‘FQDD498AF884A97F‘81EC17110EOAEO'

CLK

MY_CTRL_CURR_ST(4:0)

ED

CE

KE

IE

ov

NOTGBLRESET

DATA_SEL

KEY_SEL

ED1

SFT

ST1

FEISTEL1_IN(63:0)

FEISTEL1_OUT(63:1)

SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

N e

16 ‘ 1 ‘ 2 ‘

|

C27B627?F8D40806 ‘ F8D4080?7BD1DF88 HH 0A4CD99743423234 ‘4342323?028C96‘k

179D5D9?C27%

613DB13CFC6*

7C6A04033DE8EFC4HH‘%DE8EFC44BC9D1 GBWmm 21A1191A61464B06 HHH 61464B068C618*

54438681D08# B691050A16B5 ‘ CA3D03B87032 CB3D8BOE17F5 ‘BF918D3D3FOA

I

1E1995415599% 78665505566780

FOCCAAF556678F ‘ F866557AAB33C7

786655055667*

FOCCAAOAACCF00 H‘H FOCCAAF556678F ‘ F866557AAB33C7 H FE19955EAACC*

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

4:41:1 Page 1,1 of 1,1

Figure D.6: Decryption with DES_ED16 on the Chip 4008E-3-PG191

90

APPENDIX D. TIMING DIAGRAMS

1600000 1650000 1700000 1750000 180¢

B> KEY_DATA_IN(63:0)

B> DATAOUT(63:0)
CLK

B> MY_CTRL_CURR_ST(4:0)

ED

CE

KE

IE

ov

NOTGBLRESET

DATA_SEL

KEY_SEL

ED1

SFT

ST1

FEISTEL1_IN(63:0)

FEISTEL1_OUT(63:1)

SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

85E813540F0AB405

B1*| 16992E634D0091B8 ‘ 78225897DF506330 ‘EOOOE43FBFBSD360 ‘D445D02A7FGBBGD5‘A88FFC+

I e I

| 1« [s [e [7]

n

|

C28C960?718C3155A ‘ 18C3155775BD1858 ‘ 75BD185?C5783C78 ‘CS78307?B7D5D7BZ ‘B7D5D7’<

@3"

617l 0C618AAD3ADESC™ || BADE8C2C62BC1E* || 62BC1E3C5BEAEB*

5BEAEBD91 23E633DHHH 123E6*

B*

5F43B7F2E73A ‘ 97C5D1FABA41 ‘ 7571F59467E9 ‘ 215FD3DED386 ‘B1F347*

F8

FE19955EAACCF1 ‘ 7F866557AAB33C ‘ 5FE19951EAACCF ‘ 57F8665C7AAB33 ‘55FE19*

FE*

7F866557AAB33C H 5FE19951EAACCF ‘ 57F8665C7AAB33 ‘ 55FE199F1EAACC ‘557F8G*

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

4:43:29 Page 1,1 of 1,1

Figure D.7: Decryption with DES_ED16 on the Chip 4008E-3-PG191

91

APPENDIX D. TIMING DIAGRAMS

1800000 1850000 1900000 1950000 200¢(

I I S | ‘ I I I S | ‘ I I S | ‘ Iy S |
B> KEY_DATA IN(63:0) 85E813540F0AB405 ‘
B> DATAOUT(63:0) AB8FFC11B*| 540EE83663B27E49 ‘ A85CC03C8724B886 ‘ 55B8946D0A59754C ‘ BB753DDA01A7BA"

CLK
B> MY_CTRL_CURR_ST(4:0)
ED
CE
KE
IE
ov
NOTGBLRESET
DATA_SEL
KEY_SEL
ED1
SFT
ST1
FEISTEL1_IN(63:0)
FEISTEL1_OUT(63:1)
SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

]

