
1

Comparison of the hardware performance of the AES candidates using reconfigurable hardware

Kris Gaj and Pawel Chodowiec
George Mason University

kgaj@gmu.edu, pchodowi@gmu.edu

Abstract
The results of implementations of all five AES finalists using Xilinx Field Programmable Gate Arrays are presented and analyzed.
Performance of four alternative hardware architectures is discussed and compared. The AES candidates are divided into three classes
depending on their hardware performance characteristics. Recommendation regarding the optimum choice of the algorithms for AES is
provided.

1. Introduction

Hardware implementations of cryptography will thrive in the new century because of the growing
requirements for high-speed, high-volume secure communications combined with physical security. In the
presence of no major breakthroughs in cryptanalysis of the AES candidates, and relatively inconclusive results
of their software performance evaluation [NBD+99, SKW+99], the comparison of the hardware performance of
the AES algorithms may provide a major indicator for a final decision regarding the new standard.

Very few results regarding hardware implementations of the AES candidates have been published so far.
Original documentation provided by designers of the submitted algorithms contains typically only rough
estimates of the hardware performance [BCD+98, RRS+98, SKW+98]. Additionally, these estimates are very
difficult to compare among each other because of large differences in assumptions regarding the technology, and
because of different architecture choices. The results of actual implementations of individual algorithms,
published recently by independent researchers [EP99, RH99], provide only a very fragmentary knowledge, not
suitable for reliable comparison.

This situation will be certainly remedied by the publication of the NSA findings regarding hardware
performance of the AES candidates. Nevertheless, the NSA evaluation plan [NSA98] targets only
implementations using semi-custom Application Specific Integrated Circuits (ASICs), providing no data
regarding other technologies. In this article, we focus on comparing AES candidates using an alternative
hardware technology based on Field Programmable Gate Arrays (FPGAs). This technology, referred to as
reconfigurable hardware, offers many advantages for future vendors and users of cryptographic equipment. It
assures a short time to the market, high flexibility (including a capability for frequent modifications of
hardware), low development costs, and low cost of the final product - the result of the algorithm agility -
capability to use the same integrated circuit with time sharing for the execution of various secret-key and public-
key algorithms. Our comparison supplements the NSA effort by covering the second primary way of
implementing cryptographic algorithms in hardware.

2. Reconfigurable hardware

2.1 Operation and internal structure of an FPGA device

Field Programmable Gate Array (FPGA) is an integrated circuit that can be bought off the shelf and
reconfigured by designers themselves. With each reconfiguration, which takes only a fraction of a second, an
integrated circuit can perform a completely different function. FPGA consists of thousands of universal building
blocks, known as Configurable Logic Blocks (CLBs), connected using programmable interconnects, as shown in
Fig. 1a. Reconfiguration is able to change a function of each CLB and connections among them, leading to a
functionally new digital circuit.

From several FPGA families available on the market, we have chosen for implementing AES candidates
two families from Xilinx, Inc.: high performance Virtex family, and a low-cost XC4000 family. Each family
consists of several FPGA devices, manufactured in the same technology, covering certain range of maximum
circuit sizes.

2

Fig. 1 FPGA device. a) General structure and main components. b) Internal structure of a CLB configured in the logic
mode. c) Internal structure of a CLB configured in the memory mode.

A simplified internal structure of a CLB in the XC4000 family, and a CLB slice (1/2 of a CLB) in the Virtex
family is shown in Figs. 1bc. In the logic mode (Fig. 1b), each of these elementary units contains a small block
of combinational logic, implemented using programmable look-up tables, and two one-bit registers. In the
memory mode, combinational logic is replaced by two small memories. A CLB in the XC4000 family of FPGA
devices and a CLB slice in Virtex are functionally almost identical. Therefore, we will use a number of these
elementary units, necessary to build a given circuit, as a measure of the circuit area and cost.

2.2 Advantages of using reconfigurable hardware for comparison of the AES candidates

For implementing cryptography in hardware, FPGAs provide the only major alternative to custom and semi-
custom Application Specific Integrated Circuits (ASICs), integrated circuits that must be designed all the way
from the behavioral description to the physical layout, and sent for an expensive and time-consuming
fabrication. The comparison of the AES candidates based on FPGA devices has the following advantages over
the comparison based on ASICs:
• Shorter design cycle leading to fully functioning device prototypes.
• Lower cost of the computer-aided design tools, verification, and testing.
• Potential for fast, low-cost multiple reprogramming and experimental testing of a large number of various

architectures and revised versions of the same architecture.
• Higher accuracy of comparison: in the absence of the physical design and fabrication, ASIC designs are

compared based on inaccurate pre-layout simulations [NSA98]; FPGA designs are compared based on very
accurate post-layout simulations and experimental testing.

