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Abstract 
 

Reconfigurable hardware resources are very expensive, 
and yet can be underutilized.  This paper describes a 
middleware capable of discovering underutilized 
computing nodes with FPGA-based accelerator boards in 
a networked environment.  Using an extended Job 
management system (JMS), this middleware permits 
sharing reconfigurable resources at least among the 
members of the same organization. Traditional resources, 
such as CPU time of loosely coupled workstations can be 
shared using a variety of existing Job Management 
Systems (JMSs).  We analyzed four of these systems, LSF, 
Sun Grid Engine / CODINE, PBS Pro, and Condor from 
the point of view of their functional characteristics and 
ease of extension to support reconfigurable hardware. 
LSF was shown to efficiently address the majority of 
identified requirements. The general architecture of the 
extended system was developed, and the exact techniques 
of extending LSF, CODINE, and PBS Pro to manage 
FPGA-based accelerator boards were identified. The 
system architecture was verified experimentally for the 
specific case of LSF and three types of FPGA accelerator 
boards. The utilization of FPGA boards was demonstrated 
to reach up to 86% in our experimental setting consisting 
of Linux and Windows NT workstations1. 
 
1. Introduction 
 

This paper reports on a research effort to create a 
distributed computing system interface for the effective 
utilization of networked reconfigurable computing 
resources.  The objective is to construct a system that can 
leverage under-utilized resources at any given time to 
serve users who currently have the needs, in a grid 

                                                 
1 This work has been partially supported by the Department of 

Defence under  the LUCITE contract no. MDA904-98-CA0810000. 

computing like style.  The targeted type of resources are 
workstations and clusters that are equipped with Field 
Programmable Arrays (FPGA) boards serving as 
reconfigurable coprocessors, as one can find in academic 
and government research labs.  In order to take advantage 
of previous related works, our strategy is to extend an 
efficient Commercial Off the Shelf (COTS) Job 
Management System (JMS) [1-5].  Such extensions should 
provide the ability to recognize reconfigurable resources, 
monitor and understand their current loading, and 
effectively schedule them for the incoming remote user 
requests, with little impact on local users.  It also includes 
providing local users with proper tools to control the 
degree to which they wish to share their own resources 
and how others may use such resources. 

Our effort started with a study that aimed at the 
comparative evaluation of currently available job 
management systems and a conceptual design of how to 
architect such a system for managing networked 
reconfigurable resources [5-7]. After selecting one system 
most suitable for the extension, the detailed architecture of 
the extended system was developed and experimentally 
tested. 

This paper is organized as follows. In Section 2, we 
present a general architecture of a JMS and compare 
functional characteristics of four popular JMSs selected 
for our study. In Section 3, we determine which JMS 
features are most important from the point of view of 
extension to reconfigurable hardware, and present general 
architecture of the extended system. In Section 4, we 
describe in detail an extended system based on LSF and 
three types of the FPGA accelerator boards. We also 
present an experimental setup used to verify the correct 
behavior and to measure efficiency of the proposed 
system. We follow in Section 5 with the description of the 
system behavior and the analysis of the obtained results.  
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Figure 1.  Major functional units of a Job 
Management System 
 
 
2. Job Management Systems 
 
2.1. General architecture of a JMS 
 
The objective of a JMS is to let users execute jobs in a 
non-dedicated cluster of workstations with a minimum 
impact on owners of these workstations by using 
computational resources that can be spared by the owners. 
The system should be able to perform at least the 
following tasks: 

a. monitor all available resources,  
b. accept jobs submitted by users together with resource 

requirements for each job, 
c. perform centralized job scheduling that matches all 

available resources with all submitted jobs according to 
the predefined policies, 

d. allocate resources and initiate job execution, 
e. monitor all jobs and collect accounting information. 
To perform these basic tasks, a JMS must include at 

least the following major functional units shown in Fig. 1: 
1. User server – which lets user submit jobs and their 

requirements to a JMS (task b), and additionally may 
allow the user to inquire about the status and change 
the status of a job (e.g., to suspend or terminate it). 