247CC67?7D5694B90 ‘ D5694B9?7064ABA10 ‘ 064ABA1?E967CD69 ‘E967CD6?8A4FA637

B7D5D7B?2*

123E633D6*

6AB4A5C803255D08 HHH 03255D0874B3E6B4 HM 74B3E6B4C527D31B HH>¢1527D31 BBB910022

B1F347BA4*

B5FE199F1E

557F8663C7AAB3 ‘ 2ABFC339E3D559 ‘ CAAFF0C678F556 ‘SZABFCSQQESDSS

EODBEBEDE781 ‘ F78A3AC13BFB ‘ EC84B7F618BC ‘ 63A53E507B2F ‘
557F8663C7* ‘

2ABFC339E3D559 H CAAFF0C678F556 ‘ 32ABFC399E3D55 ‘CCAAFF06678F55

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

4:45:52 Page 1,1 of 1,1

Figure D.8: Decryption with DES_ED16 on the Chip 4008E-3-PG191

92

APPENDIX D. TIMING DIAGRAMS

2000000 2050000 2100000 2150000 220¢(
I I N I | ‘ | S A | ‘ I I S) A | ‘ | N I | |-

B> KEY_DATA_IN(63:0) 85E813540F0AB405 0000451*
B> DATAOUT(63:0) | 63FAGBA0425A6188 ‘ 86E4931491E19341 ‘ 1D8C6669268666C2 ‘6E580DD2084CDDCO‘88818AB*

CLK ‘
B> MY_CTRL_CURR_ST(4:0) " 12 ‘ 13 ‘ 14 ‘ 15 ‘ 16 ‘

ED

CE

KE

IE

ov

NOTGBLRESET

DATA_SEL

KEY_SEL

ED1 H

SFT

\ | \ \
B> FEISTEL1_IN(63:0) *| 8A4FA63?777220045 H 7722004?A25C0BF4 H A25C0BF?CC017709 ‘ CC01770?EF4A6544 ‘EF4A654?+
B> FEISTEL1 OUT(63:1) ||| 3B910022D12E05FA HHH 512E05FAG600BB84 HH‘ B6600BB84F7A532A2 “HH 77A532A278557855 HH‘ 7855785"
B> SUBKEY1(47:0) " 7CECO7EB53A8 ‘ 72ADDBDB351D ‘ 55FC8A42CF99 ‘ 79AEDIDBCIES ‘1BOQEFF*
B> KEYGEN1_IN(55:0) ‘| CCAAFF06678F55 ‘ 332ABFC599E3D5 ‘ O0CCAAFF56678F5 ‘ C332ABF5599E3D [fFOCCAA"
B> KEYGEN1_OUT(55:0) || 332ABFC599E3D5 ‘ OCCAAFF56678F5 H C332ABF5599E3D M E19955FAACCF1E ﬂmﬂpoomw

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998 4:47:39 Page 1,1 of 1,1

Figure D.9: Decryption with DES_ED16 on the Chip 4008E-3-PG191

APPENDIX D. TIMING DIAGRAMS

2100000 2150000 2200000 2250000 230¢(

I I S | ‘ I I N | 11| ‘ I I S | ‘ Iy S |
B> KEY_DATA IN(63:0) 85E813540F0AB405 0000451338957377 ‘ FIDDA498AF884A97F ‘
B> DATAOUT(63:0) 1D8C666926866" 6E580DD2084CDDCO‘ 88818AB144DDEED5‘ 0123456789ABCDEF ‘A889190EF800*

CLK

MY_CTRL_CURR_ST(4:0)

ED

CE

KE

IE

ov

NOTGBLRESET

DATA_SEL

KEY_SEL

ED1

SFT

ST1

FEISTEL1_IN(63:0)

FEISTEL1_OUT(63:1)

SUBKEY1(47:0)

KEYGEN1_IN(55:0)

vV Vv vV VvV V

KEYGEN1_OUT(55:0)

I

14 ‘ 15 ‘

|

CC01770?EF4A6544 ‘ EF4A654?FOAAF0AA HH9793AZC?7BD1 DF88 ‘7BD1 DF8?F8D4|

A25C0BF?CCO1*

6600BB84F7A53*

77A532A278557855 HM 785578556600667F WHWSDE8EFC47CGAO4*

7C6A0403613*

55FC8A420F99‘ 79AED9DBCYES ‘ 1B02EFFC7072 ‘ CA3D03B87032 ‘8691050A1685

0CCAAFF56678* FOCCAAOAACCF00

C332ABF5599E3D H“ ‘78665505566780

C332ABF5599E*

E19955FAACCF1E ﬂm FOCCAAOAACCF00 ‘ 78665505566780 H1E1995415599*

/usr3/kaps/tw/vhdl/development /E.pike.WPI.EDU.21188.0ow

19/4/1998

4:48:34 Page 1,1 of 1,1

Figure D.10: Decryption with DES_ED16 on the Chip 4008E-3-PG191

94

Appendix E

Test Bench

—-- FPGA SIMULATOR Testbench for Design with LogibloX
-- FOR XC4000e PARTYPES using Xilinx M1.3
-- DES 16

