
FPGA Implementation of High Throughput

Circuit for Trial Division by Small Primes

Gabriel Southern, Chris Mason, Lalitha Chikkam,

Patrick Baier, and Kris Gaj

George Mason University

{gsouther, cmason4, lchikkam}@gmu.edu

districtline@gmx.net

kgaj@gmu.edu

Abstract

Trial division is the most straightforward way to determine the prime fac-

tors of a number, but the execution time is exponentially dependent on

the size of the number. We have developed a novel hardware architecture

which performs trial division of large dividends by small prime divisors at

a much higher throughput than previously reported architectures. Our de-

sign is implemented in FPGA devices and provides a speed-up of between

one and two orders of magnitude over an optimized software implemen-

tation of the same algorithm. These results can be employed to speed up

factoring algorithms like the quadratic sieve or number field sieve when

implemented in reconfigurable computers.

1 Introduction

The hardness of factoring large integers is the basis of the security of the RSA
asymmetric encryption algorithm. The Number Field Sieve (NFS) is the most
efficient known method for factoring large integers. Several special purpose
hardware devices such as TWINKLE [1], TWIRL [2], and SHARK [3] have
been proposed which provide an estimate of the cost of building a machine
capable of factoring a number in the range of 1024 bits. However, these machines
are designed to be implemented using ASICs (Application Specific Integrated
Circuits), which are only practical when produced in large volumes.

An alternative approach involves the use of FPGAs in a reconfigurable com-
puter configuration. An advantage of this approach is that the costs of de-
veloping the FPGA components can be amortized across a wide range of ap-
plications. The COPACOBANA machine is a reconfigurable computer built
using Spartan-3 FPGAs that is able to break DES encryption in less than 9
days [4]. While COPACOBANA is not yet capable of breaking RSA encryption,

its success against the once popular DES encryption algorithm demonstrates the
effectiveness of reconfigurable computing in performing cryptanalysis.

The NFS process can be divided into four steps: polynomial selection, re-
lation collection, linear algebra, and square root. Of these four, the relation
collection step and the linear algebra step are the two most computationally
intensive steps. The relation collection step is typically divided into two parts,
sieving and cofactoring. The cofactoring stage can be divided into a brute force
trial division step to identify small primes (less than 100,000) followed by more
complex probabilistic methods such as the rho method, p-1 method, or elliptic
curve method (ECM) [5]. Efficient hardware implementation of these methods
is a subject of extensive research [5, 6, 7, 8, 9, 10, 11]. Less well studied are
techniques to develop an efficient hardware implementation to perform the trial
division by small primes. We have developed a new hardware architecture that
performs the trial division step used to identify the small primes efficiently and
implemented it in the Xilinx family of FPGAs.

In Section 2 we describe the problem that our circuit solves and its inter-
face. In Section 3 we describe the circuit design in detail as well as the software
implementation that we developed to provide test vectors and performance com-
parison results. In Section 4 we present our results and provide an analysis of the
performance speedup obtained by the hardware implementation over software.
Finally, in Section 5 we summarize our results, and provide some comments on
the use of reconfigurable computing to perform cryptanalysis.

2 Circuit Interface

Our circuit is designed to solve the following problem: Given Inputs:

• Variables: Integers N1, N2, N3, ... each of the size of k bits

• Constants: set of all primes smaller than a certain bound B
{p1 = 2, p2 = 3, p3 = 5, ..., pt ≤ B}

Outputs: For each integer Ni: A list of primes from the factor base that
divide Ni, and the number of times each prime divides Ni. For example, if
Ni = pe1

1 · pe2

2 · pe3

3 · Mi, where Mi is not divisible by any prime below B, then
the output is: (p1, e1), (p2, e2), (p3, e3), (Mi).

In NFS, sieving and cofactoring are performed for two sets of numbers,
obtained by evaluating values of two different polynomials F1(a, b) and F2(a, b),
for multiple pairs of integers (a, b). The respective computations are referred
to as a rational side and an algebraic side of the relation collection step of
NFS, respectively. For parameters of NFS proposed in [2], the sizes of numbers
obtained after sieving have been estimated to be 216 bits for the rational side
and 350 bits for the algebraic side [6].