2. Job scheduler – which performs job scheduling and 
queuing based on the resource requirements, resource 
availability, and scheduling policies (task c). 

3. Resource manager, including  
• Resource monitor – which collects information 

about all available resources (tasks a and e), and  
• Job dispatcher – which allocates resources and 

initiates execution of jobs submitted to JMS (task 
d). 

 
 
 

2.2. Choice of a Job Management System 
 

More than twenty JMS packages, both commercial and 
public domain, are currently in use [1, 3, 5]. For the 
interest of time, we selected four representative and 
commonly used JMSs 

• LSF – Load Sharing Facility 
• PBS – Portable Batch System 
• Sun Grid Engine / CODINE, and 
• Condor. 

The common feature of these JMSs is that all of them are 
based on a central Job Scheduler running on a single 
computational node. 

LSF (Load Sharing Facility) is a commercial JMS from 
Platform Computing Corp.  It evolved from Utopia system 
developed at the University of Toronto, and is currently 
probably the most widely used JMS. 

PBS (Portable Batch System) has both a public domain 
and a commercial version. The commercial version called 
PBS Pro is supported by Veridian Systems. This version 
was used in our experiments. PBS was originally 
developed to manage aerospace computing resources at 
NASA Ames Research Center. 

Sun Grid Engine/CODINE is an open source package 
supported by Sun Inc. It evolved from DQS (Distributed 
Queuing System) developed by Florida State University. 
Its commercial version called CODINE was offered by 
GENIAS Gmbh in Germany and became widely deployed 
in Europe. 

Condor is a public domain software package that was 
started at University of Wisconsin. It was one of  the first 
systems that utilized idle workstation cycles and supported 
checkpointing and process migration. 

  
2.3. Functional comparison of selected Job 
Management Systems 
 

The main features of selected JMSs are compared and 
contrasted in Table 1. These features are classified into the 
following categories: 

I  – Availability and Operating System Support, 
II – Scheduling and Resource Management, 
III – Efficiency and Utilization, 
IV – Fault Tolerance and Security, and 
V – Documentation and Technical Support. 
In summary, LSF outperforms all other JMSs in terms 

of the operating system support, scalability, 
documentation, and technical support. It is also one of 
only two systems that fully support parallel jobs, 
checkpointing, and offer strong resistance against the 
master host failure. 

CODINE performs extremely well in multiple 
categories such as parallel job support, job migration, load 
balancing, and resistance against the master host failure. 



Table 1. Conceptual functional comparison of selected Job Management Systems 
 

 LSF CODINE PBS Condor 
Availability and Operating System Support 

Distribution commercial public domain commercial and public 
domain 

public domain 

Source code no yes public domain version 
only 

yes 

Solaris, Linux yes yes yes yes 
Tru64 yes yes yes no 
Windows NT yes no no partial 

Scheduling and Resource Management 
Interactive jobs yes yes yes no 
Parallel jobs yes yes partial limited to PVM 

Efficiency and Utilization 
Stage-in and  
stage-out 

yes no yes yes 

Process migration yes yes no yes 
Dynamic load 
balancing 

yes yes no no 

Fault Tolerance and Security 
Checkpointing yes using external libraries only kernel-level yes 

Daemon fault 
recovery 

master and execution 
hosts 

master and execution 
hosts 

only for execution 
hosts 

only for execution 
hosts 

Documentation and Technical Support 
Documentation excellent good good good 
Technical Support excellent not tested good average 

 
The major drawbacks of CODINE include the lack of 

support for Windows NT, no support for stage-in and 
stage-out, and only externally supported checkpointing. 
The primary weaknesses of PBS include no support for 
Windows NT, very limited checkpointing, no job 
migration or load balancing, and limited parallel job 
support. Condor distinguished itself from other systems in 
terms of the strong checkpointing. It is also one of the 
oldest and the best understood job management systems. 
The main weaknesses of Condor include no support for 
interactive jobs, limited support for parallel jobs, and 
average technical support. 