-- Jens-Peter Kaps

-- $Log: testbench.vhd,v $

-- Revision 2.1 1998/02/25 03:25:38 kaps

-- modified for des encryption/decryption, full test

-- Revision 1.2 1998/0223 04:45:06 kaps
-- **%*x empty log message ***

1/17/98 --

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_textio.all;

-- Testbench Name is E
ENTITY E IS

END E;

-- Define Architecture AR

ARCHITECTURE AR OF E IS

95

APPENDIX E. TEST BENCH

-- Component Description

COMPONENT des PORT

(key_data_in :

dataout
clk

ed

ce

ke

ie

ov

NOTGBLRESET :

IN std_logic_vector(63 downto 0);
OUT std_logic_vector(63 downto 0);

IN std_logic;
IN std_logic;
IN std_logic;
0UT std_logic;
0UT std_logic;
0UT std_logic;
IN std_logic);

-- encryption / decryption
-- clock enable

-- key exspected

—-- input exspected

-- output valid

END COMPONENT;

-- Define the Signals

SIGNAL key_data_in :
SIGNAL dataout

std_logic_vector (63 downto 0);
std_logic_vector (63 downto 0);

SIGNAL clk std_logic;
SIGNAL ed std_logic;
SIGNAL ce std_logic;
SIGNAL ke std_logic;
SIGNAL ie std_logic;
SIGNAL ov : std_logic;
SIGNAL NOTGBLRESET : std_logic;

-- Instantiate the design for simulation

BEGIN
UUT : des PORT MAP (

key_data_in => key_data_in,

dataout => dataout,

clk => clk,

ed => ed, -- 0 = encryption, 1 = decryption
ce => ce, -- 0 = disabled (stop), 1 = enabled (run)
ke => ke,

ie => ie,

ov => ov,

NOTGBLRESET => NOTGBLRESET) ;

-- Start the simulation

96

APPENDIX E.

flow_proces

BEGIN

TEST BENCH 97

s: PROCESS

-- Start Values

key_data_in <=

ed <=
ce <=
clk <=

NOTGBLRESET <=
wait for 22 NS;
NOTGBLRESET <=

""00" ;
707;
707;
,0,;
,0,;

717;

-- Round INIT

START ENCRYPTION --

clk <=
wait for 2 NS;
key_data_in <=

ce <=
ed <=
wait for 20 NS;
clk <=

wait for 22 NS;

717;
""0000000000010010011010010101101111001001101101111011011111111000";
,1,;
,0,;

707;

-- Round 1

clk <=
wait for 2 NS;
key_data_in <=

ed <=
wait for 20 NS;
clk <=

wait for 22 NS;

717;

""0000000100100011010001010110011110001001101010111100110111101111";
,0,;

707;

-- Round 2

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 3

clk <= 17,

APPENDIX E. TEST BENCH

wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 4

clk <= 17,
wait for 22 NS;
clk <= 07;
wait for 22 NS;

-- Round 5

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 6

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 7

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 8

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 9

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 10

clk <= 17,

APPENDIX E. TEST BENCH

wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 11

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 12

clk <= 717,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 13

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 14

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 15

clk <= 717,
wait for 22 NS;

clk <= ’07;

wait for 22 NS;

-- Round 16 START 2nd ENCRYPTION

clk <= 17,
wait for 2 NS;

99

key_data_in <= "0000000000000000010001010001001100111000100101010111001101110111";

ed <= 707;
wait for 20 NS;
clk <= 707,

wait for 22 NS;

APPENDIX E. TEST BENCH 100

-— Round 1 -

clk <= 717,

wait for 2 NS;

key_data_in <= "0000111100011110001011010011110001001011010110100110100101111000";
wait for 20 NS;

clk <= ’07;

wait for 22 NS;

-— Round 2 -=
clk <= 17,

wait for 22 NS;

clk <= 707,

wait for 22 NS;

—-- Stop Machine for one clock cycle -

clk <= 717,
wait for 2 NS;
ce <= 707,
wait for 20 NS;
clk <= 707;

wait for 22 NS;

-— Round 3 -=
clk <= 17,

wait for 2 NS;

ce <= 717,

wait for 20 NS;

clk <= 707;

wait for 22 NS;

-- Round 4 --
clk <= 17,

wait for 22 NS;

clk <= ’07;

wait for 22 NS;

-— Round 5 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 6 __

APPENDIX E. TEST BENCH 101

clk <= 17,
wait for 22 NS;
clk <= ’07;

wait for 22 NS;

-— Round 7 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 8 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 9 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 10 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 11 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 12 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 13 __

