
0018-9162/07/$25.00 © 2007 IEEE March 2007 23P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

G U E S T E D I T O R S ’ I N T R O D U C T I O N

H igh-performance reconfigurable computers
(HPRCs)1,2 based on conventional processors
and field-programmable gate arrays (FPGAs)3

have been gaining the attention of the high-per-
formance computing community in the past

few years.4 These synergistic systems have the potential
to exploit coarse-grained functional parallelism as well
as fine-grained instruction-level parallelism through
direct hardware execution on FPGAs.

HPRCs, also known as reconfigurable supercom-
puters, have shown orders-of-magnitude improvement
in performance, power, size, and cost over conventional
high-performance computers (HPCs) in some compute-
intensive integer applications. However, they still have
not achieved high performance gains in most general
scientific applications. Programming HPRCs is still not
straightforward and, depending on the programming
tool, can range from designing hardware to software
programming that requires substantial hardware
knowledge.

The development of HPRCs has made substantial
progress in the past several years, and nearly all major
high-performance computing vendors now have HPRC
product lines. This reflects a clear belief that HPRCs

High-performance reconfigurable

computers have the potential to exploit

coarse-grained functional parallelism as

well as fine-grained instruction-level

parallelism through direct hardware

execution on FPGAs.

Duncan Buell, University of South Carolina

Tarek El-Ghazawi, George Washington University

Kris Gaj, George Mason University

Volodymyr Kindratenko, University of Illinois at

Urbana-Champaign

High-
Performance
Reconfigurable
Computing

24 Computer

have tremendous potential and that resolving all remain-
ing issues is just a matter of time.

This special issue will shed some light on the state
of the field of high-performance reconfigurable
computing.

WHAT ARE HIGH-PERFORMANCE
RECONFIGURABLE COMPUTERS?

HPRCs are parallel computing systems that contain
multiple microprocessors and multiple FPGAs. In cur-
rent settings, the design uses FPGAs as coprocessors that
are deployed to execute the small
portion of the application that takes
most of the time—under the 10-90
rule, the 10 percent of code that
takes 90 percent of the execution
time. FPGAs can certainly accom-
plish this when computations lend
themselves to implementation in
hardware, subject to the limitations
of the current FPGA chip architec-
tures and the overall system data
transfer constraints.

In theory, any hardware reconfigurable devices that
change their configurations under the control of a pro-
gram can replace the FPGAs to satisfy the same key con-
cepts behind this class of architectures. FPGAs, however,
are the currently available technology that provides the
most desirable level of hardware reconfigurability. Xilinx,
followed by Altera, dominates the FPGA market, but
new startups are also beginning to enter this market.

FPGAs are based on SRAM, but they vary in struc-
ture. Figure A in the “FPGA Architecture” sidebar
shows an FPGA’s internal structure based on the Xilinx
architecture style. The configurable logic block (CLB) is
the basic building block for creating logic. It includes
RAM used as a lookup table and flip-flops for buffer-
ing, as well as multiplexers and carry logic. A side-by-
side 2D array of switching matrices for programmable
routing connects the 2D array of CLBs.

PROGRESS IN SYSTEM HARDWARE AND
PROGRAMMING SOFTWARE

During the past few years, many hardware systems
have begun to resemble parallel computers. When such
systems originally appeared, they were not designed to
be scalable—they were merely a single board of one or
more FPGA devices connected to a single board of one
or more microprocessors via the microprocessor bus or
the memory interface.

The recent SRC-6 and SRC-7 parallel architectures
from SRC Computers use a crossbar switch that can be
stacked for further scalability. In addition, traditional
high-performance computing vendors—specifically,
Silicon Graphics Inc. (SGI), Cray, and Linux Networx—
have incorporated FPGAs into their parallel architec-

tures. In addition to the SRC-7, models of such HPC
systems include the SGI RASC RC100 and the Cray
XD1 and XT4. The Linux Networx work focuses on
the design of the acceleration boards and on coupling
them with PC nodes for constructing clusters.

On the software side, SRC Computers provides a
semi-integrated solution that addresses the hardware
(FPGA) and software (microprocessor) sides of the
application separately. The hardware side is expressed
using Carte C or Carte Fortran as a separate function,
compiled separately and linked to the compiled C (or

Fortran) software side to form one
application.

Other hardware vendors use a
third-party software tool, such as
Impulse C, Handel-C, Mitrion C, or
DSPlogic’s RC Toolbox. However,
these tools handle only the FPGA side
of the application, and each machine
has its own application interface to
call those functions. At present,
Mitrion C and Handel-C support the
SGI RASC, while Mitrion C, Impulse

C, and RC Toolbox support the Cray XD1. Only a
library-based parallel tool such as the message-passing
interface can handle scaling an application beyond one
node in a parallel system.

RESEARCH CHALLENGES AND
THE EVOLVING HPRC COMMUNITY

FPGAs were first introduced as glue logic and even-
tually became popular in embedded systems. When
FPGAs were applied to computing, they were introduced
as a back-end processing engine that plugs into a CPU
bus. The CPU in this case did not participate in the com-
putation, but only served as the front end (host) to facil-
itate working with the FPGA.

