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Abstract. In this paper, we present the results of the first phase of a project
aimed at implementing a full suite of IPSec cryptographic transformations in
reconfigurable hardware. Full implementations of the new Advanced
Encryption Standard, Rijndael, and the older American federal standard, Triple
DES, were developed and experimentally tested using the SLAAC-1V FPGA
accelerator board, based on Xilinx Virtex 1000 devices. The experimental clock
frequencies were equal to 91 MHz for Triple DES, and 52 MHz for Rijndael.
This translates to the throughputs of 116 Mbit/s for Triple DES, and 577, 488,
and 423 Mbit/s for Rijndael with 128-, 192-, and 256-bit keys respectively. We
also demonstrate a capability to enhance our circuit to handle the encryption
and decryption throughputs of over 1 Gbit/s regardless of the chosen algorithm.
Our estimates show that this gigabit-rate, double-algorithm,
encryption/decryption circuit will fit in one Virtex 1000 FPGA taking
approximately 80% of the area.

1. Introduction

IPSec is a set of protocols for protecting communication through the Internet at the IP
(Internet Protocol) Layer [15, 22]. One of the primary applications of this protocol is
an implementation of Virtual Private Networks (VPNs). In IPSec Tunnel Mode,
multiple private local area networks are connected through the Internet as shown in
Fig. 1a. Since the Internet is an untrustworthy network, a secure tunnel must be
created between security gateways (such as firewalls or routers) belonging to private
networks involved in the communication. The information passing through the secure
tunnel is encrypted and authenticated. Additionally, the original IP header, containing
the sender's and receiver's addresses is also encrypted, and replaced by a new header
including only information about the security gateway addresses. This way a limited
resistance against the traffic control analysis is accomplished. A second use of IPSec
is client-to-server or peer-to-peer encryption and authentication (see Fig. 1b).  In
IPSec Transport Mode ,  many independent  pair-wise  encryption  sessions  may exist
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simultaneously.  The large number of connections and high bandwidth supported by a
single security gateway or server suggests the use of hardware accelerators for
implementing cryptographic transformations.

The suite of cryptographic algorithms used for encryption and authentication in
IPSec is constantly evolving. In the case of encryption, current implementations of
IPSec are required to support DES, and have the option of supporting Triple DES,
RC5, IDEA, Blowfish, and CAST-128. Since DES has been shown to be vulnerable
to an exhaustive key-search attack using the computational resources of a single
corporation [2], the current implementations of IPSec typically support Triple DES. In
1997, the National Institute of Standards and Technology (NIST) initiated an effort
towards developing a new encryption standard, called AES (Advanced Encryption
Standard) [1]. The development of the new standard was organized in the form of a
contest coordinated by NIST. In October 2000, Rijndael was announced as the winner
of the contest and a future Advanced Encryption Standard. In November 2000, a first
Internet-draft was issued, proposing including AES-Rijndael as a required encryption
algorithm in IPSec, with the remaining AES contest finalists as optional algorithms to
be used in selected applications [11].

An encryption algorithm is not the only part of IPSec that is currently being
extended and modified. Other modifications currently being considered include
different modes of operation for encryption algorithms [18], hash functions used by
authentication algorithms [21], type and parameters of public key cryptosystems used
by a key management protocol, etc. The fast and hard to predict evolution of IPSec
algorithms leads naturally to prototype and commercial implementations based on
reconfigurable hardware.

An FPGA implementation can be easily upgraded to incorporate any protocol
changes without the need for expensive and time-consuming physical design,
fabrication, and testing required in case of ASICs. Additional capabilities appear
when an FPGA accelerator supports a real-time partial reconfiguration. In this case,
the accelerator can reconfigure itself on the fly to adapt to
• traffic conditions (e.g., by changing the number of packet streams processed

simultaneously),
• phase of the protocol (e.g., by using the same FPGA with time sharing for

implementing key exchange, encryption, and authentication),
• various key sizes and parameter values (e.g., by adjusting the circuit architecture to

different key sizes and different values of system parameters).



Additionally, several optional IPSec-compliant encryption, authentication, and key
exchange algorithms can be implemented, and their bitstreams stored in the cache
memory on the FPGA board. Algorithm agility accomplished this way can
substantially increase the system interoperability.

