An Optimized Hardware Architecture for the
Montgomery Multiplication Algorithm

Miaoqing Huang!, Kris Gaj?, Soonhak Kwon?, and Tarek El-Ghazawi'

! The George Washington University, Washington, DC 20052, USA
{mghuang, tarek}0gwu.edu
2 (George Mason University, Fairfax, VA 22030, USA
kgajOgmu.edu
3 Sungkyunkwan University, Suwon 440-746, Korea
shkwon@skku.edu

Abstract. Montgomery modular multiplication is one of the fundamen-
tal operations used in cryptographic algorithms, such as RSA and Ellip-
tic Curve Cryptosystems. At CHES 1999, Tenca and Kog introduced a
now-classical architecture for implementing Montgomery multiplication
in hardware. With parameters optimized for minimum latency, this archi-
tecture performs a single Montgomery multiplication in approximately
2n clock cycles, where n is the size of operands in bits. In this paper we
propose and discuss an optimized hardware architecture performing the
same operation in approximately n clock cycles with almost the same
clock period. Our architecture is based on pre-computing partial results
using two possible assumptions regarding the most significant bit of the
previous word, and is only marginally more demanding in terms of the
circuit area. The new radix-2 architecture can be extended for the case of
radix-4, while preserving a factor of two speed-up over the corresponding
radix-4 design by Tenca, Todorov, and Kog¢ from CHES 2001. Our archi-
tecture has been verified by modeling it in Verilog-HDL, implementing
it using Xilinx Virtex-II 6000 FPGA, and experimentally testing it using
SRC-6 reconfigurable computer.

Keywords: Montgomery Multiplication, MWR2MM Algorithm, Field
Programmable Gate Arrays

1 Introduction

Since the introduction of the RSA algorithm [1] in 1978, high-speed and space-
efficient hardware architectures for modular multiplication have been a subject
of constant interest for almost 30 years. During this period, one of the most
useful advances came with the introduction of Montgomery multiplication algo-
rithm due to Peter L. Montgomery [2]. Montgomery multiplication is the basic
operation of the modular exponentiation, which is required in the RSA public-
key cryptosystem. It is also used in Elliptic Curve Cryptosystems, and several
methods of factoring, such as ECM, p-1, and Pollard’s “rho” method, as well as
in many other cryptographic and cryptanalytic transformations [3].

At CHES 1999, Tenca and Kog¢ introduced a scalable word-based archi-
tecture for Montgomery multiplication, called a Multiple-Word Radix-2 Mont-
gomery Multiplication (MWR2MM) [4, 5]. Several follow-up designs based on
the MWR2MM algorithm have been published to reduce the computation time
[6-8]. In [6], a high-radix word-based Montgomery algorithm (MWR2¥MM) was
proposed using Booth encoding technique. Although the number of scanning
steps was reduced, the complexity of control and computational logic increased
substantially at the same time. In [7], Harris et al. implemented the MWR2MM
algorithm in a quite different way and their approach was able to process an n-bit
precision Montgomery multiplication in approximately n clock cycles, while keep-
ing the scalability and simplicity of the original implementation. In [8], Michalski
and Buell introduced a MWRKMM algorithm, which is derived from The Finely
Integrated Operand Scanning Method described in [9]. MWRKMM algorithm re-
quires the built-in multipliers to speed up the computation and this feature
makes the implementation expensive. The systolic high-radix design by Mclvor
et al. described in [10] is also capable of very high speed operation, but suffers
from the same disadvantage of large requirements for fast multiplier units. A
different approach based on processing multi-precision operands in carry-save
form has been presented in [11]. This architecture is optimized for the minimum
latency and is particularly suitable for repeated sequence of Montgomery multi-
plications, such as the sequence used in modular exponentiations (e.g., RSA).

In this paper, we focus on the optimization of hardware architectures for
MWR2MM and MWR4MM algorithms in order to minimize the number of clock
cycles required to compute an n-bit precision Montgomery multiplication. We
start with the introduction of Montgomery multiplication in Section 2. Then, the
classical MWR2MM architecture is discussed and the proposed new optimized
architecture is demonstrated in Section 3. In Section 4, the high-radix version
of our architecture is introduced. In Section 5, we first compare our architec-
ture with three earlier architectures from the conceptual point of view. Then,
the hardware implementations of all discussed architectures are presented and
contrasted with each other. Finally, in Section 6, we present the summary and
conclusions for this work.