The limitations of each of these scenarios left many
issues that have not been explored, yet they are of great
importance to HPRC and the scientific applications it
targets. These issues include the need for programming
tools that address the overall parallel architecture. Such
tools must be able to exploit the synergism between
hardware and software execution and should be able to
understand and exploit the multiple granularities and
localities in such architectures.

The need for parallel and reconfigurable performance
profiling and debugging tools also must be addressed.
With the multiplicity of resources, operating system sup-
port and middleware layers are needed to shield users
from having to deal with the hardware’s intricate details.
Further, application-portability issues should be thor-
oughly investigated. In addition, new chip architectures
that can address the floating-point requirements of sci-
entific applications should be explored. Portable
libraries that can support scientific applications must be

HPRCs are

parallel computing

systems that contain

multiple

microprocessors

and multiple FPGAs.

March 2007 25

FPGA Architecture
Ross Freeman, one of the founders of Xilinx (www.

xilinx.com), invented field-programmable gate arrays
in the mid-1980s. 1 Other current FPGA vendors
include Altera (www.altera.com), Actel
(www.actel.com), Lattice Semiconductor (www.
latticesemi.com), and Atmel (www.atmel.com).

As Figure A shows, an FPGA is a semiconductor
device consisting of programmable logic elements,
interconnects, and input/output (I/O) blocks
(IOBs)—all runtime user-configurable—that allow
implementing complex digital circuits. The IOBs
form a ring around the outer edge of the microchip;
each IOB provides individually selectable I/O access
to one of the I/O pins on the exterior of the FPGA
package. A rectangular array of logic blocks lies
inside the IOB ring.

A typical FPGA logic block consists of a four-input
lookup table (LUT) and a flip-flop. Modern FPGA
devices also include higher-level functionality
embedded into the silicon, such as generic DSP
blocks, high-speed IOBs, embedded memories, and
embedded processors. Programmable interconnect
wiring is implemented so that it’s possible to connect
logic blocks to logic blocks and IOBs to logic blocks
arbitrarily.

A slice (using Xilinx terminology) or adaptive
logic module (using Altera terminology), which
contains a small set of basic building blocks—for
example, two LUTs, two flip-flops, and some control
logic—is the basic unit area when determining an
FPGA-based design’s size. Configurable logic blocks
(CLBs) consist of multiple slices. Modern FPGAs
consist of tens of thousands of CLBs and a program-
mable interconnection network arranged in a rec-
tangular grid.

Unlike a standard application-specific integrated
circuit that performs a single specific function for a
chip’s lifetime, an FPGA chip can be reprogrammed to
perform a different function in a matter of microsec-
onds. Typically, either source code written in a hard-
ware description language, such as VHDL or Verilog, or
a schematic design provides the functionality that an
FPGA assumes at runtime.

As Figure B shows, in the first step, a synthesis
process generates a technology-mapped netlist. A
map, place, and route process then fits the netlist
to the actual FPGA architecture. The process gener-
ates a bitstream—the final binary configuration
file—that can be used to reconfigure the FPGA.
Timing analysis, simulation, and other verification
methodologies can validate the map, place, and
route results.

Reference

1. S.M. Trimberger, ed., Field-Programmable Gate Array Tech-
nology, Kluwer Academic, 1994.

IOB

IOB

IOB

IOB IOB

CLB CLB CLB CLB

BRAM BRAM BRAM

DSP DSP DSP

CLBCLB

CLBCLB

CLB CLB CLB CLBCLBCLB

CLB CLB CLB CLBCLBCLB

CLB CLB

IOB IOB IOB IOB

IOB

IOB

IOB

IOB

IOB IOB IOB IOB IOB

IOB

IOB

IOB

IOB

Verification

Postsynthesis
simulation

Functional
simulation

Timing
simulation

HDL
implementation

Algorithm

Netlist

Bitstream

SynthesisSynthesis

Implementation:
map, place,
and route

Figure A. FPGA internal structure based on the Xilinx architecture

style. An FPGA can be described as “islands” of (reconfigurable)

logic in a “sea” of (reconfigurable) connectors.

Figure B.Typical FPGA design flow.

26 Computer

sought, and the need for more closely integrated micro-
processor and FPGA architectures to facilitate the data-
intensive hardware/software interactions should be
further studied.

As researchers pursue developments to meet a wide
range of HPRC requirements, the failure to incorporate
standardization into some of these efforts would be
detrimental. It can be particularly useful if academia,
industry, and government work together to create a com-
munity that can approach these problems with the full
intellectual intensity it deserves, subject to the needs of
the end users and the experience of the implementers.

Some of this community-forming has been already
observed. On the one hand, OpenFPGA (www.openfpga.
org) has recently been formed as a consortium that
mainly pursues standardization. On
the other, the NSF has recently
granted to the University of Florida
and George Washington University
an Industry/University Center for
High-Performance Reconfigurable
Computing (http://chrec.ufl.edu)
award. The center includes more
than 20 industry and government
members who will guide the univer-
sity research projects.