In this paper, we present the results of the first phase of our project aimed at
implementing a full suite of IPSec cryptographic transformations using SLAAC-1V
FPGA board. In this phase, two encryption algorithms AES-Rijndael and Triple DES
were implemented and experimentally tested in our environment.

2. FPGA Board

The SLAAC-1V PCI board is an FPGA-based computation accelerator developed
under a DARPA-funded project called Systems-Level Applications of Adaptive
Computing (SLAAC).  This project, led by USC Information Sciences Institute (ISI),
investigated the use of adaptive computing platforms for open, scalable,
heterogeneous cluster-based computing on high-speed networks. Under the SLAAC
project, ISI developed several FPGA-based computing platforms and a high-level
distributed programming model for FPGA-accelerated cluster computing [16]. About
a dozen universities and research labs are using SLAAC-1V for a variety of signal
and image processing applications.

The SLAAC-1V board architecture is based on three user-programmable Xilinx
Virtex XCV-1000-6 FPGA devices. Each of these devices is composed of 12,288
basic logic cells referred to as CLB (Configurable Logic Block) slices, and includes
32 4-kbit blocks of synchronous, dual-ported RAM. All devices can achieve
synchronous system clock rates up to 200 MHz, including input/output interface.

The logical architecture of SLAAC-1V is shown in Fig. 2. The three Virtex 1000
FPGAs (denoted as X0, X1, and X2) are the primary processing elements. They are
connected by a 72-bit “ring” path as well as a 72-bit shared bus.  The width of both
buses supports an 8-bit control tag associated with each 64-bit data word.  The
direction of each line of both buses can be controlled independently. The processing
elements are connected to ten 256K x 36-bit SRAMs  (Static Random Access
Memories) located on mezzanine cards. The FPGAs X1 and X2 are each connected to
four SRAMs, while X0 is connected to two.  The memory cards have passive bus
switches that allow the host to directly access all memories through X0.

About 20% of the resources in the X0 FPGA are devoted to the PCI interface and
board control module. The remaining logic of this device (as well as the entire X1 and
X2 FPGAs) can be used by the application developer.  The 32/33 control module
release uses the Xilinx 32-bit 33MHz PCI core. The control module provides high-
speed DMA (Direct Memory Access), data buffering, clock control (including single-
stepping and frequency synthesis from 1 to 200 MHz), user-programmable interrupts,
etc. The current 32/33 control module has obtained DMA transfer rates of over 1
Gbit/s (125 MB/s) from the host memory, very near the PCI theoretical maximum.
The bandwidth for SLAAC-1V using the 64-bit 66MHz PCI controller (using the
Xilinx 64-bit 66MHz core) has been measured at 2.2 Gbit/s. The user’s design located
in X0 is  connected  to the PCI  core via two 256-deep, 64-bit wide FIFOs.  The DMA
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Fig. 2. SLAAC-1V Architecture

controller located in the interface part of X0 can transfer data to or from these FIFOs
as well as to provide fast communication between the host and the board SRAMs. The
DMA controller load balances input and output FIFOs and can process large memory
buffers without host processor interaction. Current interface development includes
managing memory buffer rings on the FPGA to minimize host interrupts on small
buffers.

SLAAC-1V supports partial reconfiguration, in which part of an FPGA is
reconfigured while the rest of the FPGA remains active and continues to compute.  A
small dedicated Virtex 100 configuration control device is used to configure all
FPGAs and manages 6 MB of flash / SRAM as a configuration “cache”.

The work discussed in this paper was done in collaboration with the ISI Gigabit-
Rate IPSec (GRIP) project, which is funded in the DARPA Next Generation Internet
(NGI) program. The GRIP team has constructed a gigabit Ethernet daughter card
which connects to SLAAC-1V in place of the crossbar connection of the X0 chip. To
the host, the SLAAC-1V / GRIP system appears to be a gigabit Ethernet card with
optional acceleration features.  The GRIP team is currently customizing the TCP/IP
stack for the Linux operating system to take advantage of the hardware acceleration in
order to deliver fully-secure, fully-authenticated gigabit-rate traffic to the desktop.