3. Alternative architectures

3.1 Basic organization of a block cipher implementation

The basic organization of the hardware implementation of a symmetric block cipher is shown in Fig. 2. All
five AES candidates investigated in this paper can be implemented using this organization. The organization
includes the following units:
a. Encryption/decryption unit, used to encipher and decipher input blocks of data.
b. Key scheduling unit, used to compute a set of internal cipher keys based on a single external key.
c. Memory of internal keys, used to store internal keys computed by the key scheduling unit, or loaded to the

integrated circuit through the input interface.
d. Input interface, used to load blocks of input data and internal keys to the circuit, and to store input blocks

awaiting encryption/decryption.

3

Fig. 2 Block diagram of the hardware implementation of a symmetric-block cipher.

e. Output interface, used to temporarily store output from the encryption/decryption unit and send it to the
external memory.

f. Control unit, used to generate control signals for all other units.

3.2 Feedback vs. non-feedback operating modes

Today's symmetric block ciphers are used in several operating modes. From the point of view of hardware
implementations, these modes can be divided into two major categories:
a. Non-feedback modes, such as Electronic Code Book mode (ECB), and counter mode.
b. Feedback modes, such as Cipher Block Chaining mode (CBC), Cipher Feedback Mode (CFB), and Output

Feedback Mode (OFB).
In the non-feedback modes, encryption of each subsequent block of data can be performed independently from
processing other blocks. In particular, all blocks can be encrypted in parallel. In the feedback modes, it is not
possible to start encrypting the next block of data until encryption of the previous block is completed. As a
result, all blocks must be encrypted sequentially, with no capability for parallel processing.

According to current security standards, the encryption of data is performed primarily using feedback
modes, such as CBC and CFB. Non-feedback modes, such as ECB, are used primarily to encrypt session keys
during key distribution. As a result, using current standards does not permit to fully utilize the performance
advantage of the hardware implementations of secret key cryptosystems, based on parallel processing of
multiple blocks of data.

3.3 Alternative architectures for the encryption/decryption unit

a. Basic architecture
The basic hardware architecture used to implement an encryption unit of a typical secret-key cipher is

shown in Fig. 3a. One round of the cipher is implemented as a combinational logic, and supplemented with a
single register and a multiplexer. In the first clock cycle, input block of data is fed to the circuit through the
multiplexer, and stored in the register. In each subsequent clock cycle, one round of the cipher is evaluated, the
result is fed back to the circuit through the multiplexer, and stored in the register. The number of clock cycles
necessary to encrypt a single block of data is equal to the number of cipher rounds, #rounds.

We define the speed of the cipher implementation as the number of bits of data encrypted in a unit of time.
Speed calculated this way is often referred to as the circuit throughput. The speed of the basic architecture,
speedba, is given by

speedba = 128/ #rounds ⋅ clock_period . (1)

4

Fig. 3 Four alternative architectures for implementation of an encryption/decryption unit of a block cipher: a) basic
architecture, b) architecture with the k-round loop unrolling, c) architecture with the k-stage inner-round pipelining, d)
architecture with the k-stage outer-round pipelining.

The basic architecture combines a good speed with the relatively modest area requirements. However there exist
several alternative architectures that permit to improve either one or both of these performance measures.

b. Loop unrolling
Architecture with loop unrolling is shown in Fig. 3b. The only difference compared to the basic architecture

is that the combinational part of the circuit implements k rounds of the cipher, instead of a single round. The
maximum value of k is equal to the number of cipher rounds. The number of clock cycles necessary to encrypt a
single block of data decreases by a factor of k. At the same time the minimum clock period increases by a factor
slightly smaller than k, leading to an overall relatively small increase in the cipher speed, given by

speedlu/speedba = (1 + τ)/(1+τ/k), (2)
where τ is the ratio of the sum of the multiplexer delay, the register delay and the register setup time to the delay
of a single cipher round. This increase in speed is obtained at the cost of the circuit area. Because the
combinational part of the circuit constitutes the majority of the circuit area, the total area of the
encryption/decryption unit increases almost proportionally to the number of unrolled rounds, k. Additionally, the
number of internal keys used in a single clock cycle increases by a factor of k, which in FPGA implementations
typically implies the almost proportional growth in the number of CLBs used to store internal keys.