2 Montgomery Multiplication Algorithm

Let M > 0 be an odd integer. In many cryptosystems, such as RSA, computing
XY (mod M) is a crucial operation. Taking the reduction of XY (mod M) is a
more time consuming step than the multiplication X -Y without reduction. In [2],
Montgomery introduced a method for calculating products (mod M) without
the costly reduction (mod M), since then known as Montgomery multiplication.
Montgomery multiplication of X and Y (mod M), denoted by M P(X,Y, M),
is defined as X - Y - 27" (mod M) for some fixed integer n.

Since Montgomery multiplication is not an ordinary multiplication, there is
a process of conversion between the ordinary domain (with ordinary multiplica-
tion) and the Montgomery domain. The conversion between the ordinary domain

Table 1. Conversion between Ordinary Domain and Montgomery Domain

Ordinary Domain H<:>H Montgomery Domain
X - X' =X-2" (mod M)
Y — Y' =Y -2" (mod M)
XY —~ (X Y)=X-Y 2" (mod M)

Algorithm 1 Radix-2 Montgomery Multiplication
Require: odd M,n = |log, M| +1,X ="' a; -2, with0< X, Y < M
Ensure: Z=MP(X,Y,M)=X Y -27" (mod M),0< Z < M

: S[0)=0

1

2: for i =0ton—1step 1 do

3 qz':SMOEBwi'YO

4 Si+1)= (St +zi - Y +¢q-M)div 2
5: end for

6: if (S[n] > M) then

7 S[n] = S[n] - M

8: end if

9: return Z = S[n|

and the Montgomery domain is given by the relation X «— X’ with X/ = X .27
(mod M), and the corresponding diagram is shown in Table 1.

The Table 1 shows that the conversion is compatible with multiplications in
each domain, since

MPX')Y' M)=X'-Y' - 27"=(X-2") (Y -2"). 27" (1a)
=X.Y -2"=(X-Y) (mod M). (1b)

The conversion between each domain can be done using the same Montgomery
operation, in particular X’ = M P(X, 22" (mod M), M) and X = MP(X',1, M),
where 22" (mod M) can be precomputed. Despite the initial conversion cost, if
we do many Montgomery multiplications followed by an inverse conversion, as
in RSA, we obtain an advantage over ordinary multiplication.

Algorithm 1 shows the pseudocode for radix-2 Montgomery multiplication,
where we choose n = |logy M| + 1, which is the precision of M.

The verification of the above algorithm is given below: Let us define S[i] as

S[i]z% S w2 | Y (mod M) 2)
=0

Algorithm 2 The Multiple-Word Radix-2 Montgomery Multiplication Algo-
rithm
Require: odd M,n = |log, M| + 1, word size w, e = ("1‘;1], X = 22:01 x; - 24,
Y =3 YW .ijf', M = STo MY 2w with 0 < XY < M
Ensure: Z =3 52,8 .29 = MP(X,Y,M)=X-Y -27" (mod M),0< Z <2M
:5=0 — initialize all words of S
: fori=0ton—1step 1 do
i = (i - Y)) @ S5
(C(l)7 S(O)) =z, - YO 44 - MO 45O
for j=1toe—1step1do
(C(j-&-l)7 S(i)) =W + o Y@ +q M@ + S
SUY = (¢, 87720
end for
s = (€57, 5,70
10: end for
11: return Z = S

S BRI A S ol vy

©

with S[0] = 0. Then, S[n] =X -Y -2™" (mod M) = MP(X,Y, M). Thus, S[n]
can be computed iteratively using dependence:

i—1

_ 1 [: 1 , ;

S[Z—I-I]EF ij-Qj ~YE2Z.+1 Zazj-2j+xi~2 Y (3a)

=0 =0
11 [1
=5 | % jzzjomj-Qj Y4, Y E§(S[i]+l‘i-Y) (mod M).
(3b)
Therefore depending on the parity of S[i] + z; - Y, we compute S[i + 1] as

) +a;- Y 1 4a; Y+ M

S[z’+1}:5[l]+2‘” or S[’]”2 M (4)

to make the numerator divisible by 2. Since Y < M and S[0] = 0, one has
0 < S[i] < 2M for all 0 < i < n. Thus only one conditional subtraction is
necessary to bring S[n| to the required range 0 < S[n] < M. This subtraction
will be omitted in the subsequent discussion since it is independent of the specific
algorithm and architecture and can be treated as a part of post processing.