3. Implementation of Rijndael

Rijndael is a symmetric key block cipher with a variable key size and a variable
input/output block size. Our implementation supports all three key sizes required by
the draft version of the AES standard, 128, 192, and 256 bits. Our key scheduling unit
is referred to as 3-in-1, which means that it can process all three key sizes. Switching
from one key size to the other is instantaneous, and is triggered by the appropriate
control signals. Our implementation is limited to the block size of 128-bits, which is
the only block size required by Advanced Encryption Standard. Implementing other
block sizes, specified in the original, non-standardized description of Rijndael is not
justified from the economical point of view, as it would substantially increase circuit
area and cost without any substantial gain in the cipher security.



Rijndael is a substitution-linear transformation cipher based on S-boxes and
operations in the Galois Fields. Below we describe the way of implementing all
component operations of Rijndael, and then present how these basic operations are
combined together to form the entire encryption/decryption unit.

3.1 Component Operations

Implementation of the encryption round of Rijndael requires realization of four
component operations: ByteSub, ShiftRow, MixColumn, and AddRoundKey.
Implementation of the decryption round of Rijndael requires four inverse operations
InvByteSub, InvShiftRow, InvMixColumn, and AddRoundKey.

ByteSub is composed of sixteen identical 8x8 S-boxes working in parallel.
InvByteSub is composed of the same number of 8x8-bit inverse S-boxes. Each of
these S-boxes can be implemented independently using a 256 x 8-bit look-up table.

A Virtex XCV-1000 device contains 32 4-kbit Block Select RAMs. Each of these
memory blocks is a synchronous, dual-ported RAM with the data port width
configurable to an arbitrary power of two in the range from 1 to 16. Each memory
block can be used to realize two table look-ups per clock cycle, one for each data port.

In particular, each 4-kbit Block Select RAM can be configured as a 512 x 8-bit
dual-port memory. If encryption or decryption are implemented separately, only the
first 256 bytes of each memory block are utilized as a look-up table. If encryption and
decryption are implemented together within the same FPGA, both uninverted and
inverted 256 byte look-up tables are placed within one memory block. In each case,
16 data bits are processed by one memory block, which means that a total of 8
memory blocks are needed to process the entire 128-bit input.

ShiftRow and InvShiftRow change the order of bytes within a 16-byte (128-bit)
word. Both transformations involve only changing the order of signals, and therefore
they can be implemented using routing only, and do not require any logic resources,
such as CLBs or dedicated RAM.

The MixColumn transformation can be expressed as a matrix multiplication in
the Galois Field GF(28):
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Each symbol in this equation (such as Ai, Bi, '03') represents an 8-bit element of
the Galois Field. Each of these elements can be treated as a polynomial of degree
seven or less, with coefficients in {0,1} determined by the respective bits of the
GF(28) element. For example, '03' is equivalent to '0000 0011' in binary, and to

C(x) = 0⋅x7 + 0⋅x6 + 0⋅x5 + 0⋅x4 + 0⋅x3 + 0⋅x2  + 1⋅x + 1⋅1 = x +1 (2)
in the polynomial basis representation.

The multiplication of elements of GF(28) is accomplished by multiplying the
corresponding polynomials modulo a fixed irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1. (3)



For example, multiplying a variable element A=a7 a6 a5 a4 a3 a2 a1 a0 by a constant
element '03' is equivalent to computing

B(x) = b7 x
7 + b6 x

6 + b5 x
5 + b4 x

4 + b3 x
3 + b2 x

2  + b1 x + b0 = (4)
=(a7 x

7 + a6 x
6 + a5 x

5 + a4 x
4 + a3 x

3 + a2 x
2  + a1 x + a0) ⋅ (x+1)

mod (x8 + x4 + x3 + x + 1).
After several simple transformations

B(x) = (a7 + a6)  x
7 +  (a6 + a5) x

6 + (a5 + a4)  x
5 + (a4 + a3+ a7)  x

4 + (a3 + a2+ a7)  x
3 +

+ (a2 + a1) x
2  + (a1 + a0+ a7) x + (a0 + a7), (5)

where '+' represents an addition modulo 2, i.e. an XOR operation.
Each bit of a product B, can be represented as an XOR function of at most three

variable input bits, e.g., b7 = (a7 + a6) , b4 = (a4 + a3+ a7), etc.
Each byte of the result of a matrix multiplication (1) is an XOR of four bytes

representing the Galois Field product of a byte A0, A1, A2, or A3 by a respective
constant. As a result, the entire MixColumn transformation can be performed using
two layers of XOR gates, with up to 3-input gates in the first layer, and 4-input gates
in the second layer. In Virtex FPGAs, each of these XOR operations requires only one
lookup table (i.e., a half of a CLB slice).

