

Performance and Overhead in a Hybrid Reconfigurable Computer

Osman Devrim Fidanci1, Dan Poznanovic2, Kris Gaj3, Tarek El-Ghazawi1, Nikitas Alexandridis1

1George Washington University, 2SRC Computers Inc., 3George Mason University

Abstract

In this paper, we overview general hardware

architecture and a programming model of SRC-6ETM
reconfigurable computers, and compare the performance
of the SRC-6E machine vs. Intel® Pentium IVTM. SRC-6E
execution time measurements have been performed using
three different approaches. In the first approach, the entire
end-to-end execution time is taken into account. In the
second approach, the configuration time of FPGAs have
been omitted. In the third approach both configuration and
data transfer overheads have been omitted. All
measurements have been done for different numbers of
data blocks. The results show that the SRC-6E can
outperform a general-purpose microprocessor for
computationally intensive algorithms by a factor of over
1500. However, overhead due to configuration and data
transfer must be properly dealt with by the application or
the system’s run-time environment to achieve the full
throughput potential. Some techniques are suggested to
minimize the influence of the configuration time and
maximize the overall end-to-end system performance1.

1: Introduction

The SRC-6E Reconfigurable Computing Environment
is one of the first general-purpose reconfigurable
computing machines combining the flexibility of
traditional microprocessors with the power of Field
Programmable Gate Arrays (FPGAs). In this environment,
computations can be divided into those executed using
microprocessor instructions, and those executed in
reconfigurable hardware. The programming model is
aimed at separating programmers from the details of the
hardware description, and allowing them to focus on an
implemented function. This approach allows the use of
software programmers and mathematicians in the
development of the code, and substantially decreases the
time to the solution.

1 This work was partially supported by Department of
Defense through the LUCITE contract no. MDA904-98-
CA0810000.

In this paper we investigate the possible speed-up that
can be obtained using the SRC-6E Reconfigurable
Computing Environment vs. a traditional PC based on the
Pentium 4 microprocessor. Our benchmarks consist of the
high-throughput implementations of Triple DES and DES
Breaker algorithms in both environments. Triple DES, is
one of the three standardized secret-key ciphers
recommended for use in the U.S. government, and is
widely used worldwide in multiple commercial
applications. DES Breaker is a technique for breaking an
old encryption standard, DES, based upon an exhaustive
key search algorithm, i.e., testing all possible encryption
keys one by one.

2: SRC-6E General Purpose Reconfigurable
Computer

2.1. Hardware architecture

SRC-6E is a hybrid-architecture platform, which
consists of two double-processor boards and one Multi-
Adaptive Processor (MAPTM) module (see Figure 1). The
MAP module consists of two MAP processors, each
including two user programmable Xilinx® Virtex II
XC2VTM6000 FPGA devices. This way, the SRC-6E
system achieves a 1:1 microprocessor to FPGA ratio.
Processor boards are connected to the MAP processors
through the so-called SNAP cards. A SNAP card plugs
into a DIMM slot on a microprocessor motherboard and
provides interconnect between the MAP board and one of
the microprocessor boards. Each SNAP card can support
the peak bandwidth of 800 MB/s. [1].

2.2. Programming model

The SRC-6E has a similar programming model as a
conventional microprocessor-based computing system, but
needs to support additional tasks in order to produce logic
for the MAP reconfigurable processor, as shown in Figure
2.

There are two types of the application source files to be
compiled. Source files of the first type are compiled
targeting execution on the Intel platform. Source files of

2 Intel®
micro-

processors
SNAP MAP

processor

2 Intel®
micro-

processors
SNAPChain

ports

800 MB/s 800 MB/s

MAP
processor

MAP module

2 Intel®
micro-

processors
SNAP MAP

processor

2 Intel®
micro-

processors
SNAPChain

ports

800 MB/s800 MB/s 800 MB/s800 MB/s

MAP
processor

MAP module

Figure 1. General Hardware Architecture of SRC-6E

the second type are compiled targeting execution on the
MAP.