 
3. Extending a JMS to support reconfigurable 
hardware 
 
3.1. JMS features supporting extension 
 

The specific features of Job Management Systems that 
support extension to reconfigurable hardware include  

o capability to define new dynamic resources, 
o strong support for stage-in and stage-out in order to 

allow an easy transfer of the FPGA configuration 

bitstreams, data inputs, and results between the 
submission host and the execution host with 
reconfigurable hardware; 

o support for Windows NT and Linux, which are two 
primary operating systems running on PCs that can be 
extended with commercially available FPGA-based 
accelerator boards with the PCI interface. 

An ease of defining new dynamic resources appears to 
be a minor factor in comparison. Three out of four 
systems, LSF, CODINE, and PBS Pro, seem to be easily 
extendable with new dynamic resources without the need 
for any changes in their source code. Condor can also be 
relatively easily extended, taken into account the full 
access to its source code. Stage-in and stage-out are 
supported by all systems except CODINE. LSF is the only 
JMS that fully supports Windows NT. In Condor, jobs 
submitted from Windows NT can only be executed on 
machines running Windows NT.  

Taking into account the combined results of our study 
we consider LSF the best candidate for use with the 
FPGA-based accelerator boards. 
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Figure 2. Extension of a JMS to recognize, monitor, and schedule reconfigurable resources 
 
 
3.2. General architecture of the extended system 
 
General architecture of the extended system is shown in 
Fig. 2. The primary component of this extension is an 
external resource monitor that controls the status of an 
accelerator board, and periodically communicates this 
status to a resource monitor. The resource monitor 
transfers this information periodically or by request to a 
Job scheduler, which uses this information to match each 
job that requires acceleration with an appropriate host. Job 
requirements regarding the new reconfigurable resource 
are specified during a job submission to a user server, and 
are enforced by a job scheduler the same way as 
requirements regarding default built-in resources. 

 
3.3. Extending LSF, PBS, and CODINE 
 

Capability of defining new dynamic resources can be 
used to extend LSF, PBS, and CODINE to manage FPGA-
based accelerator boards. The new resource that needs to 
be added to a given JMS represents the availability of the 
accelerator board for JMS users. 

An external resource monitor needs to be written 
according to the specification for  

o ELIM, External Load Information Manager in 
LSF 

o Load sensor in CODINE, and 
o Shell escape to the MOM configuration file in 

PBS. 
This daemon is started by a local resource manager (LIM 
in LSF, cod_execd in CODINE, and MOM in PBS), and 
communicates with the resource monitor using standard 
output. Extending Condor to provide the similar 
functionality would require changes in the source code of 
this system. 

4. LSF Experimental Case Study 
 
4.1. Extending LSF to support reconfigurable 
hardware 
 

The general architecture of LSF is shown in Fig. 3. 
Load Information Monitors (LIMs), running on all 
execution hosts in the system, monitor and collect 
information about the current status of all static and 
dynamic resources available on the execution hosts. This 
information is periodically forwarded from every LIM to a 
single Master Load Information Monitor (MLIM) residing 
on the master host. The combined report about the current 
status of all system resources, collected by MLIM, is used 
by the Master Batch Daemon (MBD) to match available 
resources with resource requirements specified during the 
job submission.   When a job waiting   in the   queue is  
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Figure 3. General architecture of LSF 
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Figure 4. General architecture of LSF after 
extension to support reconfigurable hardware 
 
matched with an execution host containing the required 
resources, this job is being dispatched by MBD to the 
appropriate execution host. The job is prepared for 
execution by the Slave Batch Daemon (SBD), and started 
by the Remote Execution Server (RES). SBD is 
responsible for enforcing local LSF policies and 
maintaining the status of the job. 