The InvMixColumn transformation can be expressed as a following matrix
multiplication in GF(28).
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The primary differences, compared to MixColumn, are the larger hexadecimal
values of the matrix coefficients. Multiplication by these constant elements of the
Galois Field leads to the more complex dependence between the bits of a variable
input and the bits of a respective product. For example, the multiplication A='0E' ⋅ B,
leads to the following dependence between the bits of A and B:

a7 = b7  + b6 + b5 + b4 (7)
a6 = b6  + b5 + b4 + b3 + b7 (8)
a5 = b5  + b4 + b3 + b2 + b6 (9)

  a4 = b4  + b3 + b2 + b1 + b5 (10)
a3 = b3  + b2 + b1 + b0 + b6 + b5                             (11)

  a2 = b2  + b1 + b0 + b6 (12)
  a1 = b1  + b0 + b5 (13)

    a0 = b0  + b7 + b6 + b5.                                       (14)
The entire InvMixColumn transformation can be performed using two layers of XOR
gates, with up to 6-input gates in the first layer, and 4-input gates in the second layer.
Because of the use of gates with the larger number of inputs, the InvMixColumn
transformation has a longer critical path compared to the MixColumn transformation,
and the entire decryption is more time consuming than encryption.

AddRoundKey is a bitwise XOR of two 128-bit words and can be implemented
using one layer of 128 look-up tables, which translates to 64 CLB slices. Assuming
that one operand of the bitwise XOR is fixed, this operation is an inverse of itself, so
no special transformation is required for decryption.
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3.2 General Architecture of the Encryption/Decryption Unit

The block diagrams of the encryption/decryption unit in the basic iterative
architecture and in the extended pipelined architecture are shown in Fig. 3. Only
registers R1, R3, R4, and R5 (shaded rectangles in Fig. 3) are present in the basic
iterative architecture. The remaining registers (transparent rectangles in Fig. 3) have
been added in the extended architecture based on the concept of inner-round
pipelining.

The register R1 is a part of Block SelectRAM, the synchronous dedicated
memory, used to implement ByteSub and InvByteSub transformations, so it was
chosen as a basic register in the basic iterative architecture. In this architecture, 11,
13, and 15 clock cycles are required in order to process one block of data for 128-,
192-, and 256-bit keys respectively. The critical path is located in the decryption
circuit, and includes AddRoundKey (an xor operation), InvMixColumn,
InvShiftRow, multiplexer, and InvByteSub (memory read). It is important to note that
our decryption circuit has a structure  (order of operations) similar to the encryption
circuit, but  still does not require any additional processing of round keys (unlike the
architecture suggested in [5] and adopted in [8, 9, 10]).

Introducing pipeline registers R2a-c and R0 allows the circuit to process two
independent streams of data at the same time. Our architecture assumes the use of the
Cipher Block Chaining (CBC) mode for processing long streams of data. The CBC
mode is the only mode required by the current specification of IPSec to be used with
DES and all optional IPSec encryption algorithms. It is also most likely to be the first
mode   recommended   for   use  together  with  AES.  The  encryption and decryption
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in the CBC mode are shown in Fig. 4. An initialization vector IV is different for each
packet and is transmitted in clear as a part of the packet header. The CBC mode
allows concurrent encryption of blocks belonging to different packets, but not to the
same packet. This limitation comes from the fact that the encryption of any block of
data cannot begin before the ciphertext of the previous block becomes available (see
Fig. 4a). The same limitation does not apply to decryption, where all blocks can be
processed in parallel.

In our implementation, the memory buffers M1, M2, and M3 are used to store the
last (i.e., the most recently processed) ciphertext blocks for up to 16 independent
streams of data. Before the processing of the given stream begins, the corresponding
memory location is set to the initialization vector used during the encryption or
decryption of the first block of data.