In summary, loop unrolling enables increasing the circuit speed in both feedback and non-feedback
operating modes. Nevertheless this increase is relatively small, and incurs a large area penalty.

c. Inner-round pipelining
Pipelining is a general method of increasing the amount of data processed by a digital circuit in a unit of

time. The idea is to introduce evenly spaced extra registers in the middle of the combinational circuit, in such a
way that several blocks of data can be processed by the circuit at the same time. Parts of the combinational logic
divided by adjacent registers are called pipeline stages (see Fig. 3c). In each clock cycle the partially processed
data block moves to the next pipeline stage. Its place is taken by the subsequent data block. This way, a
pipelined circuit can encrypt simultaneously as many blocks of data, as the number of pipeline stages it contains.

5

Fig. 4 Operation of the architecture with 4-stage inner-round pipelining for an N-round cipher.

Fig. 5 Timing of input and output blocks in a) basic architecture, b) architecture with a 4-stage inner-round pipelining.

The flow of data through the pipeline during encryption is shown in Fig. 4. The number of pipeline stages in
this example is four. During the first four clock cycles four subsequent blocks of data enter the pipeline. In the
subsequent clock cycles, these blocks circulate in the pipeline. Each four clock cycles correspond to a single
cipher round. In the cycle number 4⋅#rounds+1, the first block, B1, leaves the pipeline, and the fifth block, B5,
is introduced to the empty pipeline stage. In the following three clock cycles, blocks B2, B3, and B4, leave the
pipeline, substituted by blocks B6, B7, and B8. The timing diagram of the input and output of the circuit is
shown in Fig. 5b. Speed of the circuit, expressed as the number of bits processed by the circuit in a unit of time
is given by

 speed = 128/ #rounds ⋅ reduced_clock_period (3)
where reduced_clock_period is a minimum clock period after pipelining.

The dependence between the cipher speed-up resulting from the inner-round pipelining and the number of
evenly spaced pipeline stages is shown in Fig. 6. There exists a maximum number of pipeline stages that still
improves the circuit throughput. Adding additional registers will not affect the throughput. The maximum
number of pipeline stages is determined by the delay of the largest indivisible combinational portion of the
circuit. For majority of ciphers it is difficult to divide the cipher round into combinational stages with equal
delays (especially, when the circuit is described in a high-level hardware description language, such as VHDL),

6

Fig. 6 Speed of the architecture with Fig. 7 Resource sharing of an S-box. a) basic operation of
k-round inner-round pipelining as a function two parallel S-boxes, b) operation with resource sharing.
of the number of evenly spaced pipeline
stages.

which further limits the circuit speed-up. Area of the circuit with inner-round pipelining increases only by a
small percentage (area of a single 128-bit register) with each additional pipeline stage. This is especially true for
FPGA circuits, in which CLBs used to implement combinational logic often contain registers not utilized in the
non-pipelined implementation.

d. Outer-round pipelining
Outer-round pipelining is created by loop unrolling followed by introducing extra registers between parts of

the combinational logic corresponding to each cipher round, as shown in Fig. 3d. The number of unrolled loops
k is typically a divisor of the total number of cipher rounds, #rounds.

Area of the encryption unit with outer-round pipelining is directly proportional to the number of pipeline
stages k. In the non-feedback cipher modes, such as ECB, the speed (throughput) of the cipher increases
proportionally to the number of pipeline stages, k. Therefore, the outer-round pipelining enables to directly trade
circuit speed with circuit area. In the feedback cipher modes, the speed of the cipher remains independent of the
number of outer pipeline stages, and therefore, this kind of pipelining is not recommended for these modes.

e. Resource sharing
For some ciphers, it is possible to further decrease circuit area by time sharing of certain resources (e.g.,

function h in Twofish, 4x4 S-boxes in Serpent, 8x32 S-boxes S0, S1 in the mixing transformation of Mars,
multiplication units in RC6). This is accomplished by using the same functional unit to process two (or more)
parts of the data block in different clock cycles, as shown in Fig. 7b. In Fig. 7a, two parts of the data block, D0
and D1, are processed in parallel, using two independent S-boxes. In Fig. 7b, a single S-box is used to process
two parts of the data block sequentially, during two subsequent clock cycles.

The use of resource sharing in real life implementations is expected to be limited, because
• Gain in the circuit area is always smaller than the loss in the circuit speed.
• The amount of area used by a basic implementation of a symmetric cipher is typically already quite small.