3 Optimizing MWR2MM algorithm

In [4], Tenca and Kog proposed a scalable architecture based on the Multiple-
Word Radix-2 Montgomery Multiplication Algorithm (MWR2MM), shown as
Algorithm 2.

In Algorithm 2, the operand Y (multiplicand) is scanned word-by-word, and
the operand X is scanned bit-by-bit. The operand length is n bits, and the

Fig. 1. The data dependency graph for original architecture of the MWR2MM Algo-
rithm

wordlength is w bits. e = [%1 words are required to store S since its range
is [0,2M — 1]. The original M and Y are extended by one extra bit of 0 as the
most significant bit. Presented as vectors, M = (M=D .. MM MOy =
(Ye=b yW yOy g = (s=b M 5O X = (z,_1,...,21,20).
The carry variable CY) has two bits, as shown below. Assuming C(® = 0,
each subsequent value of CU+1) is given by (CU*D, §0U)) = CU) 4 g, . Y) +
qi - M) + SU) | Assuming that CVY) < 3, we obtain (CU*TD, §0U)) = CU) 4 g, -
YO g MW 480) <343.(2% —1) =3-2% <2v2 1, and thus CU+D < 3.
Thus, by induction, CW) < 3 for any 0 < j <e.

The dependency graph for the MWR2MM algorithm is shown in Figure 1.
Each circle in the graph represents an atomic computation and is labeled accord-
ing to the type of action performed. Task A consists of computing lines 3 and 4
in Algorithm 2. Task B consists of computing lines 6 and 7 in Algorithm 2. The
computation of each column ends with Task C' consisting of line 9 of Algorithm
2.

The data dependencies between operations within the loop for j makes it
impossible to execute the steps in a single j loop in parallel. However, parallelism
is possible among executions in different 4 loops. In [4], Tenca and Kog suggested

Fig. 2. The data dependency graph of the proposed new architecture of MWR2MM
Algorithm.

that each column in the graph may be computed by a separate processing element
(PE), and the data generated from one PE may be passed into another PE in
a pipelined fashion. Following this way, all atomic computations represented by
circles in the same row can be processed concurrently. The processing of each
column takes e + 1 clock cycles (1 clock cycle for Task A, e — 1 clock cycles
for Task B, and 1 clock cycle for Task C). Because there is a delay of 2 clock
cycles between processing a column for x; and a column for x;;;, the minimum
computation time 7' (in clock cycles) is T = 2n + e — 1 given Ppq, = [<EL]
PEs are implemented to work in parallel. In this configuration, after e + 1 clock
cycles, PE#0 switches from executing column 0 to executing column Py, ,.. After
additional two clock cycles, PE#1 switches from executing column 1 to executing
column P,,,. + 1, etc.

The only option for improving the performance of Algorithm 2 seems to
reduce the delay between the processing of two i loops that are next to each other.
Here we present a new data dependency graph of MWR2MM algorithm in Figure
2. The circle in the graph represents an atomic computation. Task D consists of
three steps, the computation of ¢; corresponding to line 3 of Algorithm 2, the
calculation of Equations 5a and 5b with j = 0 and C'(®) = 0, and the selection
between two sets of results from Equations 5a and 5b using an additional input

S(gj ™) which becomes available at the end of the processing time for Task D.

€OV 509 1,89, o) = (1,89, 1)+ CYD + ;- YD) 4 ;- MU (5a)

w—1» w—1..

(C'E(J'Jrl)7 SEq(ﬂjlla Sglz.o) = (0, Sgll..l) +C9D 42, YD 4 g MO (5b)

Algorithm 3 Pseudocode of the processing element PE#j of type E
Require: Inputs: g;, z;, C9, YD M), Séjﬂ)
Ensure: Output: CU+Y), S(()])

1: (COUHY, 500),,8,)5 0) = (1,50) 1) + €V i - Y g - MO
2: (CE(j_JrD’SE?SJJllrSSEQHO) = (0, Sv(jllul) +CY 2 YO + qi - MO
3: if (S(()J“) =1) then

4: cU+h) — coU+D

5: S0 = (Sofj)—hsglz.o)
6

7
8
9

: else
cU+Y) — cpU+D)

S = (SEL,, S5)

w—1»

: end if

Task E corresponds to the calculation of Equations 5a and 5b, and the selection
between two sets of results using an additional input S(()] *1 The feedback in
the new graph is used for making the selection in the last step of Tasks D and
E, and will be discussed in detail as we proceed. Similar to the previous graph,
the computation of each column in Figure 2 can be processed by one separate
PE. However there is only one clock cycle latency between the processing of two
adjacent columns in the new data dependency graph.