Our architecture allows the simultaneous encryption of two blocks belonging to
two different packets, and the simultaneous decryption of two blocks belonging to the
same packet or two different packets.

The new secret-key block cipher modes, currently under investigation by NIST,
are likely to allow unlimited parallel encryption and decryption of blocks belonging to
the same packet [18]. An example of such a mode, likely to be adopted by NIST in
the near future, is a counter mode [17]. Our implementation will be extended to
permit such new modes as soon as they become adapted as draft standards.

Our architecture can be extended by adding additional outer-round pipeline
stages, or implementing multiple instantiations of the same encryption/decryption
unit, and using them for parallel processing of data. The total throughput in these
extended architectures is directly proportional to the amount of resources (CLB slices,
dedicated RAMs) devoted to the cryptographic transformations.

3.3 Round Key Module

The round key module consists of the 3-in-1 key scheduling unit and 16 banks of
round keys. The banks of round keys are implemented using 8 Block SelectRAMs
configured as two memories 256 x 64 bits. These memories permit storing up to 16
different sets of round keys, with 16 consecutive memory locations reserved for each
set. Each set of subkeys may correspond to a different main key and a different
security association.

The 3-in-1 key scheduling unit of Rijndael is shown in Fig. 5a. The operation of
the circuit is described by formulas given in Fig. 5b. The unit is capable of computing
two  32-bit words of the key material (wi and wi+1) per one clock cycle, independently
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of the size of the main key. Since each round key is 128 bit long (the size of the input
block), two clock cycles are required to calculate each round key. Therefore, our key
scheduling unit is not designed for computing subkeys on the fly. Instead, all round
keys corresponding to the new main key are computed in advance and stored in one of
the memory banks. This computation can be performed in parallel with encrypting
data using previous main key, therefore key scheduling does not impose any
performance penalty.

4 Implementation of Triple DES

4.1 Basic Architecture

In order to realize the Triple DES encryption and decryption it is sufficient to
implement only one round of DES, as shown in Fig. 6a. The multiplexers mux1 and
mux2 permit loading new data block or feed back the result of the previous iteration.
Only half of the data block is transformed in each iteration, and this  transformation
depends on a round key coming from the key module. The DES-specific
transformation function F has been implemented as a combinational logic and directly
follows the algorithm specification. The multiplexers mux3 and mux4 choose the right
feedback for consecutive iterations. In the single DES implementation, these
multiplexers would not be required, because the feedback is always the same.
However, this is not the case for Triple DES because of the data swapping at the end
of the last round of DES. This feature becomes important when switching between the
first and the second, and between the second and the third DES encryption in Triple
DES. Performing the Triple DES encryption or decryption of one data block in the
CBC mode requires 48 clock cycles, exactly as many as the number of the cipher
rounds.
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4.2 Round Key Module

The DES key schedule, which serves as a basis for the Triple DES key schedule,
consists of very simple operations. Consecutive round keys are computed by rotating
two halves of the main 56-bit key by one or two positions depending on the number
of the round. The result of each next rotation goes through the Permuted Choice-2
function (PC-2), which selects 48 bits of a round key. Since DES key scheduling
requires much simpler operations than encryption/decryption unit, it can be easily
performed on the fly. This way only three 56-bit keys need to be stored on-chip. Our
Triple DES key scheduling unit is shown in Fig. 6b.

Four banks of the key memories are placed at the input to the key scheduling
circuit. Each bank contains three DES keys used by Triple DES. The user supplies 64-
bit keys to the circuit, but only 56-bits of each key are selected by the Permuted
Choice-1 function (PC-1) and stored in one of the memory banks. Each memory bank
can hold all three keys required for performing Triple DES. All memory banks are
built using dual-port memory, and can operate independently. They are organized in a
way that permits writing new key to one of the banks, while any other bank may be
used for the round key computations. The output of the round key memory goes to
two simple circuits, one computes keys for encryption, the other for decryption.