3.4. Choice of the figure of merit

The choice of a single figure of merit is difficult, because the optimization criteria may vary depending on
the application. In our comparison, we took into account three basic figures of merit: maximum speed
(throughput), minimum area, and the maximum speed/area ratio.

Optimization for maximum speed will be done in applications where communication requirements force the
use of a very high speed encryption, and/or the cost of the cryptographic hardware constitutes only a small
portion of the entire system. Examples of such applications include ATM and ISDN switches, Virtual Private

7

Fig. 8 Hardware performance of various alternative architectures in a) non-feedback cipher modes, such as ECB and
counter mode, b) feedback cipher modes, such as CBC, CFB, and OFB.

Network routers and firewalls, WWW and database servers. In such applications, it may be justified to trade the
cost of the cryptographic hardware (proportional to the circuit area) for greater speed.

In the second class of applications, the designer's goal is to obtain the maximum speed, assuming a given
limit on the circuit area (cost). In such situations, the more appropriate figure of merit is the speed/area ratio.
This figure of merit is particularly appropriate for non-feedback cipher modes, which enable one to directly
trade circuit area for speed by using the outer-round pipelining, as shown in Fig. 8a. The examples of cost
critical applications of cryptography include pagers, digital video recorders, and PCMCIA cards.

Applications that require optimization for minimum area include smart cards, embedded systems, and
cellular phones. As the basic architecture may be still too big for such applications, they may enforce resource
sharing. Taking into account the size and power limitations, these applications will be typically implemented
using custom ASICs, not FPGAs.

3.5 Comparison of various architectures

Dependencies between the speed and the area of the encryption/decryption unit of a block cipher, for
architectures discussed in section 3.3, are shown in Fig. 8.

a. Non-feedback modes
For non-feedback modes, the best speed/area ratio can be obtained by using inner-round pipelining with the

maximum number of pipeline stages that still increases circuit clock frequency, as shown in Fig. 8a. The largest
possible speed can be obtained by combining inner-round pipelining with outer-round pipelining. The only limit
on the circuit speed is imposed in this case by the maximum circuit area (cost) and/or the maximum number of
the outer-round pipeline stages (equal to the number of the cipher rounds). The smallest possible area can be
obtained using the basic architecture with resource sharing.

b. Feedback-modes
For feedback modes, the basic architecture offers the best value of the ratio speed/area, as shown in Fig. 8b.

Larger speed can only be obtained using loop unrolling, at the cost of a very significant increase in the circuit
area (cost). Smaller area can only be obtained using resource sharing, at the cost of the significant reduction in
the circuit speed.

Outer-round pipelining is inefficient in these modes, as it does not increase circuit speed, and significantly
increases circuit area. Inner-round pipelining decreases speed, and increases circuit area. As a result, neither
type of pipelining should be used in these operating modes.

8

 4. Assumptions

4.1 Primary assumptions

The following tentative assumptions have been made in order to simplify the task of comparing AES
candidates:
a. Key size 128 bits.
Our implementations are intended to support only one key size, 128 bits. Other key sizes required by AES (192
and 256 bits), or supported by a particular algorithm will be added in the future.
b. No key scheduling unit.
Our implementations do not support the on-chip generation of internal keys from a single external key. Instead,
our implementations include a memory of internal keys loaded with the keys generated externally, and the
circuitry necessary to distribute these keys from the memory to the encryption/decryption unit.
c. Block size 128 bits.
Only one input/output block size, 128 bits, has been considered, even if the given AES candidate supports other
block sizes.
d. Basic architecture
The encryption part of all AES candidates has been implemented using basic architecture shown in Fig. 3a. This
architecture has been chosen for the following reasons:
* As shown in Fig. 8b, the basic architecture assures the maximum speed/area ratio for feedback operating
modes (CBC, CFB), now commonly used for bulk data encryption. It also guarantees near optimum speed, and
near optimum area for these operating modes.
* The basic architecture is relatively easy to implement in a similar way for all AES candidates, which supports
fair comparison. For architectures with inner-round pipelining, it is relatively difficult to determine and
implement the maximum number of pipeline stages that still increases circuit speed and speed/area ratio.
* The implementations of the basic architecture exemplify larger differences among five AES algorithms
compared to the architectures with inner-round pipelining. Inner-round pipelining permits decreasing the
differences in speed among various ciphers because ciphers with longer critical path (lower speed) may be sped
up by a larger factor by introducing proportionally more pipeline stages.
* Based on the performance measures for basic architecture, it is possible to derive analytically approximate
formulas for parameters of more complex architectures, including architectures with outer-round pipelining
(near proportional scaling of both area and speed), loop-unrolling (see formula (2)), and inner-round pipelining
(see formula (3) and Fig. 6). Nevertheless, these formulas should be treated only as a first approximation, and
the more detailed comparison requires the actual implementation of all ciphers using alternative architectures.
Only such implementations may take into account the exact structure of all ciphers, limitations imposed by the
FPGA architecture and the design entry method (e.g., VHDL description), and the optimization capabilities of
the FPGA computer-aided design tools.
e. Resource sharing between the encryption and decryption part