A file that contains the main program to be executed on
the Intel processor is compiled using the microprocessor
compiler to produce a relocatable object (.o) file. All files
containing routines that execute on the MAP are compiled
by the MAP FORTRAN compiler, mftn, or the MAP C
compiler, mcc. These compilers produce several
relocatable object files (.o), corresponding to respective
subroutines.

Object files resulting from both the Intel® and MAP
compilation steps are then linked with the MAP libraries
into a single executable file. The resulting binary file may
then be executed on the SRC-6E Intel and MAP hardware,
or run in the emulation mode. Environment variables
determine the mode of execution.

Application
sources

Microprocessor
Compiler

MAP
Compiler

Place
& route

.o files .o files Logic .bin

Linker

Application
Executable

MAP
libraries

Application
sources

Microprocessor
Compiler

MAP
Compiler

Place
& route

.o files .o files Logic .bin

Linker

Application
Executable

MAP
libraries

Figure 2. SRC-6E Compilation Process

2.2.1. Compiler architecture of MAP. The MAP
compiler translates program sources that have been
developed for the MAP execution into relocatable object
files. The translation process has several steps, each
performed by a distinct component of the MAP compiler,
as shown in Figure 3.

The optimization phase of the compiler performs
language syntax and semantic analysis followed by the
classical scalar and loop optimization. During the Data
Flow Graph (DFG) generation phase, the dataflow graph
representing relationships between basic blocks of the
program procedure is created. In this graph, basic
operations are represented as nodes connected by the input
and output arguments. Additional nodes are inserted for
connecting blocks of graph and communicating data
between blocks. Redundant nodes are pruned or optimized
away [1].

The Verilog generator phase of compilation can be
regarded as the “code generator” for the MAP. The
Verilog generator translates the dataflow graph into its
own internal format. After this translation, Verilog
generator produces synthesizable Verilog code.

A commercial tool Synplify ProTM is used for the logic
synthesis of the obtained Verilog file, and produces at the
output the netlist EDIF file and constraint file. These files
together with earlier synthesized macro files become an
input for the place and route tools. The place and route
tools, Xilinx® Integrated Software EnvironmentTM,
complete the bitstream creation process for the MAP.

The configuration integrator is a small program that
takes as input FPGA bitstream files and loads them into
static structures contained in C functions. C files obtained
from the MAP compilation process are then compiled
together with the remaining application source files. This
separate compilation of all C files is done with the Intel µP
as a target microprocessor and produces as output an Intel
executable. This executable can then be run on the SRC-
6E system.

HLL Source
(FORTRAN, C)

Application
Executable

Optimization

DFG Generation

Logic Partitioning

Verilog Generation

Synthesis, Place & Route

SRC
Macros Customer

Macros
Run-time
Library

Figure 3. MAP Compilation Process

2.2.2. Macro integration. The MAP compiler translates
the source code’s various basic operations into macro
instantiations. Here, macro can be defined as a piece of
hardware logic designed to implement a certain function.
Since users often wish to extend the built-in set of
operators, the compiler allows users to integrate their own
macros into the compilation process. The macro is invoked
from within the FORTRAN subroutine or C function by
means of a subroutine call.

In SRC-6E platform, macros can be categorized by
various criteria, and the compiler treats them in different
ways based on their characteristics. In the MAP compiler,
four characteristics are particularly relevant:

A macro is “stateful” if the results it computes are
dependent upon previous data it has computed or seen. In
contrast “non-stateful” macro computes values using only
its current inputs; it has no memory of its past values [4].
A macro is “external” if it interacts with parts of the
system beyond the code block in which it lives [4].

A “pipelined” macro is able to accept new data values
on its inputs in every clock cycle. Since the MAP compiler
produces pipelined inner loops, the macros that will be
used in such loops must be capable of pipelined operation
[4].

3: Triple DES macro integration

3.1. Triple DES algorithm

In order to compare the performance of SRC-6E
Reconfigurable Computing Environment and a
conventional computer based on Intel® Pentium 4
processor, we have implemented the same algorithm in
both environments. Our algorithm of choice is Triple DES,

an American encryption standard and one of the most
popular encryption algorithms used worldwide.