The two data dependency graphs map the Algorithm 2 following different
strategies. In Figure 1, each column maps to one single i loop and covers all the
internal j loops corresponding to this 7 loop. In contrast, each column in Figure
2 maps to one single j loop and covers this particular part of all external ¢ loops.

Following the data dependency graph in Figure 2, we present a new hardware
architecture of MWR2MM algorithm in Figure 3, which can finish the compu-
tation of Montgomery multiplication of n-bit precision in n 4+ e — 1 clock cycles.
Furthermore, our design is simpler than the approach given in [4] in terms of
control logic and data path logic.

As shown in Figure 3(d), the architecture consists of e PEs that form a
computation chain. Each PE focuses on the computation of a specific word in
vector S, i.e., PE #j only works on SU). In other words, each PE corresponds to
one fixed round in loop for j in Algorithm 2. Meanwhile, all PEs scan different
bits of operand X at the same time.

In order to avoid an extra clock cycle delay due to the right shift, each PE#j
first computes two versions of CU*+1) and S’Szl simultaneously, as shown in

Equations 5a and 5b. One version assumes that S(gj) g equal to one, and the
other assumes that this bit is equal to zero. Both results are stored in registers,
and the bit S((,]) is forwarded to the previous stage, j — 1. At the same moment,
the bit S(()] D becomes available and PE#j can output the correct CU*t1) and
use the correct SU). These computations are summarized by the pseudocode
given in Algorithm 3.

The internal logic of all PEs is same except the two PEs residing at the head
and tail of the chain. PE#0, shown in Figure 3(a) as the cell of type D, is also

(@)

Y{e—1) M(e—1)

vy

PE
t#e-1

|
i
|
1 co®,
3 =
i Combinational |50’ @, &
| 5 (0) &
| logic SE et %
! =
} S" Vzg
! >
|
|
| ¢
R B .
Xi
i % M(/)
w w
(b)]
:] —
| co i
| CE] 5
| Combinational | gx-))
c? ! e
A logic SE' Pt %
I ' =
| S Oz
! >
|
| L
| t
R B W
Xi
q yie) et
w w
(0) i i ;
+ |
| 4 4 o !
| |
i i
! c'@ B c !
! Combinational) !
C(E-U I Q. |
T . %) !
! 2 logic se) gl s !
= |
| |
| |
| T |
1 b (€905 :
R 2 A — |
(e-1)
X \S
(d) Shift Register (1-bit wide and (e-1)-bit deep) for storing q
YOMOg, qa| YO MO g YO M7 G YO MO Qi-e+1
vy vy vy vy Y
P E S(1)0 P E S(Z)o P E s(fi)o 80)0 P E 'S(jH) .S(E»U
#0 c #1 c? #2 c¥ see=- ¢l # gt === g
(0) (1) (2)
Xi ‘S Xi-1 ‘S Xi-2 ls Txr’-/ ls")
i»‘ Shift Register (1-bit wide and e-bit deep) for storing x

Xi-e+1)

Fig. 3. (a)The internal logic of PE#0 of type D. (b)The internal logic of PE#j of type
E. (c)The internal logic of PE#e — 1 of type F. (d)New hardware architecture of the
MWR2MM algorithm.

responsible for computing ¢; and has no C'¥) input. PE#(e —1), shown in Figure
3(c) as type F, has only one branch inside because the most significant bit of

S(e=1) is equivalent to C(()e) and is known already at the end of the previous clock
cycle (see line 9 of Algorithm 2).

Two shift registers parallel to PEs carry x; and ¢;, respectively, and do a right
shift every clock cycle. Before the start of multiplication, all registers, including
the two shift registers and the internal registers of PEs, should be reset to zeros.
All the bits of X will be pushed into the shift register one by one from the head
and followed by zeros. The second shift register will be filled with values of g;
computed by PE#0 of type D. All the registers can be enabled at the same time
after the multiplication process starts because the additions of Y and M)
will be nullified by the zeros in the two shift registers before the values of zy and
qo reach a given stage.