In order to minimize circuit area, it was assumed that the encryption and decryption parts share as many
resources as possible by the given cipher type. The effort was made to maximally decrease the effect of resource
sharing on the speed of encryption and decryption.

4.2 Deviations from the basic architecture

Three ciphers, Twofish, RC6, and Rijndael, have been implemented using exactly the basic architecture
shown in Fig. 3a. This was possible because all rounds of these ciphers perform exactly the same operation. For
the remaining two ciphers, Serpent and Mars, this condition is not fulfilled, and as a result, small deviations
from the basic architecture appeared to be necessary.

Serpent consists of 8 different rounds repeated 4 times. Therefore, it is advantageous to treat 8 official
cipher rounds as a single implementation round, and assume that the cipher has 4 rounds. This way, 8 official
cipher rounds are implemented in the basic architecture as a combinational logic. This implementation
guarantees the maximum speed/area ratio typical for the basic architecture.

9

In Mars, there exist four different kinds of rounds, each repeated
8 times: forward mixing, forward keyed transformation, backwards
keyed transformation, and backwards mixing. It is possible to
implement forward and backwards mixing using the same functional
unit; the same holds for the forward and backwards keyed
transformation. The structure of the mixing transformation and the
keyed transformation are significantly different, and as a result they
must be implemented using separate units, as shown in Fig. 9. Both
of these units have an internal structure that corresponds to the basic
architecture (multiplexer + register + combinational logic).
Additionally, both units share the look-up table implementing two

Fig. 9 Deviation from the basic architecture 8x32 S-boxes.
in Mars.

5. Results

5.1 Results for the Virtex family

The results of implementing AES candidates, according to the assumptions summarized in section 4, using
the largest currently available Xilinx Virtex device, XCV1000BG560-6, are summarized in Fig. 10. For
comparison, the results of implementing the current NIST standard, Triple DES, are also provided It should be
stressed that all results come either from simulation or from reports generated by Xilinx tools, and have not as
yet been confirmed experimentally. The details of all implementations, including the detailed block diagrams,
and the description of simulation and test experiments will be provided in the technical report available at the
AES conference [CG00]. Part of this report, describing Twofish, is already available on the web [CG99].

Implementations of all ciphers take from 9% (for Twofish) to 38% (for Serpent) of the total number of
12288 CLB slices available in the Virtex device used in our designs. It means that less expensive Virtex devices
could be used for all implementations. Additionally, the key scheduling unit can be easily implemented within
the same device as the encryption/decryption unit.

5.2 Results for the XC4000 family

For the low-cost, medium-size family of Xilinx FPGA devices, XC4000, only two ciphers, Twofish and
RC6, were able to fit within the largest device from this family. The relative performance of these ciphers is
similar to the relative performance in Virtex implementations. It is interesting to notice that for the two different
FPGA devices from this family, the smaller one guarantees the higher speed.

Speed [Mbit/s] Area [CLBs] Speed/Area [kbit/s⋅⋅CLB]Cipher
4028/4036 4085 4028/4036 4085 4028/4036 4085

Twofish 90.9 89.2 907 907 100.2 98.3
RC6 45.9 43.1 1222 1222 37.6 35.3

Table I. Results of implementing Twofish and RC6 using the largest available FPGA device from the XC4000XL family,
XC4085XL, and the largest device fitting the implementation of the respective cipher, i.e., XC4028XL for Twofish, and
XC4036XL for RC6.

5.3 Resource sharing between encryption and decryption

The amount of resource sharing between encryption and decryption is considerably different for various
AES candidates, depending on the type of the cipher. Resource sharing is close to 100% for Feistel ciphers and
modified Feistel ciphers, and close to zero for S-P networks. The level of resource sharing can be described by
the amount and type of the extra logic that must be added to the circuit implementing encryption, so that the
modified circuit can perform both encryption and decryption, as shown in Table II.