Triple DES by itself can be defined in a number of
ways. In this paper, we use a Triple DES version proposed
by Tuchman that uses only two different keys [3]. This
version follows an encryption-decryption-encryption
(EDE) sequence:

C = EK1[DK2[EK1[P]]],

where E and D denote DES encryption and description,
respectively. Although there is no cryptographic benefit to
using decryption in the second stage, nevertheless, it
provides users of Triple DES with flexibility of
communicating with users of an older encryption standard
- single DES. This reduction can be accomplished by
setting both keys of Triple DES to the same value, as
shown below:

C = EK1[DK1[EK1[P]]] = EK1[P]

Triple DES with two keys is stronger and more reliable

alternative to single DES. Triple DES is used in very
popular Internet applications and protocols such as PGP
and S/MIME. Triple DES has also been adopted for use in
the key management standards ANSI X9.17 and ISO 8732.

3.2. DES encryption and decryption structure

DES encryption takes 64-bit plaintext block (data) and
64-bit key (including 8 bits of parity) as inputs and
generates a 64-bit ciphertext block (encrypted data). As
shown in Figure 4, DES consists of 16 identical rounds
supplemented by a few auxiliary transformations.

Initial Permutation

32-bit Swap

Inverse In.

Round 2

Round 16

Round 1

Permuted Choice 2

Permuted Choice 2
Permuted Choice 2

Permuted Choice 1

Left Circ. Shift

Left Circ. Shift

Left Circ. Shift
K1

K2

K16

64-bit plaintext 64-bit key

64-bit ciphertext

Figure 4. General architecture of DES

We have implemented DES using Verilog HDL as a non-
stateful, pipelined macro with 17 pipeline stages. Triple
DES was implemented in software by instantiating DES
macro three times within the program subroutine.

4: Execution time measurements for the
Triple DES application

4.1. SRC-6E MAP measurements

Execution of an algorithm on the MAP requires that the
FPGA devices are first configured with the algorithm
logic. A first execution of a given subroutine on the MAP
performs this configuration. At each invocation of the
subroutine, there is a check of the configuration bitstream
to be loaded to the MAP. In case, there is no change in the
required configuration, the configuration is not repeated.
In this case, the time to configure the MAP is amortized
over all subsequent calls to the same subroutine.

The execution time measurement on the SRC-6E
platform has been performed using three different
approaches.
1. Total execution time, including both configuration and

data transfer overheads (Total Time). By
configuration overhead we mean time necessary to
configure system FPGAs. By data transfer overhead
we mean time necessary to transfer input and output
data between the main microprocessor memory
(System Common Memory, SCM) and the MAP’s on-
board memory (OBM).

2. Total execution time without configuration overhead
(Total Time w/o Config).

3. Total execution time for MAP only. This time does
not include either configuration or data transfer
overheads (MAP Time).

All the SRC-6E time measurements have been done
using second() routine provided in the MAP compiler
library. This routine is based on the number of clock
cycles used by the processor.

Table 1 shows the execution time and throughput for all
three measurement approaches explained above. A number
of encrypted data blocks have been varied from 1024 to
500,000. Each data block is 64-bit (8-byte) long. Column 2
shows the total execution time including both
configuration and communication overhead. The
corresponding throughput is calculated as a ratio of the
number of encrypted data blocks (in Mbytes) to the total
execution time in seconds. The results are given in column
3.

Column 4 shows the total execution time without
configuration overhead. By subtracting column 4 from
column 2, we can find the configuration time for the
FPGA on the MAP board. This time is approximately
equal to 100 milliseconds. As we can see from column 5,
there is a significant increase in the system throughput
when we avoid configuration time.

In column 6, the execution time for MAP only is
provided. This time does not include any configuration or
communication overheads. Column 7 shows a very large
increase in the throughput of the system. The MAP
implementation of the Triple DES algorithm is pipelined
and therefore creates an output block every clock cycle.
This was demonstrated by the MAP throughput of 799.8
MB/s. Nevertheless, since the configuration and data
transfer overheads were not considered, this measurement
can only show the data processing throughput for the
FPGA itself, and not for the entire system.