Readers must have noticed that the internal register of PE #7 keeps the value
of SU) that should be shifted one bit to the right for the next round calculation.
This feature gives us two options to generate the final product.

1. We can store the contents of Sl(usz.o clock cycle by clock cycle after PE #0
finishes the calculation of the most significant bit of X, i.e. after n clock
cycles, and then do a right shift on them, or

2. We can do one more round of calculation right after the round with the most
significant bit of X. To do so, we need to push one bit of “0” into two shift
registers to make sure that the additions of YU) and M) are nullified. Then
we go to collect the contents of 51(521..0 clock cycle by clock cycle after PE
#0 finishes its extra round of calculation. We concatenate these words to
form the final product.

After the final product is generated, we have two methods to collect them.
If the internal registers of PEs are disabled after the end of computation, the
entire result can be read in parallel after n + e — 1 clock cycles. Alternatively,
the results can be read word by word in e clock cycles by connecting internal
registers of PEs into a shift register chain.

The exact way of collecting the results depends strongly on the application.
For example in the implementation of RSA, a parallel output would be preferred,
while in the ECC computations, reading results word by word may be more
appropriate.

4 High-Radix Architecture of Montgomery Multiplication

The concepts illustrated in Figure 2 and 3 can be adopted to design high-radix
hardware architecture of Montgomery multiplication. Instead of scanning one bit
of X, several bits of X can be scanned together for high-radix cases. Assuming
we want to scan k bits of X at one time, 2% branches should be covered at the
same time to maximize the performance. Considering the value of 2* increases
exponentially as k increments, the design will become impractical beyond radix-
4.

Algorithm 4 The Multiple-Word Radix-4 Montgomery Multiplication Algo-
rithm
Require: odd M,n = [log, M] + 1, word size w, e = [2H], X = Z[A0 -4
Y =350 YWeowd M =30 MY 2Y with 0 < X, Y < M
Ensure: Z =3 5", 8% .2¥7 = MP(X,Y,M)=X-Y -27" (mod M),0< Z < 2M
1 S5=0 — initialize all words of S
forz—Otonflstep2d0 _ _
g = Func(S(O) Yl(o) M(O)) — ¢ and =9 are 2-bit long
(C(l) 5@y = 50 —|—x(” YO 1 g . p© — Cis 3-bit long
for j=1toe—1step1ldo
(CUHY 8y = ¢ 4 g0 4 2 .y () 4 gD ppO)
SO = (570,877)s)
end for
e— e e—1
570 = ({7, 5,71 2)
10: end for
11: return Z =S

©

Following the same definitions regarding words as in Algorithm 2, we have
the radix-4 version of Montgomery multiplication shown as Algorithm 4. We
scan two bits in one step this time instead of one bit as in Algorithm 2. The
radix-4 version design still has e PEs working parallel but it takes 5§ +e—1 clock
cycles to process n-bit Montgomery multiplication.

The value of ¢(*) at line 3 of Algorithm 4 is defined by a function involving
Sg%, 20, Y(O) ndMl()0 such that the Equation 6 is satisfied. The carry variable
C has 3 blts Wthh can be proven in a similar way to the proof for the size of
CU) for the case of radix 2.

S+ 2@ (% +¢@ - M% =0 (mod 4) ()
Since M is odd, Méo) = 1. From Equation 6, we can derive
T 0 7 0
=50 @ (2 - ¥5") (7)

where :U) and a0 () denote the least significant bit of z(* and ¢(* respectively.

The bit q(Y is a function of only seven one-bit variables and can be computed
using a relatively small look-up table.

The multiplication by 3, necessary to compute (9 - Y (0) and ¢ - M) can
be done on the fly or avoided by using Booth recoding as discussed in [6]. Using
the Booth recoding would require adjusting the algorithm and architecture to
deal with signed operands.

Furthermore we can generalize Algorithm 4 to handle MWR2*MM algorithm.
In general, (" and ¢ are both k-bit variables. () is a k-bit digit of X, and
¢ is defined by Equation 8.

SO 4 0y O 4 ¢® . A0 =0 (mod 2¥) (8)

Nevertheless the implementation of this architecture for £ > 2 would be imprac-
tical in majority of applications.