10

Fig. 10 Results of implementing AES candidates using Xilinx Virtex FPGA devices.

11

Fig. 11 Combinational part of a single round of RC6 implemented using basic architecture. Shaded components had to be
added to the encryption unit, so it could perform decryption. The thick line shows the critical path in the circuit. Unit F
performs operation (2(X2 mod 232)+ X) mod 232 <<< 5. An arrow around a line means inverting the order of bits.

The relative size of the extra circuitry is the smallest for Mars and Twofish (less than 10%), and about 20%
for RC6 (see Fig. 11). For Serpent and Rijndael, encryption and decryption are performed by two independent
units of equal size. For Rijndael, these two units share 16 look-up tables implementing inversions in the Galois
Field GF(28). These look-up tables take about 45% of the area used for encryption. Thus, the extra decryption
circuitry takes for Serpent 100%, and for Rijndael about 55% of the area required for encryption itself.

Cipher Extra logic Extra logic area /encryption logic area
Twofish 2 32-bit XOR2, 2 32-bit MUX2 6%
Mars 2 SUB32, 3 32-bit MUX2 3%
RC6 2 SUB32, 2 32-bit XOR2, 8 32-bit MUX2 (see Fig. 11) 20%
Rijndael Decryption independent of encryption, except 16 S-boxes 8x8 55%
Serpent Decryption independent of encryption 100%

Table II. Extra logic that must be added to the circuit implementing encryption, so that the modified circuit can perform
both encryption and decryption. Notation: XOR2 - 2-input XOR, MUX2 - 2-input multiplexer, SUB32 - 32-bit subtractor.

5.4 Critical path

The critical paths of all five AES candidates are characterized in Table III. As an example, the critical path
of RC6 (without init MUX) is shown in Fig. 11.

Based on the characteristics of the critical path, the AES candidates can be divided into two main categories.
Ciphers from the first category, RC6 and Mars, include in the critical path one complex arithmetic operation,
such as modular multiplication or modular squaring, which determines the minimum clock period of these
ciphers. The second category includes Rijndael, Twofish, and Serpent. In these ciphers, the critical path includes
one or several S-boxes, and several multiple-input XORs. The minimum clock period is the sum of the access
time to memories used to implement S-boxes, and delays introduced by multiple-input XORs and other simple
auxiliary operations. The critical path of Twofish contains additionally two 32-bit additions.

The effect of resource sharing between encryption and decryption on the critical path is the strongest for
RC6 (three encryption/decryption multiplexers in the critical path), very small for Rijndael, Twofish and Mars
(one encryption/decryption multiplexer in the critical path), and negligible for Serpent. In Mars, additional delay
(2 multiplexers) is caused by sharing resources between the forward and backwards keyed transformations.

12

Cipher Minimum
clock

period - Virtex
[ns]

Minimum
clock period -
XC4000 [ns]

Number
of rounds

Components in the critical path
(path flow / list of operations)

E/D MUX → S-box → affine transformation →
MixColumn → init MUX

Rijndael 38.6 - 10

S-box 8x8, XOR6, XOR5, XOR4, XOR2, 2 MUX2

S-box → MDS → PHT → key addition → xor → E/D
MUX → init MUX

Twofish 45.1 88.0 16

6 S-box 4x4, 2 ADD32, 9 XOR2, XOR4, XOR5, 2
MUX2
8 x {key mixing → S-box → linear transformation) →
init MUX

Serpent 94.3 - 4

8 S-box 4x4, 8 XOR2, 8 XOR7, MUX2
E/D MUX → squaring → addition → xor → E/D
MUX → variable rotation → addition → E/D MUX →
init MUX

RC6 61.6 139.5 20

SQR32, 2 ADD32, ROT32, XOR2, 4 MUX2

2 mode MUXes → E/D MUX → multiplication →
XOR → init MUX

Mars 100.6 - 32

MUL32, XOR2, 4 MUX2

Table III. Critical paths in the implementation of the basic architecture for all AES candidates. Notation:
E/D MUX - encryption/decryption multiplexer, i.e., multiplexer used to change the data flow between encryption and
decryption; mode MUX - multiplexer used to change the data flow depending on the mode of transformation (e.g., forward
and backwards transformation in Mars); init MUX - multiplexer used to select between loading a new block of data and
feeding back data from the end of the cipher round (the only multiplexer shown in Fig. 3a); XORn - n-input XOR, MUX2 -
2-input multiplexer, ADD32 - 32-bit adder, MUL32 - 32-bit multiplier mod 232, SQR32 - 32-bit squaring mod 232, ROT32 -
variable rotation of a 32-bit word.