Our circuit was designed to use B = 100, 000, which resulted in a set of
9592 primes with which we performed trial division. The circuit was designed
and tested for k equal to 512 bits; however, we also synthesized our circuit for

Trial Division
Circuit

clk

rst

dividend_in

start

done

new_factor

power

quotient

factor

ld_div

16

18

4

16

overflow

Figure 1. Interface of trial division circuit

Table 1. Description of trial division circuit interface

Signal Purpose

clk Clock signal for circuit
rst Reset signal for circuit

ld div Indicates a new number is being loaded
start Start processing

dividend in Number that will be processed
done Processing is complete

new factor A new factor has been discovered
factor Value of the new factor
power Number of times the factor divided the dividend

quotient Remaining quotient after processing
overflow Indicates only prime factors identified

values of k equal to 216 and 350 bits in order to provide performance estimates
for inputs of these sizes. Figure 1 is a diagram of the interface and Table 1
describes the purpose of the signals.

3 Design

3.1 Circuit Design

Our circuit was optimized to achieve maximum throughput of numbers fully
processed per unit of time. The operations required to perform division are
sequential, and typically are not well suited for parallel operations that can lead
to increased throughput. However, we were able to take advantage of the fact
that we were performing trial division on a fixed dividend with 9592 different
divisors. This allowed us to develop a highly pipelined architecture that was
relatively cost efficient. We also took advantage of the fact that the divisor

could be represented in fewer bits than the dividend. We stored negated values
of prime numbers used as divisors in two’s complement form. This allowed us
to represent all values of the divisors in 18 bits. After the pipeline was full
our circuit was able to determine the divisibility of a 512-bit number by each
next small prime in one clock cycle, i.e., in the time required to add two 18-bit
numbers using a ripple carry adder.

We targeted our design for FPGAs and specifically focused on the Xilinx
Spartan-3 family of chips, although the VHDL code was written using a generic
RTL style that should be applicable for any FPGA family. However, two features
that we specifically targeted in the Xilinx FPGA family were the block RAM
that we used as a ROM to store the prime divisors and the fast ripple carry
logic.

While the majority of the division operations for a specified input value were
performed with a fixed dividend, when a factor of the dividend was discovered
we performed additional operations on the resulting quotient. In order to ac-
complish this, we partitioned our circuit into a large pipelined array divider and
a smaller multi-cycle sequential divider.

The circuit was divided into the following major components: a highly
pipelined array divider, a multi-cycle sequential divider, and a ROM to store
the prime divisors, along with a control unit and registers to control dataflow,
as shown in Figure 2. The circuit was designed to accept a large input value,
typically 512 bits, so we used a shift register to store the number that was be-
ing processed as the input. This allowed the next number to be loaded while
the current number was being processed, so that the use of a multi-cycle input
process did not reduce the overall throughput of the circuit.

The number being processed was stored in a register during the entire pro-
cessing time, and it provided the dividend input to the array divider. Each
clock cycle, a new divisor was selected from the set of possible prime factors.
These 9592 primes were stored in a block RAM portion of the FPGA device.
The array divider was designed to determine divisibility of a number, and rather
than storing the quotient, it produced a remainder and the associated divisor
as output. Any divisor that produced a remainder of zero was a prime factor
of the dividend, and was stored in a FIFO queue for further processing by the
sequential divider.

Algorithm 1 shows the steps that the circuit follows to process a new input
number. After initialization the sequential divider waits until a value is entered
into the FIFO queue. At that point it processes the first prime factor that the
array divider identified. The dividend register associated with the sequential
divider is initially loaded with a new value at the same time as the dividend
register used with the array divider during circuit initialization. However, the
sequential divider has a different mode of operation. Instead of only producing
a remainder result, the sequential divider also produces a quotient value. If the
remainder from the division operation is equal to zero, then the power count

Input Shift Register

Dividend Register

Comparator
FIFO

Queue

Dividend Register

Divisor Register

Comparator Counter

Divisor

Remainder

Quotient

Index

16

k

18
18

18

18

18

k

14

4

k

k

k

Number N (in 16-bit words)

Factor p i Exponent e i

Remainder

Array Divider

ROM

Sequential
Divider

Divisor

18

Load

Factor M output shift register

Factor M (in 16-bit words)