APPENDIX E. TEST BENCH

clk <= 17,
wait for 22 NS;
clk <= ’07;

wait for 22 NS;

-- Round 14

clk <= 717,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 15

clk <= 17,
wait for 22 NS;

clk <= 707,

wait for 22 NS;

-- Round 16 START

DECRYPTION

clk <= 17,
wait for 2 NS;

102

key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";

ce <= 17,
ed <= 17,
wait for 20 NS;

clk <= 707,

wait for 22 NS;

-- Round 1

clk <= 717,
wait for 2 NS;

key_data_in <= "1000010111101000000100110101010000001111000010101011010000000101";

ed <= 707,
wait for 20 NS;
clk <= 07,

wait for 22 NS;

-- Round 2

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 3

APPENDIX E. TEST BENCH 103

clk <= 17,
wait for 22 NS;
clk <= ’07;

wait for 22 NS;

-— Round 4 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 5 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 6 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 7 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 8 --
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 9 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 10 __

APPENDIX E. TEST BENCH

clk <= 17,
wait for 22 NS;
clk <= ’07;

wait for 22 NS;

-- Round 11

clk <= 717,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 12

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 13

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 14

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 15

clk <= 17,
wait for 22 NS;

clk <= ’07;

wait for 22 NS;

-- Round 16 START 2nd

DECRYPTION

clk <= 17,
wait for 2 NS;

104

key_data_in <= "0000000000000000010001010001001100111000100101010111001101110111";

ed <= 717
wait for 20 NS;
clk <= 07,

APPENDIX E. TEST BENCH
wait for 22 NS;

-- Round 1

clk <= 17,

wait for 2 NS;

105

key_data_in <= "1111100111011101010010011000101011111000100001001010100101111111";

ed <=
wait for 20 NS;
clk <=

wait for 22 NS;

,0,;

707;

-- Round 2

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Stop Machine

for one clock cycle

clk <= 17,
wait for 2 NS;

ce <= 707,
wait for 20 NS;

clk <= ’07;
wait for 22 NS;

-- Round 3

clk <= 717,
wait for 2 NS;

ce <= 17,
wait for 20 NS;

clk <= 707,

wait for 22 NS;

-- Round 4

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 5

clk <= 17,
wait for 22 NS;
clk <= ’07;

APPENDIX E. TEST BENCH 106

wait for 22 NS;

-- Round 6 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 7 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 8 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 9 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 10 -
clk <= 17,
wait for 22 NS;
clk <= 07;
wait for 22 NS;

-— Round 11 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 12 -
clk <= 17,
wait for 22 NS;
clk <= ’07;

APPENDIX E. TEST BENCH

wait for 22 NS;

-- Round 13

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 14

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 15

clk <= 717,
wait for 22 NS;

clk <= ’07;

wait for 22 NS;

-- Round 16 ENCRYPTION

AGAIN

clk <= 17,
wait for 2 NS;

107

key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";

ce <= 717,
ed <= 707;
wait for 20 NS;

clk <= 707;

wait for 22 NS;

-- Round 1

clk <= 17,
wait for 2 NS;

key_data_in <= "0000000100100011010001010110011110001001101010111100110111101111";

ed <= 707;
wait for 20 NS;
clk <= 707;

wait for 22 NS;

-- Round 2

clk <= 17,
wait for 22 NS;
clk <= ’07;

APPENDIX E. TEST BENCH 108

wait for 22 NS;

-- Round 3 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 4 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 5 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 6 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 7 --
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 8 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 9 -
clk <= 17,
wait for 22 NS;
clk <= ’07;

APPENDIX E. TEST BENCH

wait for 22 NS;

-- Round 10

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 11

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 12

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 13

clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 14

clk <= 217,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-— Round 15

clk <= 717,
wait for 22 NS;

clk <= ’07;

wait for 22 NS;

-- Round 16 ENCRYPT

AGAIN

AND

RESET

clk <= 717,
wait for 2 NS;

109

key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";

APPENDIX E. TEST BENCH 110

ce <= 17,
ed <= 707,
wait for 20 NS;

clk <= 707,

wait for 22 NS;

-— Round 1 -=

clk <= 717,

wait for 2 NS;

key_data_in <= "0000000100100011010001010110011110001001101010111100110111101111";
ed <= 707,

wait for 20 NS;

clk <= 707,

wait for 22 NS;

-— Round 2 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 3 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Reset in the middle and decrypt this time --
clk <= 07

NOTGBLRESET <= ’07;

wait for 22 NS;

NOTGBLRESET <= ’17;

wait for 22 NS;