4.3 Extended Architecture

We are currently in the process of developing an extended pipelined architecture of
Triple DES. Our goal is to obtain throughput over 1 Gbit/s. Our approach is to fully
unroll single DES and introduce pipeline registers between cipher rounds, as shown in
Fig. 7. This leads to a capability of processing up to 16 independent data streams,
which gives a throughput of around 1.5 Gbit/s. We should be able to maintain clock
frequency at the similar or even greater level, since this architecture permits
significant simplifications compared to the basic iterative architecture. Namely,
multiplexers mux3 and mux4 are no longer required in any of the stages (see Fig. 6b),
and key scheduling can be greatly simplified as shown in Fig. 7b.
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5. Testing Procedure

Our testing procedure is composed of three groups of tests. The first group is aimed at
verifying the circuit functionality at a single clock frequency. The goal of the second
group is to determine the maximum clock frequency at which the circuit operates
correctly. Finally, the purpose of the third group is to determine the limit on the
maximum encryption and decryption throughput, taking into account the limitations
of the PCI interface.

Our first group of tests is based on the NIST Special Publication 800-20, which
defines testing procedures for Triple DES implementations in ECB, CBC, CFB and
OFB modes of operation [20]. This publication recommends two classes of tests for
verification of the circuit functionality: Known Answer Tests (KATs), and the Monte-
Carlo tests. Since, the Known Answer Tests are algorithm specific, we implemented
them only for Triple DES. The Monte Carlo test is algorithm independent, so we
implemented it for both Triple DES and Rijndael. The operation of this test is shown
in Fig. 8. The test consists of 4,000,000 encryptions with keys changed every 10,000
encryptions. The ciphertext block obtained after each sequence of 10,000 encryptions
is compared with the corresponding block obtained using software implementation.
Software implementations of Triple DES and Rijndael from publicly available
Crypto++ 4.1 library were used in our experiments.

The second group of tests was developed based on the principle similar to the
Monte-Carlo tests. One megabyte of data is sent to the board for encryption (or
decryption), the result is transferred back to the host, and downloaded again to the
board as a subsequent part of input. The procedure is repeated 1024 times, which
corresponds to  encrypting/decrypting  a 1 GB stream of data  using CBC mode.  Only
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Fig. 8. Monte Carlo Test recommended by NIST in the CBC mode



the last megabyte of output is used for verification, as it depends on all  previous
input and output blocks. The  transfer  of data  is  performed  by the DMA unit, so it
takes place simultaneously with encryption/decryption. If the test passes, it is repeated
at the increased clock frequency. The highest clock frequency at which no single
processing error has been detected is considered the maximum clock frequency. In
our experiments, this test was repeated 10 times with consistent results in all
iterations.

The third group of tests is an extension of the second group. After determining
the maximum clock frequency, we measure the amount of time necessary to process 4
GB of data, taking into account the limitations imposed by the 32 bit/33 MHz PCI
interface. Since data is transmitted through the PCI interface in both directions (input
and output), the maximum encryption/decryption throughput that can be possibly
measured using this test is equal to 528 Mbit/s. This is a half of the maximum
throughput in the regular operation of the FPGA accelerator, where only input data
are transferred from the host to the accelerator card through the PCI interface, and the
output is transferred from the FPGA card to the Ethernet daughter card.

6. Results

The results of static timing analysis and experimental testing for Rijndael and Triple
DES are shown in Fig. 9.

For Triple DES in the basic iterative architecture, the maximum clock frequency
is equal to 72 MHz according to the static analyzer, and 91 MHz according to the
experimental testing using the SLAAC-1V board.

For Rijndael in the basic iterative architecture, the results for encryption and
decryption are different, with decryption slower than encryption by about 13% in
experimental testing. According to the timing analyzer, the maximum clock frequency
for the entire circuit is equal to 47 MHz, with the critical path determined by the
decryption circuit. In experimental testing, decryption works correctly up to 52 MHz,
and encryption up to 60 MHz. However, we do not intend to change the clock
frequency on the fly, therefore 52 MHz sets the limit for the entire circuit. The
differences between the static timing analysis and experimental testing are caused by
conservative assumptions used by the Xilinx static timing analyzer, including the
worst case parameters for voltage and temperature prorating.