Figure 2. Trial division circuit components

Data: Dividend input: N = pe1

1 · pe2

2 · · · p
ec−1

c−1 · pec
c · M

Result: Prime factors pi, corresponding exponents ei, and factor M
foreach prime p in prime set do

if p divides N then
validPrimeList.Add(p);

end

end

while validPrimeList.HasElements do
prime p = validPrimeList.GetNextPrime();
count = 1;
while p divides N do

N = N / p;
count = count + 1;

end

resultList.Add(p, count);
end

Algorithm 1: Trial division circuit algorithm

for that factor is incremented by one, the resultant quotient is loaded into the
dividend register, and the division operation is repeated. If the remainder is
not zero, then the factor is provided as output from the circuit and the current
count value is provided as the power output signal. The resultant quotient is
not loaded into the sequential divider’s dividend register; instead, the circuit
waits for the next value in the FIFO queue to process.

When the pipeline is full, the array divider completes division with one
divisor, and produces an associated remainder output every clock cycle. In
contrast, the sequential divider requires k-1 clock cycles to perform division
and produce a remainder and quotient output. Our analysis indicated that we
could expect relatively few small factors to be identified, and thus the sequential
divider would not be expected to reduce the overall throughput of the circuit. If
the array divider did identify factors at a faster rate than the sequential divider
could process them, the circuit would either have to stall or overflow. We chose
to implement the overflow method. When this occurs, the circuit asserts the
overflow line and only performs trial division using the array divider. The
result is that in overflow mode the circuit identifies the prime factors, but not
the powers of primes.

The number of division operations that the sequential divider could perform
without overflow depended on the size of the dividend, because the throughput
of the sequential divider was linearly dependent on the size of the dividend while
the throughput of the array divider was nearly constant. For the dividend sizes
that we tested, the results were 18 division operations for a 512-bit dividend,
27 division operations for a 350-bit operand, and 44 division operations for a
216-bit operand. The worst-case scenario would correspond to the case where
each prime factor identified was raised to a single power. In this case, each

factor identified would require two division operations from the sequential di-
vider which would result in the circuit entering overflow mode after identifying 9
factors.

3.2 Expected Number of Primes

In choosing how to handle the case of overflow, we performed an analysis using
a software implementation of our algorithm to determine the likelihood of over-
flow occurring. The program was written to perform the procedure described in
Algorithm 1 to determine the prime factors and powers of primes for a series of
random numbers. Our experimental results indicated that only about 0.012% of
the numbers sampled had more than 9 small prime factors, and thus our circuit
would be able to operate normally in most cases. Having determined experimen-
tally that the numbers we performed trial division on would have relatively few
small prime factors, we developed the following theoretical explanation which
verified the results we observed experimentally:

Let r ∈ N and let p1 = 2, p2 = 3, . . . , pr be the r smallest primes; for
r = 9592, this is the set of primes below B = 100, 000. To determine the
asymptotic probability qc that a random integer has c distinct prime divisors
below B, we let Q(n, B) be the number of integers 1 ≤ x ≤ n such that x has
exactly c distinct prime divisors below B, and we calculate

qc = lim
n→∞

Q(n, B)

n
.

The probability of a random integer being divisible by pi is 1
pi

, or equivalently

it is not divisible by pi with probability (1− 1
pi

). The probability that a random
integer has no prime divisor below B is the product of these probabilities:

q0 =

r
∏

i=1

(

1 −
1

pi

)

.

While this can be computed exactly for small enough B, direct computation is
not feasible for larger values. However, good approximations can be computed.

To calculate the probability that a random integer is divisible by some fixed
pj, but no other prime (below B) we replace the factor (1 − 1

pj
) in the above

product by the complementary probability 1
pj

. Equivalently, this can be written
as

q0

(

1
pj

1 − 1
pj

)

=
q0

pj − 1
.

To obtain q1 (the probability that a random integer has exactly one prime
divisor below B) we sum over j and get

q1 = q0





r
∑

j=1

1

pj − 1



 .

We write m1 =
r
∑

j=1

1
pj−1 so that q1 = q0m1 and aim to find mc for c > 1 so

that qc = q0mc for all c ≤ r. Setting m0 = 1, for consistency in the case c = 0,
we obtain

mc =
∑

j1<···<jc

c
∏

l=1

1

pjl
− 1

.