5.5 Area critical components

The components contributing most to the circuit area, for each AES candidate, are shown in Table IV. The
ciphers fall clearly into two groups: Twofish and RC6 have the area approximately three to four times smaller
than the area of the remaining three candidates, Mars, Rijndael, and Serpent. The relatively small area of
Twofish and RC6 comes from the fact that both ciphers are of the Feistel type. The relatively large size of
Serpent and Rijndael comes from the fact that both ciphers are S-P networks, and the amount of resource
sharing between encryption and decryption is limited (no resource sharing for Serpent, about 45% resource
sharing for Rijndael). Additional factor contributing to the large size of Serpent is the use of eight different types
of S-boxes in eight subsequent cipher rounds.

Cipher # of CLB slices
- Virtex

of CLBs -
XC4000

Area critical components

Twofish 1076 907 96 S-box 4x4 (6 kbit), 18 32-bit XOR2, 24 MUL GF(28)
RC6 1139 1222 2 SQR32, 12 32-bit MUX2, 2 ROT32
Serpent 4438 - 512 S-box 4x4 (32 kbit), 2048 XORn (linear transformation,

n=2..7)
Mars 2737 - 4 S-box 8x32 (32 kbit), MUL32, 22 32-bit MUX2
Rijndael 2902 - 16 S-box 8x8 (32 kbit), 24 MUL GF(28), 256 XOR5 (affine and

inverse affine transformation)

Table IV. Cipher components contributing most to the circuit area. Notation: MUL GF(28) - multiplication in the
Galois Field GF(28), XORn - n-input XOR, MUX2 - 2-input multiplexer, MUL32 - 32-bit multiplier mod 232, SQR32 - 32-
bit squaring mod 232, ROT32 - variable rotation of a 32-bit word.

13

The relatively large size of Mars is the result of the design decisions, such as
a. using two different kinds of rounds (mixing vs. keyed transformation). For the basic non-pipelined

architecture, only one type of round is active at a time.
b. using 4 large S-boxes 8x32 in a single round of the mixing transformation. Sharing two of these S-boxes

during mixing transformation is possible only at the cost of doubling the number of clock cycles required for
this transformation. (Our implementation still shares two S-boxes between the mixing transformation and
the keyed transformation.)

c. using area-consuming 32x32 bit modular multiplication.
The area of Mars, Serpent, and Rijndael is dominated by S-boxes. Even though the number and size of these

S-boxes is very different for each cipher, the total number of bits in memories implementing S-boxes, 32 kbits,
is identical for all three ciphers. This may explain the relatively similar size of all three implementations
expressed in number of CLBs.

5.6 Potential for inner-round pipelinig

Inner round pipelining can be most effectively applied to the ciphers with the following features:
a. the cipher round is composed of a large number of layers, with all layers performing simple operations with

comparable delays;
b. the cipher round does not contain large hard-to-divide functional units.
Additionally, for FPGA implementations, it is advantageous if the implementation of the basic architecture
contains large number of CLBs with unused flip-flops (one bit registers).

The above conditions are the best fulfilled by Serpent. It is straightforward to introduce 8 internal pipeline
stages to the implementation round of Serpent (one implementation round = 8 regular cipher rounds), one after
each regular cipher round. Implementing pipeline stages inside of the regular cipher round is possible in theory,
but may be difficult in practice because of the clock frequency limitations imposed by the control unit.

The second cipher best suited for inner-round pipelining is Twofish. According to Table III, the critical path
of Twofish contains a large number of simple operations with comparable delays, including a 4x4 S-box read-
out, XOR operations, and additions. The most complex of these operations is a 32-bit addition. It is likely that
this operation may need to be implemented using multilevel carry-lookahead architecture to take the full
advantage of the inner-round pipelining in Twofish. Additionally, the FPGA implementation of basic
architecture of Twofish contains a relatively small number of unused flip-flops, which will cause that the circuit
area will increase by a larger percentage than for Serpent with the same number of inner-round pipeline stages.