-— Round INIT START ENCRYPTION -

clk <= 717,

wait for 2 NS;

key_data_in <= "0000000000010010011010010101101111001001101101111011011111111000";
ce <= 17

ed <= 707;
wait for 20 NS;
clk <= 707,

wait for 22 NS;

APPENDIX E. TEST BENCH 111

-— Round 1 -=

clk <= 717,

wait for 2 NS;

key_data_in <= "0000000100100011010001010110011110001001101010111100110111101111";
ed <= 707,

wait for 20 NS;

clk <= 707,

wait for 22 NS;

-— Round 2 -=
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

-- Round 3 -
clk <= 17,
wait for 22 NS;
clk <= ’07;
wait for 22 NS;

END PROCESS flow_process;

END AR;

-- Configuration Statement --

configuration CFG_TB of E is
for AR
-- for UUT : LOGITEST
-- use configuration WORK.CFG_LOGITEST_BEHAVIORAL;
-= end for;
end for;
end CFG_TB;

Bibliography

1]

S.A. Vanstone A.J. Menezes and P.C Van Oorschot. Handbook of applied cryp-
tography. Discrete Mathematics and its Application. CRC Press, Florida, USA,
1997.

H. Eberle amd C.P. Thacker. A 1 Gbit/second GaAs DES chip. In Proceedings
of the IEEE 1992 Custom Integrated Circuits Conference, pages 19.7/1 4, New
York, NY, USA, 1992. IEEE, IEEE.

A.G. Broscius and J.M. Smith. Exploiting parallelism in hardware implementa-
tion of the DES. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO
"91. Proceedings, number 576 in Lecture Notes in Computer Science, pages 367

376, Berlin, Germany, 1992. Int. Assoc. Cryptologic Res, Springer-Verlag.

I. Eslick J. Brown E. Tau, D. Chen. A first generation DPGA implementation.
In FPD’95 — Third Canadian Workshop of Field-Programmable Devices, page 7,
1995.

H. Eberle. A high-speed DES implementation for network applications. In E.F.
Brickell, editor, Advances in Cryptology - CRYPTO °92. 12th Anual Interna-
tional Cryptology Conference Proceedings, Lecture Notes in Computer Science,

pages 521 539, Berlin, Germany, 1993. Springer-Verlag.

112

BIBLIOGRAPHY 113

[6]

[10]

[11]

[12]

[13]

J. Goubert F. Hoornaert and Y. Desmedt. FEfficient hardware implementation
of the DES. In G.R. Blakley and D. Chaum, editors, Advances in Cryptology:
Proceedings of CRYPTO’8/, number 196 in Lecture Notes in Computer Science,
pages 147 173, Berlin, Germany, 1985. International Association for Cryptologic
Research, Springer-Verlag.

G.M. Haskins. Securing asynchronous tranfer mode networks. Masters thesis,

WPI, Worcester, Massachusetts, USA, May 1997.

J. Vandewalle 1. Verbauwhede, F. Hoornaert and H.J. De Man. Security and
performance optimization of a new DES data encryption chip. IEEE Journal of

Solid-State Circuits, 23(3):647 656, June 1988.

J. Leonard and W.H. Magione-Smith. A case study of partially evaluated hard-
ware circuits: keyspecific DES. In P.Y.K. Cheung W. Luk and M. Glesner, ed-
itors, Field-programmable Logic and Applications. 7th International Workshop,
FPL ’97, Berlin, Germany, 1997. Springer-Verlag.

T. McCall. Dataquest reports 82 million computers will be connected to the

internet this year. http://www.dataquest.com, August 1997.

A. Matusevich R.C. Fairfield and J. Plany. An LSI digital encryption processor.
In G.R. Blakley and D. Chaum, editors, Advances in Cryptology: Proceedings
of CRYPTO’8}, number 196 in Lecture Notes in Computer Science, pages 115
143, Berlin, Germany, 1985. International Association for Cryptologic Research,
Springer-Verlag.

B. Schneier. Applied Cryptography Second Edition: protocols, algorithms, and
source code in C. Wiley & Sons, New York, USA, 2nd edition, 1996.

D.R. Stinson. Cryptography: Theory and Practice. Discrete Mathematics and
its Applications. CRC Press, Florida, USA, 1995.

BIBLIOGRAPHY 114

[14] Xilinx, San Jose, California, USA. The Programmable Logic Data Book, 1996.

[15] Xilinx, San Jose, California, USA. Xilinz University Program Workshops, 1997.