That is, we sum the products over all distinct c-tuples of primes. This can be
calculated more efficiently as follows. For c > 0 let

bc =
r
∑

i=1

(

1

pi − 1

)c

.

Then we can calculate inductively

mc+1 =
1

c + 1
(mcb1 − mc−1b2 + · · · ± m0bc+1)

=
1

c + 1

c
∑

j=0

(−1)jmc−jbj+1

This is effectively computable in time O(c3r). We calculated the distribution
values for B = 100, 000 and c = 10, and these results are shown in Table 2 along
with our experimental results.

Table 2. Probability qc of c prime factors less than 100, 000 in a random
number determined by experimentation and calculated results.

c Calculated qc Experimental qc

0 0.048753 0.048570
1 0.169584 0.168777
2 0.261423 0.261627
3 0.244033 0.243688
4 0.157985 0.157970
5 0.076659 0.077459
6 0.029327 0.029584
7 0.009167 0.009327
8 0.002404 0.002369
9 0.000540 0.000510

10 0.000105 0.000104
11 0.000018 0.000016
12 0.000003 0.000000

> 12 0.000000 0.000000

.

k

N

-p(1) s(1) Nk-2

18

-p

CS 1

s(2) Nk-3-p(2)
1718

CS 2

s(3) Nk-4-p(3)
1718

CS 3

s(k-1) N0
-p(k-1)

1718

CS k-1

s = s(k)-d = -p(k)
1718

s(k-2) N1-p(k-2)
1718

CS k-2

s(4)-p(4)
1718

 (a) Array Divider

Partial Remainder
Register

Divisor
Register

Adder

-p(i) s(i) Nk-(i+1)

18 17

18 17

-p(i+1) s(i+1)

17

18

18

17

z17..0

z16..0

x17..0

x17
x16..0

MUX

CS #i

 (b) CS Cell

Figure 3. Basic layout of pipelined array divider (a) composed of controlled
subtractor cells (b)

Data: N (k-bit integer), −p (where p is a small prime p < 217)
Result: s = N mod p
s(1) = 000 · · ·0Nk−1; 17 zeros followed by Nk−1

for i=1 to k-1 do

s(i) = s(i)||Nk−(i+1); equivalent to s(i) = 2 · s(i)|Nk−(i+1)

if (s(i) + (−p(i))) > 0 then

s(i+1) = s(i) + (−p(i))
else

s(i+1) = s(i)

end

s = s(k)

end

Note: || denotes concatenation, | denotes bitwise or

Algorithm 2: Array Divider Pseudocode

3.3 Array Divider

The array divider occupied most of the circuit area and provided the basis for
its high throughput. It was designed to determine the divisibility of a single
dividend with each of the 9592 different divisors from the set of possible prime
factors. Our analysis indicated that most of these prime divisors would not
divide the dividend, and as a result we discarded the quotient and only stored
the remainder output. We developed our design with a target dividend size
of 512 bits however, through modification of a generic value we were also able
to produce designs with dividends of 350 bits and 216 bits. The size of the
dividend input did not change the critical path in the array divider; instead, it
changed the degree of pipelining. Algorithm 2 describes the operation of the
array divider. The block diagram of the circuit implementing this algorithm is
shown in Figure 3. A k-bit dividend required k-1 pipeline stages, where each
pipeline stage consisted of a divisor register, a partial remainder register, a
ripple-carry adder, and a multiplexer. These components combined to form the
controlled subtractor cell.

The negated divisors were stored in two’s complement form and required 18
bits to store values in the range of −2 down to −100, 000. The dividend was
zero extended by one less bit than the length of the divisor (i.e., by 17 zeros) in
order to support a quotient as large as the dividend. In the first pipeline stage
the upper 18 bits from the zero-extended dividend were provided as input to the
partial remainder register. The two register values were added together and if
the result was positive then the lower 17 bits of the result were appended with
the next bit from the dividend and provided as the partial remainder result to
the next stage. If the result of the addition was negative then the lower bits
from the existing partial remainder were appended with the next dividend bit
and provided as input to the partial remainder for the next stage. The value
stored in the dividend register was kept constant during the processing of a

number, while a new negated divisor value, -p, was provided each clock cycle.
By keeping the dividend constant we limited the data stored in each pipeline
stage to an 18-bit partial remainder and an 18-bit divisor associated with that
remainder.