In Fig. 9b, the maximum throughputs corresponding to the analyzed and
experimentally tested clock frequencies are estimated based on the equation:

Maximum_Throughput  = (Block_size / #Rounds) ⋅ Maximum_Clock_Frequency.  (15)

Using formula (15), the maximum throughput of Rijndael in the basic iterative
architecture for a 128-bit key is 521 Mbit/s based on the static timing analysis, and
577 Mbit/s based on the experimentally measured clock frequency. This result is
expected to be further improved by optimizations of placement and routing. Taking
into account our result, parallel processing of only two streams of data should be
sufficient to obtain the speed over 1 Gbit/s. As a result, one stage of additional
registers,   R2a-c,   was   added   to  the  basic  iterative  architecture  in  the  extended
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Fig. 9. Results of the static timing analysis and experimental testing for Rijndael and Triple
DES a) maximum clock frequency, b) corresponding throughput

architecture as shown in Fig. 3. At this moment, we have been able to obtain a
throughput of 887 Mbit/s for this extended pipelined architecture. Nevertheless,
further logic and routing optimizations are expected to improve this throughput over 1
Gbit/s without the need of introducing any additional pipeline stages.

The worst-case throughput of Triple DES in the basic iterative architecture is 91
Mbit/s based on the static timing analysis, and 116 Mbit/s based on the
experimentally measured maximum clock frequency, which translates to the 27%
speed-up in experiment. Sixteen independent streams of data processed
simultaneously should easily exceed 1 Gbit/s, leading to the extended architecture
shown in Fig. 7.

The actual encryption and decryption throughputs, taking into account the
limitations  imposed by the PCI interface were measured using the third group of tests
described in Section 5. The actual throughputs for DES, were equal to 102 Mbit/s for
encryption, and 108 Mbit/s for decryption. The experimentally measured throughput
for Rijndael was equal to 404 Mbit/s, and was the same independently of the key size,
which means that this throughput was limited by the PCI interface. It should be noted
that during the regular operation of the card, when no output is transferred back to the
host memory, this throughput can be easily doubled and reach at least 808 Mbit/s.
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The total percentage of the FPGA resources used for the basic iterative
architectures of Rijndael and Triple DES is 15% of CLB slices and 56% of
BlockRAMs. The extended architectures of both ciphers, capable of operating over 1
Gbit/s, will take approximately 80% of CLB slices, and 56% of Block SelectRAMs.
Only one Virtex XCV-1000 FPGA is necessary to assure the throughput of both
ciphers in excess of 1 Gbit/s. Using two additional Virtex devices, and more complex
architectures, the encryption throughput in excess of 3 Gbit/s can be accomplished.
Our 64-bit/66 MHz PCI module will support this bandwidth.

7. Related Work

Several research groups developed VHDL implementations of Rijndael in Xilinx
FPGAs [3, 6, 7, 12, 14], and Altera FPDs [8, 9, 10, 19]. A survey and relative
comparison of results from various groups is given in [13]. All major results
described in the aforementioned papers are based on the static timing analysis and
simulation, and have not yet been confirmed experimentally.

The first attempt to validate the simulation speed of Rijndael through
experimental testing is described in [9]. The test was performed using especially
developed PCI card. Nevertheless, since the operation of the system appeared to be
limited by the PCI controller, no numerical results of the experimental tests were
reported in the paper.

As a result, our paper is the first one that describes the successful experimental
testing of Rijndael and directly compares the experimental results with simulation.

8. Summary and Possible Extensions

The IPSec-compliant encryption/decryption units of the new Advanced Encryption
Standard - Rijndael and the older encryption standard Triple DES have been
developed and tested experimentally. Both units support the Cipher Block Chaining
mode. Our experiment demonstrated up to 27% differences between the results
obtained from testing and results of the static timing analysis based on Xilinx tools.
These differences confirmed that the results based on the static analyzer should be
treated only as the worst-case estimates.

The experimental procedure demonstrated that the total encryption and
decryption throughput of Rijndael and Triple DES in excess of 1 Gbit/s can be
achieved using a single FPGA device Virtex 1000. Only up to 80% of resources of
this single FPGA device are required by all cryptographic modules. The throughput in
excess of 3 Gbit/s can be accomplished by using two remaining FPGA devices
present on the SLAAC-1V accelerator board. The alternative extensions include the
implementation and experimental testing of other security transformations of IPSec,
such as HMAC and the Internet Key Exchange protocol.
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