0

20

40

60

80

100

120

140

160

1024 10,000 25,000 50,000 100,000 250,000 500,000

Execution time [ms]

Number of encrypted blocks

configuration

data transfer
computation

0

20

40

60

80

100

120

140

160

1024 10,000 25,000 50,000 100,000 250,000 500,000

Execution time [ms]

Number of encrypted blocks

configuration

data transfer
computation

Figure 5. Components of the total execution time
as a function of the number of encrypted blocks
for high-throughput Triple DES encryption

Table 1. Execution time and Throughput for three different measurement approaches

Length
(words)

Total time
(sec)

Throughput
(MB/sec)

Total time
w/o config (sec)

Throughput
w/o config
(MB/sec)

MAP time
(sec)

MAP
Throughput

(MB/sec)
1024 0.099 0.08 0.00050 16.29 1.12E-05 730.12

10,000 0.100 0.80 0.00133 60.33 0.000101 792.23
25,000 0.102 1.96 0.00266 75.19 0.000251 796.88
50,000 0.105 3.81 0.00492 81.30 0.000501 798.44

100,000 0.108 7.37 0.00932 85.84 0.001001 799.22
250,000 0.123 16.27 0.02228 89.77 0.002501 799.69
500,000 0.146 27.32 0.04421 90.48 0.005001 799.84

In Figure 5, components of the total execution time for
Triple DES encryption are shown as a function of the
number of processed data blocks. It can be seen that for all
considered numbers of blocks, configuration time
dominates the entire execution time. However, even if the
configuration is done in advance or is amortized over
encryption of multiple messages, FPGA devices are still
relatively poorly utilized. This is because more time is
spent on transferring data between the microprocessor
board and the MAP board than on the FPGA computations
themselves.

4.2. Intel Pentium 4 measurements

We have run a public domain code of Triple DES on a
personal computer equipped with one 1.8 GHz Pentium P4
processor with 512KB cache and 1GByte memory. Two
cases have been considered: C implementation of the
algorithm and an optimized assembly language
implementation of the algorithm.

4.2.1. C Code for Triple DES (Non-optimized): In the
non-optimized case, C code is compiled with the Intel C++
compiler v. 5.0 with the -O3 level optimization. The
results are given in the left part of Table 2. In contrast to
the SRC-6E platform, there is no significant
dependence

Table 2. Total execution time of Triple DES for
Pentium 4 processor using optimized and non-

optimized DES code

 P4 non-optimized P4 optimized

Length

(words)

Total time
(sec)

Throu-
ghpu

(MB/sec)

Total time
(sec)

Throu-
ghput

(MB/sec)
1024 0.00379 2.15920 0.00102 8.06299

10,000 0.03663 2.18400 0.01010 7.92354
25,000 0.09279 2.15540 0.02561 7.80969
50,000 0.18637 2.14627 0.05116 7.81937

100,000 0.37150 2.15343 0.09960 8.03253
250,000 0.91990 2.17415 0.25478 7.84985
500,000 1.83200 2.18341 0.49841 8.02546

between the throughput and the number of input blocks.
This is because all blocks are processed sequentially, one
at a time.

4.2.2. Assembly Code for Triple DES (Optimized): An
optimized implementation of Triple DES considered in
this paper is based on [5]. It contains a mixture of the C
code and assembly language code. The entire program is
compiled using GNU “gcc” version 2.96 20000731 (Red
Hat Linux 7.3 2.96-112) with the -O4 optimization option.
The results are given in the right part of Table 2. As we
can see from Table 2, the total execution time on Pentium
P4 decreased by a factor of approximately four as a result
of moving majority of computations from C to assembly
language.