3.4 Sequential Divider

The sequential divider shown in Figure 4 was designed to minimize area without
increasing the clock period, and was implemented as a shift/subtract restoring
divider [12]. Algorithm 3 shows the classical shift/subtract restoring divider
algorithm that we based our implementation on. In Figure 4a we present the
direct translation of Algorithm 3 into hardware. In this circuit, all 18 bits
of the negated divisor, −p, are used, the adder is 18-bit wide, and the most
significant bit of the sum is used to determine the new value of the partial
remainder. In Figure 4b, an optimized circuit, implementing the same algorithm
is shown. The most significant bit of the negated divisor, −p, is not used,
because this bit is always 1. The adder width is reduced from 18 bits to 17
bits. The most significant (18th) bit of the sum is calculated with two simple
logic gates (OR and inverter), based on the most significant bit of the partial
remainder and the carry out signal from the 17-bit adder. The two designs are
functionally equivalent, with the design in Figure 4b using slightly less resources
and having a slightly shorter critical path. The majority of this critical path
is the time necessary to perform a 17-bit ripple carry addition. Both designs
shown in Figure 4 require k clock cycles to process one full division. In our
final optimization, the number of required clock cycles was reduced from k to
k − 1 based on the fact that the divisor p is always greater or equal 2, and thus
qk−1 = 0. Although the circuit was designed to process 512-bit numbers, the
clock period was determined by the size of the divisors. Thus, changing the
dividend size to 350-bits or 216-bits increased latency but did not change the
critical path, just as in the array divider.

3.5 Software Implementation

We developed a software implementation to perform trial division using the
same algorithm that we implemented in hardware as shown in Algorithm 1.
The software implementation was initially used as a source of test vectors but
was later optimized to provide performance metrics to compare to our hard-
ware implementation. The software was written in C using the GNU Multiple
Precision Arithmetic Library (GMP) and was optimized for performance.

4 Results

We synthesized our design, using the Xilinx ISE Foundation tool, for the Virtex-4
and Spartan-3 FPGA families. Table 3 shows the resources required to imple-
ment the circuit in the two families of Xilinx FPGAs. The limiting resource was

Partial Remainder
Register (k+17..k)

Divisor
Register

Adder

-p y0

18 17

17

17

18

18

17

z17..0

z16..0

x17..0

x17
x16..0

MUX
0 1

Quotient
Register

k

Partial Remainder
Register (k-1..1)

Shift

Shift

Nk-2..0

MUX
0 1

y17..1y17..0
18

00…Nk-1

18

17
q s

17

(a) Sequential restoring divider

Partial Remainder
Register (k+17..k)

Divisor
Register

Adder

-p y0

17 18

17

17

17

17

17

MUX
0 1

Quotient
Register

k

Partial Remainder
Register (k-1..1)

Shift

Shift

Nk-2..0

MUX
0 1

y17..1y17..0
18

00…Nk-1

17

q

M
S
B

17

1

17s

17

(b) Optimized sequential restoring divider

Figure 4. Basic shift/subtract sequential restoring divider (a) and optimized
version (b)

Data: N (k-bit integer), −p (where p is a small prime p < 217)
Result: q = N/p; s = N mod p
s(0) = 000 · · ·0||N ; 18 zeros followed by N
for i=1 to k do

if (2s(i−1) + 2k(−p)) > 0 then
qk−i = 1
s(i) = 2s(i−1) + 2k(−p)

else
qk−i = 0
s(i) = 2s(i−1)

end

end

q = qk−1···0

s = sk
k+16···k

Algorithm 3: Sequential Divider Pseudocode

CLB slices and the pipelined array divider dominated the total circuit area. For
the Spartan-3 family the circuit could be implemented in the XC3S1500 device
for the dividend sizes of 216 and 350 bits, but it required the XC3S2000 device
for the 512 bit dividend. For the Virtex-4 family the XC4VLX25 device was
used for the 216 bit dividend, but the XC4VLX40 device was needed for the
350 and 512 bit dividends.