5 Hardware Implementation and Comparison of Different
Architectures

In this section, we compare and contrast four major types of architectures for
Montgomery multiplication from the point of view of the number of PEs and
latency in clock cycles. In the architecture by Tenca and Kog, the number of
PEs can vary between one and P4, = f%’l]. The larger the number of PEs the
smaller the latency, but the larger the circuit area, which allows the designer to
choose the best possible trade-off between these two requirements. The architec-
ture of Tenca and Kog is often referred as a scalable architecture. Nevertheless,
the scalability of this architecture is not perfect. In order to process operands
with different number of bits, the sizes of shift registers surrounding process-
ing units must change, and the operation of the internal state machines must
be modified, which makes it impractical to utilize the same circuit for different
operand sizes.

The architecture by Harris et al. [7] has the similar scalability as the original
architecture by Tenca and Kog [4]. Instead of making right-shift of the interme-
diate SU) values, their architecture left-shifts the Y and M to avoid the data
dependency between SU) and SU~1). For the number of processing elements
optimized for minimum latency, the architecture by Harris reduces the number
of clock cycles from 2n + e — 1 (for Tenca and Kog [4]) to n + 2e — 1. Similar
to the original architecture, changing n or w requires changes in the sizes of
shift registers and/or memories surrounding processing units, and the operation
of the internal state machines, which makes it impractical to utilize the same
circuit for different operand sizes.

Our architecture and the architecture of Mclvor et al. both have fixed size,
optimized for minimum latency. Our architecture consists of e processing units,
each operating on operands of the size of a single word. The architecture of
Mclvor et al. consists of just one type of the processing unit, operating on multi-
precision numbers represented in the carry-save form. The final result of the
Mclvor architecture, obtained after n clock cycles is expressed in the carry-save
form. In order to convert this result to the non-redundant binary representa-
tion, additional e clock cycles are required, which makes the total latency of this
architecture comparable to the latency of our architecture. In the sequence of
modular multiplications, such as the one required for modular exponentiation,
the conversion to the non-redundant representation can be delayed to the very
end of computations, and thus each subsequent Montgomery multiplication can
start every n clock cycles. The similar property can be implemented in our ar-
chitecture by starting a new multiplication immediately after the first processing
unit, PE#0, has released the first least significant word of the final result.

Our architecture is scalable in terms of the value of the word size w. The
larger w, the smaller the maximum clock frequency. The latency expressed in

the number of clock cycles is equal to n + [((n + 1)/w)] — 1, and is almost
independent of w for w > 16. Since actual FPGA-based platforms, such as SRC-
6 used in our implementations, have a fixed target clock frequency, this target
clock frequency determines the optimum value of w. The area of the circuit is
almost independent of w (for sufficiently large w, e.g., w > 16), as the size of
each cell is proportional to w, and the number of cells is inversely proportional
to w. Additionally, the same HDL code can be used for different values of the
operand size n and the parameter w, with only a minor change in the values of
respective constants.

The new architecture has been implemented in Verilog HDL and its code
verified using reference software implementation. The results matched perfectly.

We have selected Xilinx Virtex-1I6000FF1517-4 FPGA device used in the
SRC-6 reconfigurable computer for a prototype implementation. The synthesis
tool was Synplify Pro 8.1 and the Place and Route tool was Xilinx ISE 8.1.

We have implemented four different sizes of multipliers, 1024, 2048, 3072
and 4096 bits, respectively, in the radix-2 case using Verilog-HDL to verify our
approach. The resource utilization on a single FPGA is shown in Table 2. For
comparison, we have implemented the multipliers of these four sizes following
the hardware architectures described in [4] as well. In both approaches, the word
length is fixed at 16 bits. Because the frequency of FPGA on SRC-6 platform is
fixed at 100MHz, we targeted this frequency when we implemented the design. At
first, we selected 32 bits as the word length and it turned out the max frequency
of the multiplier was 87.7 MHz. So, we halved the word length to meet the
timing on SRC-6 platform. In order to maximize the performance, we used the
maximum number of PEs in both approaches.

Additionally, we have implemented the approach based on CSA (Carry Save
Addition) from [11] as a reference, showing how the MWR2MM architecture
compares to other types of architectures in terms of resource utilization and
performance.

Compared to the design by Harris et al. in [7], our architecture accomplishes
the same objective, however, using a totally different and never published before
approach. The exact quantitative comparison between our architecture and the
architecture by Harris [7] would require implementing both architectures using
exactly the same FPGA device, environment and design style.