5: Comparisons for the Triple DES
Application

Based on the measurements described in Section IV, the
speed-ups of the SRC-6E machine vs. Intel Pentium 4 PC
are given in Table 3. Two cases are considered for the
Pentium 4 implementation of Triple DES, non-optimized
implementation described in Section 4.2.1 and optimized
implementation described in section 4.2.2. In both cases,
the speed-up increases as a function of the number of data
blocks processed, and is the highest for the largest
considered input of 500,000 data blocks.

For the case of optimized Pentium assembly language
implementation, when all overheads of the SRC-6E
machine are included, the SRC-6E platform is
approximately 3.5 times faster than Pentium 4. Without
configuration time, the speed-up exceeds 11. Without
configuration or communication overheads (MAP only),
the speed-up of SRC-6E reaches 100. For the case of non-
optimized Pentium C implementation, all SRC speed-ups
are approximately four times larger.

In Figure 6, the throughput curves for both SRC-6E
MAP and the Intel Pentium processor are given. For the
reconfigurable computer, the throughput rates are given for
two cases. In the first case, all overheads are taken into
account. In the second case, the configuration time is

Table 3. Speed-ups of SRC-6E vs. Pentium 4 for high-throughput Triple DES encryption

MAP vs. Non-optimized P4 MAP vs. Optimized P4

Length
(words)

Speedup
Total

Speedup
Total w/o

Config

Speedup
MAP

Speedup
Total

Speedup
Total w/o

Config

Speedup
MAP

1024 0.04 7.5 338.2 0.01 2.0 90.6
10000 0.37 27.6 362.8 0.10 7.6 100.0
25000 0.91 34.9 369.7 0.25 9.6 102.0
50000 1.78 37.9 372.0 0.49 10.4 102.1

100000 3.42 39.9 371.1 0.92 10.7 99.5
250000 7.49 41.3 367.8 2.07 11.4 101.9
500000 12.51 41.4 366.3 3.40 11.3 99.7

MAP vs. P4

0.0

20.0

40.0

60.0

80.0

100.0

0 200000 400000 600000

Stream size (words)

Th
ro

ug
hp

ut
 (M

B
/s

ec
) P4

MAP w/o config
overhead
MAP w config
overhead
P4 Optimized

Figure 6. Throughput curves for both SRC-6E MAP and Pentium 4 processor

excluded. Additionally, two throughputs of the Pentium 4
processor are given; one for the optimized program and the
second for the non-optimized C only P4 program.

6: Execution time measurements for DES
breaker application

As a second benchmark for SRC-6E MAP vs. P4, we
have employed the DES Breaker based on the exhaustive
key search algorithm. In this algorithm, the entire key
space is searched for a match between a given pair of a
ciphertext block and the corresponding plaintext block. In
each iteration of the algorithm, a given plaintext block is
encrypted using a candidate key, and the result is
compared against the expected ciphertext. If the match is
not found, the key is incremented by one, otherwise the
algorithm returns the key as a final solution.

We have measured the performance of the DES Breaker
application for both the Pentium 4 and SRC-6E platforms.
For the SRC-6E platform, we have made the time
measurements based on three different approaches that are
defined in previous sections. The difference is that in this
application we take scalability and flexibility advantages
of reconfigurable computers into account by using more
than one DES unit for the key search in FPGAs. These
measurements are given in Table 4 where nX refers to a
number of DES units operating in parallel within MAP.

In Figure 7, the components of the total execution time
are presented for the case of a single DES unit. As we can
see, a vast majority of time is spent for actual
computations, a small fixed amount of time for
configuration, and almost no time for data transfer. This is
because all new inputs (new keys) are computed on the
MAP board itself and do not need to be transmitted from
the microprocessor board. This is the most favorable

scenario from the point of view of performance of SRC-
6E.