Table 3. Circuit area in CLB slices

Spartan-3 Virtex-4
Dividend Total Array Divider Total Array Divider
512 bits 16,922 15,323 16,895 15,323
350 bits 11,614 10,462 11,578 10,462
216 bits 7,216 6,441 7,182 6,441

Table 4 shows the timing results for the various different size dividends.
The clock period for an 18-bit ripple carry adder and multiplexer is included
as our target critical path through the controlled subtractor cell. The array
divider area dominates the size of the circuit, and it would not be possible
to reduce the critical path through the controlled subtractor cells without a
significant increase in circuit area. However, initial results indicate significant
opportunities to further optimize our circuit before we reach this limitation.
Currently the circuit’s critical path is in the sequential divider, which has a very
simple implementation and could be optimized so that it is not in the critical
path. We also have a simple state-machine control unit implementation that
has a larger critical path than the controlled subtractor cell. While optimizing
the state machine would be more complex, it should not result in a significant
increase in circuit area.

Table 4. Circuit minimum clock period

Circuit Spartan-3 Virtex-4
18-bit RC adder and MUX 4.483 ns 2.046 ns
512-bit circuit 11.028 ns 4.182 ns
350-bit circuit 10.917 ns 4.182 ns
216-bit circuit 11.084 ns 4.006 ns

Table 5 shows the throughput in terms of numbers fully processed per second.
The optimal throughput is based on the clock period estimate using the critical
path in the controlled subtractor cell, while the actual throughput is based on
the clock period results after synthesis. Each number takes 9592 cycles plus one
additional cycle for each pipeline stage to fully process. In addition, required
synchronization cycles are estimated at 10 cycles per number. The processing
of the different primes dominates the total delay, and the overall throughput
for processing a 512-bit number is very similar to the throughput for a 216 bit
number.

Table 5. Circuit throughput in numbers per second

Spartan-3 Virtex-4 Software
Dividend Optimal Actual Optimal Actual Version
512 bits 22,057 8,966 48,329 25,425 434
350 bits 22,416 9,205 49,116 24,029 594
216 bits 22,722 9,190 49,786 23,644 884

The results for the software version were determined experimentally by run-
ning our program on a Xeon 2.8 GHz CPU system with 512KB cache and 4GB
of RAM. We used the fastest available GMP routines and compiled our pro-
gram with all compiler optimizations turned on. It is likely that additional
performance improvements could be obtained if the code was optimized for a
particular architecture; however, we believe this implementation is near optimal
for an implementation written in a portable coding style and we expect any fur-
ther performance gains achieved would be less than 10%. While the hardware
implementation has nearly constant throughput, the software implementation
is linearly dependent on the size of the dividend. As a result, the hardware
speedup is greater for the larger dividend sizes.

Our circuit is able to achieve a significant speedup over a software implemen-
tation of the same algorithm because the operations it performs are optimized
at the digital logic layer for a specialized application for which a general purpose
microprocessor is not optimized. The problem our circuit solves would only be
really useful as part of a larger application running on a reconfigurable computer

Table 6. Circuit speedup over software

Spartan-3 Virtex-4
Dividend Optimal Actual Optimal Actual
512 bits 51 21 111 56
350 bits 37 15 83 40
216 bits 26 10 56 27

able to perform the NFS factoring algorithm. Such a reconfigurable computer
would be implemented using a combination of CPU and FPGA processing ele-
ments as well as memory, network interfaces, circuit board interconnects, power
supply, cases, and other components. We have limited our analysis to the cost of
the processing elements when performing our cost analysis; however, we expect
that the peripheral costs associated with an FPGA device, such as the Spartan
3, typically used in embedded applications, would be less than those of a micro-
processor, such as an Intel Xeon, designed for use in high performance servers.
Table 7 provides an estimate of the cost of the FPGA and CPU elements based
on advertised prices at the time of publication. Pricing for FPGAs and CPUs is
volatile and is dependent on the number of devices ordered, however, advertised
prices allow for an estimate of cost/performance between the different device
families. The prices listed in Table 7 are for FPGA devices purchased in quan-
tities of 100 from two different vendors, one for the Spartan 3 devices [13], and
a different one for the Virtex 4 devices [14]. The price listed for Xeon CPU is
based on [15], and is for CPUs purchased in single unit quantities. The results
show that even the most expensive FPGA devices cost less than the CPU used
for our software implementation. They also indicate that the low-cost Spar-
tan 3 device will provide the best overall performance/price ratio. The Intel
Xeon MP 2.8 GHz CPU is listed because this is the CPU in the servers we used
for testing our software implementation. It is likely that a different CPU would
provide a better performance/cost ratio than the one selected. However, even
with an optimized CPU selection we expect that the FPGA devices would offer
a significant performance/cost improvement for the problem our circuit solves.