To support reconfigurable resources, such as FPGA-
based accelerator boards, the LSF system needs to be 
extended with two extra components: External Load 
Information Monitor (ELIM) and an FPGA Board 
Application Programming Interface (API), as shown in 

Fig. 4. ELIM is a program or script that must be run on 
each execution host that contains a non-standard dynamic 
resource, such as an FPGA board. The task of ELIM is to 
monitor the availability of the FPGA board and to report 
this availability in the predefined format to LIM. To 
perform this task, ELIM uses functions of the FPGA 
Board API. These functions communicate with the FPGA 
board driver in order to determine whether the board is 
currently occupied by any job. If this is the case, ELIM 
reports through LIM to Master LIM (MLIM) that the 
FPGA board is temporarily unavailable. Otherwise, the 
information about the availability of the FPGA board is 
passed to MLIM.  

Each user job that makes use of reconfigurable 
resources needs at the beginning of its execution check the 
availability of the board. If the board is unavailable, the 
job exits with an error code, and is resubmitted by LSF at 
a later time. If the board is available, the job reserves the 
board for exclusive use, and then configures the board 
using the configuration bitstream residing on the execution 
host or downloaded from the submission host using the 
stage-in capability of LSF. As soon as the board is 
configured, its clock is started and the FPGA circuit starts 
communicating with the job running on the execution host. 
Inputs are sent to the board, and outputs generated by the 
FPGA circuit are sent back to the job. After the FPGA 
circuit  completes  execution,  it  communicates  this fact 
to  
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Figure 5. Experimental testbed 



the job, which makes final postcomputations, frees the 
board for use by other jobs, and finishes execution. All 
described above operations are facilitated by the FPGA 
board APIs. 
 
4.2 Experimental setup 
 

Our testbed consists of three machines configured as 
execution hosts, and one machine configured as a 
submission and master host as shown in Fig. 5. All 
execution hosts contain one or two FPGA boards, 
including the SLAAC1-V FPGA accelerator board from 
the USC-Information Sciences Institute [8, 9], and Firebird 
V1000, and Firebird V2000 from Annapolis 
Microsystems, Inc. [10]. 

 The benchmark used in our experiments is a hardware 
implementation of an exhaustive key search attack against 
Data Encryption Standard (DES).  Exhaustive  key  search 
is an attack aimed at breaking a cipher by checking all 
possible keys one by one. To be able to perform this 
attack, an opponent must know a short fragment of the 
message and a corresponding fragment of the ciphertext 
(encrypted message). By decrypting a fragment of the 
ciphertext with a given key, and comparing the result with 
a known fragment of the message, a single key can be 
verified. By repeating the same operation with all possible 
key values, one is guaranteed to find the correct key. The 
number of all possible keys in DES is 256 ≈ 7.2 ⋅ 1016. This 
large number of repetitions calls for parallelization of 
computations. Additionally, since DES was designed to be 
efficient in hardware rather than in software, an FPGA 
based hardware accelerator can speed up the required 
computations by orders of magnitude compared to the 
purely software parallel implementation.  

The inputs to each benchmark are the message block, 
the ciphertext block, the beginning of the key range, and 
the key range size. The output is the number and the list of 
matching keys. The time of the benchmark execution can 
be set to an arbitrary value, since it is directly proportional 
to the key range size, and almost independent of other 
parameters. In our experiments, key range was set to 
values that guaranteed the execution time of single jobs 
equal to 120 s.  

Our implementation consists of two parts. Hardware 
part was written in VHDL, and was transformed into the 
FPGA configuration bitstream using Xilinx tools. 
Software part is responsible for reserving an FPGA board 
for an exclusive use, downloading the configuration 
bitstream to the board, transferring input parameters to the 
hardware part, collecting results generated by the board, 
and releasing the board. During the majority of the time, 
the program is idle and its only function is to wait for a 
board to complete execution. This way, the only resource 
of the execution hosts which is fully utilized during the 

benchmark execution is the time of the FPGA-based 
accelerator.  