IN THIS ISSUE
We have selected five articles for this special issue that

represent the latest trends and developments in the
HPRC field. The first two cover particularly important
topics: a C-to-FPGA compiler and a library framework
for code portability across different RC platforms. The
third article describes an extensive collection of FPGA
software development patterns, and the last two describe
HPRC applications.

In “Trident: From High-Level Language to Hardware
Circuitry,” Justin Tripp, Maya Gokhale, and Kristopher
Peterson describe an effort undertaken at the Los
Alamos National Laboratory to build Trident, a high-
level-language to hardware-description-language com-
piler that translates C language programs to FPGA
hardware circuits. While several such compilers are com-
mercially available, Trident’s unique characteristics
include its open source availability, open framework,
ability to use custom floating-point libraries, and ability
to retarget to new FPGA board architectures. The
authors enumerate the compiler framework’s building
blocks and provide some results obtained on the Cray
XD1 platform.

“V-Force: An Extensible Framework for Recon-
figurable Computing” by Miriam Leeser and her col-
leagues and students from Northeastern University and
the College of the Holy Cross outlines their efforts to
implement the Vforce framework. Based on the object-
oriented VSIPL++ standard, Vforce encapsulates hard-

ware-specific implementations behind a standard API,
thus insulating application-level code from hardware-
specific details. As a result, as long as the third-party
hardware-specific implementation is available, the same
application code can run on different reconfigurable
computer architectures with no change. The authors
include examples of applications and results from using
Vforce for application development.

In “Achieving High Performance with FPGA-Based
Computing,” Martin Herbordt and his students from
Boston University share a valuable collection of FPGA
software design patterns. The authors start with an
observation that the performance of HPC applications
accelerated with FPGA coprocessors is “unusually sen-
sitive” to the quality of the implementation. They exam-

ine reasons for such a “sensitivity,”
list numerous methods and tech-
niques to avoid generating “imple-
mentational heat,” and provide a
few application examples that
greatly benefit from the uncovered
design patterns.

“Sparse Matrix Computations
on Reconfigurable Hardware,” by
Gerald Morris and Viktor Prasanna
describes implementations of conju-
gate gradient and Jacobi sparse

matrix solvers. In “Using FPGA Devices to Accelerate
Biomolecular Simulations,” Sadaf Alam and her col-
leagues from the Oak Ridge National Laboratory and
SRC Computers describe an effort to port a production
supercomputing application, a molecular dynamics code
called Amber, to a reconfigurable supercomputer plat-
form. Although the speedups obtained while porting these
applications—highly optimized for the conventional
microprocessors—to an SRC-6 reconfigurable computer
are not spectacular, these articles accurately capture the
overall trend.

Reconfigurable supercomputing has demonstrated its
potential to accelerate computationally demanding appli-
cations and is rapidly entering the mainstream HPC world.

H igh-performance reconfigurable computing has
demonstrated its potential to accelerate demanding
computational applications. Much, however, must

be done before this technology becomes a mainstream
computing paradigm. The articles in this issue highlight
a small subset of challenging problems that must be
addressed. We encourage you to get involved with HPRC
and contribute to this newly developing field. ■

References

1. D.A. Buell, J.M. Arnold, and W.J. Kleinfelder, eds., Splash 2:
FPGAs in a Custom Computing Machine, IEEE CS Press, 1996.

High-performance

reconfigurable computing

has demonstrated its

potential to accelerate

demanding computational

applications.

2. M.B. Gokhale and P.S. Graham, Reconfigurable Computing:
Accelerating Computation with Field-Programmable Gate
Arrays, Springer, 2005.

3. S.M. Trimberger, ed., Field-Programmable Gate Array Tech-
nology, Kluwer Academic, 1994.

4. T. El-Ghazawi et al., “Reconfigurable Supercomputing
Tutorial,” Int’l Conf. High-Performance Computing, Net-
working, Storage and Analysis (SC06); http://sc06.
supercomputing.org/schedule/event_detail.php?evid=5072.

Duncan Buell is a professor in the Department of Com-
puter Science and Engineering at the University of South
Carolina, Columbia. Buell received a PhD in mathe-
matics from the University of Illinois at Chicago. Con-
tact him at buell@sc.edu.

Tarek El-Ghazawi is a professor in the Department of Elec-
trical and Computer Engineering at the George Washington
University, Washington, D.C. El-Ghazawi received a PhD
in electrical and computer engineering from New Mexico
State University. Contact him at tarek@gwu.edu.

Kris Gaj is an associate professor in the Department of
Electrical and Computer Engineering at George Mason
University, Fairfax, Virginia. Gaj received a PhD in electri-
cal engineering from Warsaw University of Technology,
Poland. Contact him at kgaj@gmu.edu.

Volodymyr Kindratenko is a senior research scientist at the
National Center for Supercomputing Applications, Uni-
versity of Illinois at Urbana-Champaign, Urbana. He
received a DSc in analytical chemistry from the University
of Antwerp, Belgium. Contact him at kindr@ncsa.uiuc.edu.

March 2007 27