Table 7. Cost of FPGA and CPU devices

Device Cost
Spartan 3 XCS1500 $61.55
Spartan 3 XCS2000 $50.49
Virtex 4 XC4VLX25 $222.00
Virtex 4 XC4VLX40 $457.50
Intel Xeon MP 2.8 GHz $399.00

Table 8 shows the throughput/cost ratio comparison between the two FPGA
device families and the software implementation. The results in Table 7 show an

anomaly of the volatile pricing for FPGA devices. Typically the larger XCS2000
device would be expected to cost more than the XCS1500 device, however, when
we surveyed the advertised prices the XC2000 device was less expensive. The
results in Table 8 were calculated using the XCS1500 for the 216 and 350 bit
dividend values; however, the throughput/cost ratio could have been improved
if the XCS2000 device was used. These results show that the low-cost Spartan 3
device offers the best throughput/cost ratio, and they further highlight the
advantages of the FPGA implementation over a software implementation.

Table 8. Circuit throughput/cost in (num/sec)/dollar

Spartan-3 Virtex-4 Software
Dividend Optimal Actual Optimal Actual Version
512 bits 437 178 106 56 1.09
350 bits 364 149 107 53 1.49
216 bits 369 149 224 107 2.22

One proposed implementation of the TWIRL sieving device by Geiselmann,
et al. [6], provides a performance estimate of an ASIC implementation of a trial
division pipeline. This implementation requires 3 · k + 50 clock cycles per prime
factor analyzed where k is the number of bits in the dividend. For a 512-bit
dividend this implementation would require 1586 clock cycles to check a single
prime factor. In contrast, our implementation requires only a single clock cycle
to check each next prime for divisibility once the pipeline is full. The analysis
of TWIRL concluded that the trial division pipeline could produce results at a
faster rate than the ECM unit could process them. In this paper we focused on
developing a trial division pipeline with maximum throughput and combining
this implementation with the FPGA ECM implementation described in [5] is a
subject of future work. However, any realistic reconfigurable computer used for
factoring would contain a large number of FPGAs for specialized computation-
ally intensive tasks combined with general purpose microprocessors to provide
control functions. As a result, the balance between producing results from the
trial division pipeline and processing them in ECM units can be optimized by
controlling the ratio of FPGAs assigned to these different operations.

5 Conclusion

Our design implemented a method to perform trial division by small primes
in two FPGA families, using a technique that provides a significant speedup
over an optimized software implementation of the same algorithm. The task of
division by small primes allowed us to implement a highly pipelined technique
that determines the divisibility of a number using one pipeline stage for each
bit of the dividend. The area and latency of each pipeline stage was dependent
only on the smaller sized divisor, and this allowed for nearly constant throughput

independent of the dividend size. The circuit area was linearly dependent on
the number of bits in the dividend.

Reconfigurable computers provide a cost-effective means to implement spe-
cialized algorithms at the digital logic layer for use in a relatively small number
of devices. In a reconfigurable computer, general purpose microprocessors are
used for control purposes, and FPGAs are used for specialized, computation-
ally intensive tasks. Our results demonstrate the cost-performance advantage
of an FPGA-based implementation of the specialized problem of trial division
by small primes over a microprocessor-based implementation. We believe that
the most cost-efficient means of breaking RSA encryption is likely to be devel-
oped using large numbers of low-cost FPGA devices, as demonstrated by the
COPACOBANA device in breaking DES encryption. While our design is too
large to fit on the FPGA devices used in COPACOBANA, we expect that FPGA
devices with larger numbers of transistors will become increasingly affordable
and that our design will be practical for low-cost devices.