Each experiment consisted of running 100 jobs 
submitted to LSF one at a time in the pseudorandom time 
intervals. All jobs were submitted from the same Linux 
machine, and belonged to a single user of the system. The 
rate of the job submissions was chosen to have a Poisson 
distribution. The submission rate was relatively high with 
an average interval between consecutive job submissions 
equal to 5 seconds.  

All jobs were the instances of the exhaustive key 
search benchmark, and differed only with values of input 
parameters. All these jobs required acceleration by the 
FPGA boards. The same Linux machine was used as the 
submission host and the master host. The primary job 
requirement specified during the job submission was an 
availability of the specific type of the FPGA board. The 
second parameter specified during the job submission was 
the estimated execution time of the job. 

In all experiments, LSF was configured as follows: A 
maximum number of LSF jobs that can be dispatched to a 
single CPU was set to one. The scheduling policy was 
"first come first served". The configuration bitstreams used 
to reconfigure FPGA boards were transferred to the 
execution hosts using the stage-in/stage-out capabilities of 
LSF.  The dispatching interval, which determines how 
often the LSF scheduler attempts to dispatch pending jobs, 
MBD_SLEEP_TIME, was set to 2 seconds. The FPGA 
board availability was declared as a new dynamic 
resource. A value of this resource was separate for each 
execution host and was updated by ELIM every second. 
 
5. Experimental Results 
 

The behavior and performance of the extended Job 
Management System is shown in Fig. 6. For each FPGA 
board, two timing traces are presented. The bottom trace 
shows timing intervals when jobs dispatched to the given 
execution host are executed. The numbers above these 
intervals are the numbers of jobs in the order of their 
submission. The top trace shows time intervals when 
ELIM reports to LIM that the FPGA board is free for use 
by another job. The very bottom trace in Fig. 6 is common 
for the entire system, and shows points in time when jobs 
are being submitted to LSF from the submission host. 

In all experiments, all jobs are being submitted to JMS 
shortly after the beginning of the experiment, and as a 
result spend most of the time waiting in the queue for their 
turn to execute. At the beginning of every experiment 
ELIM daemons running on each execution host report to 
LSF that all FPGA-boards are available for scheduling. As 
soon as a job is dispatched to the given machine for 



. 
Figure 6. Behavior, performance, and utilization of the extended Job Management System

  
execution, ELIM running on the same machine becomes 
aware that the FPGA board is not any longer available. 
Similarly, as soon as any job completes its execution, 
ELIM reports to LIM that the board is available for use by 
another job.  We have performed five iterations of the 
described above experiment, and computed average board 
utilization during the experiment. This FPGA board 
utilization varied between 81 and 86% as shown in Table 
2. 
 

Table 2. Utilization of the FPGA boards during 
five iterations of the exhaustive key search 

experiment 
 

Experiment iteration Utilization of FPGA boards 
1 86% 
2 82% 
3 82% 
4 81% 
5 83% 

 
 
6. Conclusions 
 

Four popular Job Management Systems − LSF, PBS 
Pro, Sun Grid Engine / CODINE, and Condor − were 
compared and evaluated with respect to their suitability for 
being extended to support reconfigurable computing 

resources and tasks.   The general architecture of the 
extended system was developed. LSF, PBS Pro, Sun Grid 
Engine / CODINE were shown to be easily extendable 
without any need for changes in the source code of these 
systems. An extension of LSF, supporting several popular 
FPGA accelerator boards was developed and 
experimentally tested in a testbed consisting of Windows 
and Linux workstations. Our experiments have proven the 
correctness of our concept and the feasibility of its 
implementation using COTS components. The efficiency 
of the extended system measured in terms of the average 
utilization of reconfigurable resources appeared to reach 
86% for our benchmark based on the exhaustive key 
search for the DES cipher. 
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