From Table 2, we can see that our architecture gives a speed up by a factor of
almost two compared to the architecture by Tenca et al. [4] in terms of latency
expressed in the number of clock cycles. The minimum clock period is comparable
in both cases and the extra propagation delay in our architecture is introduced
by the multiplexers directly following the Registers, as shown in Figures 3(a)
and (b). At the same time both architectures almost tie in terms of resource
utilization expressed in the number of CLB slices, in spite of our architecture
using almost twice as many processing elements (PEs). This result is caused
by the fact that our processing element shown in Figure 3(b) is substantially
simpler than processing element in the architecture by Tenca et al. [4]. The
major difference is that PE in [4] is responsible for calculating not only one, but

Table 2. Comparison of hardware resource utilization and performance for the imple-
mentations using Xilinx Virtex-II6000FF1517-4 FPGA

[1024-bit | 2048-bit | 3072-bit | 4096-bit

Architecture of |Max Freq.(MHz) 110.1
Tenca & Kog [4] [Min Latency (clks) 2113 4225 6337 8449
(radix-2) Min Latency (us) 19.186 38.363 57.540 76.717
(with the # of |Area (Slices) 3,937 7,756 11,576 15,393
PEs optimized for MinLatencyxArea | o sars | 997 543 | 666,083 | 1,180,905
minimum latency)|(usXxslices)
Max Freq.(MHz) 123.6 110.6 116.7 92.81
Min Latency (clks) 1025 2049 3073 4097
Architecture of [Min Latency (us) 8.294 18.525 26.323 44.141
Mclvor et al. [11] |Area (Slices) 6,241 12,490 18,728 25,474
(radix-2) [MinLatencyxArea | o) 2o | 931 a77 | 492,977 | 1,124,448
(psxslices)
Latency x Area Gain
ve. Tonen & Koo (%) 3147 22.24 25.99 4.78
Max Freq.(MHz) 100.0
Min Latency (clks) 1088 2176 3264 4352
Our Proposed |Min Latency (us) 10.880 21.760 32.640 43.520
Architecture |Area (Slices) 4,178 8,337 12,495 16,648
(radix-2) MinLatencyxArea 15\ o0 | 10y 413 | 407,837 | 724,521
(psxslices)
Latency x Area Gain
vs. Tenca & Kog (%) 39.82 39.03 38.77 38.65

multiple columns of the dependency graph shown in Figure 1, and it must switch
among Tasks A, B and C, depending on the phase of calculations. In contrast, in
our architecture, each processing element is responsible for only one column of
the dependency graph in Figure 2, and is responsible for only one Task, either D
or E or F. Additionally in [4], the words Y'U) and M) must rotate with regard
to PEs, which further complicates the control logic.

Compared to the architecture by Mclvor et al. [11], our architecture has a
latency (expressed in the number of clock cycles) comparable for radix-2, and
almost twice as low for radix-4. At the same time, the resource utilization, ex-
pressed in the number of CLB slices, is smaller in our design with radix-2 by
about 33%.

For radix-4 case, we only have implemented a 1024-bit precision Montgomery
multiplier as a showcase. The word-length is the same as in radix-2 case, 16 bits.
One radix-4 1024-bit precision core takes 9,471(28%) slices and has a latency of
576 clock cycles. Further, the max frequency of the radix-4 case drops to 94MHz.
These figures fall within our expectations because radix-4 PE has 4 internal
branches, which doubles the quantity of branches of radix-2 version, and some
small design tweaks were required to redeem the propagation delay increase

Table 3. Comparison of the radix-2 and radix-4 versions of our architecture (n=1024,
w=16) for the implementation using Xilinx Virtex-II6000FF1517-4 FPGA

Max Freq.|Min Latency|Min Latency Slices
(MHz) (clocks) (us)
radix-2 100 1088 10.880 [4,178(12%)
radix-4 94 576 6.128 9,471(28%)

caused by more complicated combinational logic. Some of these optimization
techniques are listed below,

1. At line 6 of Algorithm 4 there is an addition of three operands whose length is
w-bit or larger. To reduce the propagation delay of this step, we precomputed
the value of (" . Y 4+ ¢ . M) one clock cycle before it arrives at the
corresponding PE.