As a second step, we have implemented DES Breaker
application in two different ways on Pentium 4 1.8GHz
PC, using the same hardware and software environments
as in the case of the Triple DES benchmark. As one way of
implementing DES Breaker, we have used the non-
optimized implementation of DES, coded entirely in C,
described in Section 4.2.1. In this implementation, both
pre-calculation of the round keys and DES encryption are
coded in C. The results are given in Table 5. As a second
way of implementing DES Breaker application, we have
used an optimized version of the DES P4 implementation
based on [5]. In this case, an optimized assembly language
code was used for DES encryption. The results are given
in Table 5. Unfortunately, as we discovered, the optimized
version of DES has been optimized specifically for
encryption of long streams of data with the same key, and
appeared to be extremely inefficient when the keys needed
to be changed for every new input data block. As a result,
since the pre-calculation of the round keys takes
significantly longer than DES encryption itself, the total
execution time of the DES breaker application is longer for
the optimized version of the DES code than for the non-
optimized version of the DES code.

7: Comparisons for DES breaker application

Using the total execution time measurements, the results of
which are given in Tables 4 and 5 (second column), we
easily derived speedup factors for SRC-6E vs. a PC based
on Pentium 4 processor. Only the case of the

Table 4. Execution time and Throughput for three

different measurement approaches where nX
refers to the number of parallel DES engines in

MAP

Number
of DES

units

Search Size
(keys)

Total
Time
(sec)

Total
Time
w/o

Config.
(sec)

MAP
only
(sec)

128,000 0.101 0.0016 0.00128
1,000,000 0.109 0.0103 0.01001

1 X

100,000,000 1.101 1.0006 1.00001
128,000 0.101 0.0009 0.00064

1,000,000 0.104 0.0053 0.00500

2 X
100,000,000 0.602 0.5006 0.50000

128,000 0.101 0.0006 0.00032
1,000,000 0.102 0.0028 0.00250

4 X

100,000,000 0.352 0.2503 0.25000
128,000 0.097 0.0005 0.00016

1,000,000 0.098 0.0015 0.00125

8 X
100,000,000 0.222 0.1253 0.12500

Table 5. Total execution time of the DES Breaker
for Pentium 4 processor using optimized and

non-optimized DES code

Search size
(keys)

Time for non-
optimized DES

(sec)

Time for
optimized DES

(sec)
128,000 0.25 3.22

1,000,000 1.97 24.64
100,000,000 198.40 2394.51

non-optimized implementation of DES on Pentium 4 was
considered, since the optimized implementation of DES
appeared to be significantly less efficient for this
application.

0

200

400

600

800

1,000

1,200

128,000 1,000,000 100,000,000
Number of tested keys

Execution time [ms]

configuration

data transfer
computation

0

200

400

600

800

1,000

1,200

128,000 1,000,000 100,000,000
Number of tested keys

Execution time [ms]

configuration

data transfer
computation

Figure 7. Components of the total execution time
as a function of the number of tested keys for the
DES breaker application

Table 6. Speedup for SRC-6E vs. Pentium 4

1.8GHz processor for the compiler non-optimized
case. Where nX refers to number of parallel DES

engines in MAP.

Numbe
r of

DES
units

Search Size
(keys)

Speedu
p

Total

Speedu
p

w/o
Config.

Speedu
p

MAP
only

128,000 2.5 157.4 194.0
1,000,000 18.1 191.3 197.3

1 X

100,000,00
0 180.2 198.3 198.4

128,000 2.5 265.1 387.8
1,000,000 18.9 373.0 394.6

2 X

100,000,00
0 329.4 396.3 396.8

128,000 2.5 406.7 774.6
1,000,000 19.3 706.0 789.0

4 X

100,000,00
0 563.0 792.6 793.6

128,000 2.6 500.0 1562.5
1,000,000 20.1 1313.3 1576.0

8 X

100,000,00
0 893.7 1583.4 1587.2

When 8 units of DES are implemented in parallel on a
single FPGA, then even if we take into account all
configuration and data transfer overheads, SRC-6E
platform is still approximately 894 times faster compared
to the C program running on a PC with 1.8 GHz Pentium
4. This speed up factor reaches 1583 when we omit the
configuration time. When we consider only MAP (FPGA
processor board) the speed up is about 1587.