Division is an inherently sequential operation, it is difficult to pipeline, and
it is typically the slowest basic arithmetic operation implemented in general
purpose microprocessors. Existing research on developing a solution to the
cofactoring problem using reconfigurable computers has performed the trial di-
vision step using general purpose microprocessors, and focused on developing
FPGA based designs to implement algorithms such as ECM. We believe that
our design provides a useful addition to the cofacotoring problem, by providing
a technique to perform the computationally intensive trial division step using a
specialized FPGA design.

Acknowledgments: We would like to thank Paul Kohlbrenner for assistance
in developing an optimized software implementation of the algorithm used for
trial division.

References

[1] A. Shamir, “Factoring large numbers with the TWINKLE device (extended
abstract),” in CHES, ser. Lecture Notes in Computer Science, Ç. K. Koç
and C. Paar, Eds., vol. 1717. Springer, 1999, pp. 2–12.

[2] A. Shamir and E. Tromer, “Factoring large numbers with the TWIRL
device,” in Advances in Cryptology - CRYPTO 2003, ser. Lecture Notes in
Computer Science, 2003, pp. 1–26.

[3] J. Franke, T. Kleinjung, C. Paar, J. Pelzl, C. Priplata, and C. Stahlke,
“SHARK: A realizable special hardware sieving device for factoring 1024-
bit integers,” in CHES, ser. Lecture Notes in Computer Science, J. R. Rao
and B. Sunar, Eds., vol. 3659. Springer, 2005, pp. 119–130.

[4] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler, “Breaking
ciphers with COPACOBANA - A cost-optimized parallel code breaker,” in

CHES, ser. Lecture Notes in Computer Science, L. Goubin and M. Matsui,
Eds., vol. 4249. Springer, 2006, pp. 101–118.

[5] K. Gaj, S. Kwon, P. Baier, P. Kohlbrenner, H. Le, M. Khaleeluddin, and
R. Bachimanchi, “Implementing the elliptic curve method of factoring in re-
configurable hardware,” in CHES, ser. Lecture Notes in Computer Science,
L. Goubin and M. Matsui, Eds., vol. 4249. Springer, 2006, pp. 119–133.

[6] W. Geiselmann, F. Januszewski, H. Köpfer, J. Pelzl, and R. Steinwandt,
“A simpler sieving device: Combining ECM and TWIRL,” in ICISC, ser.
Lecture Notes in Computer Science, M. S. Rhee and B. Lee, Eds., vol. 4296.
Springer, 2006, pp. 118–135.

[7] M. Khaleeluddin, “Hardware implementation of the elliptic curve
method of factoring,” Master’s thesis, George Mason University, August
2006. [Online]. Available: http://ece.gmu.edu/courses/Crypto resources/
web resources/theses/gmu theses.htm

[8] R. Bachimanchi, “FPGA and ASIC implementation of rho and p-1
methods of factoring,” Master’s thesis, George Mason University, May
2007. [Online]. Available: http://ece.gmu.edu/courses/Crypto resources/
web resources/theses/gmu theses.htm

[9] J. Pelzl, M. Šimka, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke,
M. Drutarovský, V. Fischer, and C. Paar, “Area-time efficient hardware
architecture for factoring integers with the elliptic curve method,” IEE
Proceedings Information Security, vol. 152, no. 1, pp. 67–78, Oct. 2005.

[10] M. Šimka, J. Pelzl, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke,
M. Drutarovský, V. Fischer, and C. Paar, “Hardware factorization based
on elliptic curve method,” in IEEE Symposium on Field-Programmable
Custom Computing Machines - FCCM 2005, 18-20 April 2005, Napa, Cal-
ifornia, J. Arnold and K. L. Pocek, Eds., 2005, pp. 107–116.

[11] P. Zimmermann and B. Dodson, “20 years of ECM,” 2006. [Online].
Available: http://hal.inria.fr/inria-00070192/en/

[12] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, 2000.

[13] “Spartan 3 advertised prices quantities of 100,” August 2007. [Online].
Available: http://www.em.avnet.com

[14] “Virtex 4 advertised prices quantites of 100,” August 2007. [Online].
Available: http://www.nuhorizons.com

[15] “Intel Xeon-MP 2.8ghz CPU advertised price,” August 2007. [Online].
Available: http://www.compuvest.com