2. For the first PE in which the update of S(°) and the evaluation of ¢(¥) happen
in the same clock cycle, we can not precompute the value of z(® . Y(©) 4 ¢(@ .
M© in advance. To overcome this difficulty, we precompute four possible
values of 2" . Y(©) 4 ¢ . M) corresponding to ¢ = 0,1,2,3, and make
a decision at the end of the clock cycle based on the real value of ¢(*).

As mentioned at the beginning of Section 4, the hardware implementation of
our architecture beyond radix-4 is no longer viable considering the large resource
cost for covering all the 2* branches in one clock cycle, and the need to perform
multiplications of words by numbers in the range 0..2F — 1.

6 Conclusion

In this paper, we present an optimized hardware architecture to implement the
word-based MWR2MM and MWR4MM algorithms for Montgomery multiplica-
tion. The structure is scalable to fit multi-precision Montgomery multipliers, the
approach is easy to be realized in hardware, and the design is space efficient.
One n-bit precision Montgomery multiplication takes n + e — 1 clock cycles for
the radix-2 version, and § + e — 1 clock cycles for the radix-4 version. These
latencies amount to almost a factor of two speed-up over now-classical designs
by Tenca, Kog, and Todorov presented at CHES 1999 (radix-2) [4] and CHES
2001 (radix-4) [6]. This speed-up in terms of latency in clock cycles has been ac-
complished with comparable maximum clock frequencies and less than 10% area
penalty, when both architectures have been implemented using Xilinx Virtex-
IT 6000 FPGA. Although our architecture is not scalable in the same sense as
architecture by Tenca and Kog, it performs better when both architectures are
optimized for minimum latency. It is also easily parameterizable, so the same
generic code with different values of parameters can be easily used for multiple
operand sizes. Our radix-2 architecture guarantees also almost the same latency
as the recent design by Mclvor et al. [11], while outperforming this design in

terms of the circuit area by at least 30% when implemented in Xilinx Virtex-11
FPGA. Our architecture has been fully verified by modeling it in Verilog-HDL,
and comparing its function vs. reference software implementation based on GMP.
The code has been implemented using Xilinx Virtex-II 6000 FPGA and experi-
mentally tested using SRC-6 reconfigurable computer.

Acknoledgments

The authors would like to acknowledge the contributions of Hoang Le and Ra-
makrishna Bachimanchi from George Mason University who provided results for
their implementation of the Montgomery multiplier from [11].

References

10.

11.

Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2) (1978) 120-126

. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of

Computation 44(170) (April 1985) 519-521

Gaj, K., et al.: Implementing the elliptic curve method of factoring in reconfig-
urable hardware. In: CHES 2006, Lecture Notes in Computer Sciences. Volume
4249. (October 2006) 119-133

Tenca, A.F., Kog, C.K.: A scalable architecture for Montgomery multiplication.
In: CHES ’99, Lecture Notes in Computer Sciences. Volume 1717. (1999) 94-108
Tenca, A.F., Kog, C.K.: A scalable architecture for modular multiplication based
on Montgomery’s algorithm. IEEE Trans. Comput. 52(9) (September 2003) 1215—
1221

Tenca, A.F., Todorov, G., Kog, C.K.: High-radix design of a scalable modular
multiplier. In: CHES 2001, Lecture Notes in Computer Sciences. Volume 2162.
(2001) 185201

Harris, D., Krishnamurthy, R., Anders, M., Mathew, S., Hsu, S.: An improved uni-
fied scalable radix-2 Montgomery multiplier. In: Proc. the 17th IEEE Symposium
on Computer Arithmetic (ARITH 17). (June 2005) 172-178

Michalski, E.A., Buell, D.A.: A scalable architecture for RSA cryptography on
large FPGAs. In: Proc. International Conference on Field Programmable Logic
and Applications, 2006(FPL 2006). (August 2006) 145-152

Kog, C.K., Acar, T., Kaliski Jr., B.S.: Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro 16(3) (1996) 26-33

Mclvor, C., McLoone, M., McCanny, J.V.: High-radix systolic modular multipli-
cation on reconfigurable hardware. In: Proc. IEEE International Conference on
Field-Programmable Technology 2005 (FPT 2005). (December 2005) 13-18
Mclvor, C., McLoone, M., McCanny, J.V.: Modified Montgomery modular multi-
plication and RSA exponentiation techniques. IEE Proceedings — Computers and
Digital Techniques 151(6) (November 2004) 402-408