8: Conclusions

The two benchmarks, Triple DES and DES Breaker
represent two distinct classes of algorithms. Both are
compute intensive, but they differ in their data transfer
characteristics: Triple DES encryption is based on real-
time data streaming, while DES Breaker has minimal
input/output requirements. In both cases the SRC-6E
system outperforms the P4 microprocessor. However, the
speed-up factor varies significantly depending on the
application type.

For Triple DES as a benchmark, we have demonstrated
the overall speed-up of 3 between the SRC-6E machine
and the standard PC. When the configuration time of
FPGAs in the SRC-6E machine was eliminated the speed-
up increased to a factor of 11. When both configuration
and communication overheads were eliminated, the speed-
up reached a factor of 100.

On the other hand, for the DES Breaker benchmark, an
894x speedup has been achieved even with configuration
of the FPGAs present. Eliminating the configuration time
yielded a 1583x speedup for SRC-6E over P4. The
computational intensity and the relative minimal data
movement put the reconfigurable processor at its best
advantage.

Based on these results, we clearly see the importance of
an overhead management, in particularly eliminating the
configuration time from the main computational path.
Obviously, the configuration time is not unique to the
SRC-6E. It exists for all systems that use FPGAs.
Configuration times would be worse for systems that use
the serial port for configuration. For the applications that
require long execution time, such as DES Breaker, the
configuration time overhead can be negligible.
Nevertheless, for short and sequential applications,
configuration time is a major source of the performance
degradation and must be minimized or eliminated. To
deliver the performance potential of reconfigurable
computing in the general purpose computing arena, the
compiler and run time libraries must eliminate
configuration time from the computational path. Latency
hiding techniques such as preloading configurations during

initialization, and ping-pong allocation of reconfigurable
chips and processors can be used.

In case of run-time reconfiguration, the run-time
switching from one algorithm to another would cause
additional demands upon reconfiguration time. The
increase in the algorithm switching frequency would make
the SRC-6E system inefficient from the execution point of
view compared to the standard microprocessors if latency
hiding is not utilized.

SRC understands the impact of the reconfiguration of
the FPGAs in the MAP and is working on methods that
will reduce the apparent configuration time for multiple
algorithms using the MAP. Some of the techniques that
can be used are flip-flopping the FPGA used by an
algorithm. This would mean that two algorithms utilizing
single FPGAs can be loaded into a MAP and thereby
incurring the configuration only once. There are cases that
will require more elegant solutions if there are more than
two algorithms using the MAP or for algorithms requiring
both FPGAs in the MAP.

There are significant application performance gains to
be achieved using run time reconfigurable systems like the
SRC-6E. Taking a system wide approach that addresses
the programming model, the resource management, and
the overhead management will permit these performance
gains to be achieved in a wide range of applications.

Acknowledgement

We would like to thank the SRC Technical Support
Group for their excellent 24-hour support. Also, we would
like to thank the members of High Performance
Computing Laboratory at George Washington University
for their co-operation.

References

[1] SRC-6E Fortran Programming Environment Guide, SRC

Computers, Inc. 2002
[2] William Stallings, Cryptography and Network Security,

Prentice Hall, 1999
[3] Tuchman, W. “Hellman Presents No Shortcut Solutions to

DES.” IEEE Spectrum, July 1979
[4] Macro Integrator’ s Manual v1.0, SRC Computers, Inc. 2002
[5] Phil Karn, Software Packages and Utilities,

http://www.ka9q.net/code/des/index.html.

	Abstract
	1: Introduction
	2.1. Hardware architecture
	2.2. Programming model
	2.2.2. Macro integration. The MAP compiler translates the s

	3: Triple DES macro integration
	3.1. Triple DES algorithm
	3.2. DES encryption and decryption structure

	4: Execution time measurements for the Triple DES applicatio
	4.1. SRC-6E MAP measurements
	In Figure 5, components of the total execution time for Trip
	4.2. Intel Pentium 4 measurements
	5: Comparisons for the Triple DES Application
	6: Execution time measurements for DES breaker application
	7: Comparisons for DES breaker application

	8: Conclusions
	References