Rijndeal is relatively easy to pipeline, but its critical path contains only 7 elementary operations.
Additionally, the most time-consuming of these operations, the 8x8 S-box read-out, is hard to divide into extra
pipeline stages. RC6 can be efficiently pipelined at the cost of increase in the circuit area resulting from using
fast architectures for addition and multiplication (e.g., carry lookahead and carry save). Mars is the most
difficult to pipeline because of the
a. irregular structure with different operations in various paths;
b. two types of rounds (mixing and keyed transformation) both using large S boxes;
c. need for the complex fast architectures for the pipelined multiplication and addition.

5.7 Potential for loop unrolling

The largest gain from loop unrolling can be achieved by ciphers with the following properties:
* small area used by the combinational part of a single round, which permits fitting a large amount of rounds in
the largest available FPGA device;
* small delay of a single round compared to the sum of delays eliminated by loop unrolling, including the round
multiplexer delay, the register delay, and the register setup time (as shown in formula (2)).
* potential for optimizations at the boundary between the last and the first operation of the cipher round.

Assuming the use of the largest available Virtex chip, RC6 and Twofish have the highest potential for loop
unrolling. The largest Virtex chip can easily fit ten RC6 rounds and eight Twofish rounds. Mars can be
implemented with four rounds unrolled; Rijndael and Serpent with only two rounds unrolled.

14

5.8 Potential for outer-round pipelining and mixed outer-inner-round pipelining

The largest gain from outer-round pipelining can be achieved by ciphers with the smallest area. The largest
number of pipelined rounds fitting within the largest available Virtex chip is the same as in the architecture with
loop unrolling. As a result, Twofish and RC6 can benefit most from the outer-round pipelined architecture. The
throughput of both these ciphers exceeds 1 Gbit/s for the architectures with the maximum number of outer-
round pipeline stages. Additional speed-up can be obtained by combining outer and inner round pipelining,
leading to the mulitigigabit-per-second performance. For Serpent, the most straightforward form of mixed
pipelining, with 16 regular cipher rounds unrolled and a register after each regular cipher round (1/8 of the
implementation round), would result in an even higher performance. Mars can benefit substantially from both
forms of pipelining; Rijndael primarily from the inner-round pipelining.

6. Design procedure and tools

The design flow and tools used in our group for implementation of algorithms in FPGA devices are shown
in Fig. 12. All five AES ciphers were first described in VHDL, and their description verified using the
functional simulator from Aldec, Inc. Test vectors and intermediate results from the reference software

implementations were used for debugging and verification
of VHDL codes. The revised VHDL code became an input
to Xilinx tools performing the automated logic synthesis,
mapping, placing, and routing. These tools generated
reports describing the area and speed of implementations,
a netlist used for timing simulations, and a bitstream to be
used to program an actual FPGA device. A final step is to
verify the design experimentally, using physical FPGA
devices. We plan to perform these experiments using a PCI
FPGA board from Virtual Computer Corporation [VCC].
The most complex PCI board currently available from
VCC is based on the XC4062XL FPGA device. This
device is able to fit full implementations of Twofish and
RC6, and an encryption portion of Serpent. All details of

Fig. 12 Design flow for implementing AES our implementations and experiments will be described
candidates using Xilinx FPGA devices. in the technical report [CG00].

7. Need for interleaved operating modes

The full potential of hardware implementations of symmetric block ciphers can only be utilized in cipher
modes that support efficient use of pipelining, as shown in Fig. 8. To date, the ECB mode is the only operating
mode standardized by NIST that supports efficient pipelining. However, ECB is not regarded secure for
transmissions of large volumes of data, and most standard protocols recommend using CBC or CFB modes
instead. Therefore, we propose to speed-up the standardization effort, and include in the AES standard
interleaved modes of operation, such as the interleaved CBC mode defined by:

Ci = AES(Mi ⊕ IVi) for i=1 to N, and Ci = AES(Mi ⊕ Ci-N) for i>N . (4)
The standard should support arbitrary values of the interleaving factor N, smaller than a certain maximum.

8. Conclusions

The results and analyses presented in this paper show that the differences in hardware performance of the
AES candidates are bigger and more significant than the corresponding differences in software performance. No
correlation between software and hardware performance was found. On the contrary, Serpent, believed to be the
slowest candidate in software, appeared to be the fastest of the five AES candidates in hardware. We believe that
the large differences among parameters of all five AES algorithms in hardware resulted primarily from internal
structure of these algorithms, and were not significantly affected by our implementation decisions. On the other

15

hand, we could not completely eliminate or predict the influence of the FPGA design tools and the VHDL
design entry method on the results of the comparison. Assessed exclusively from the hardware performance
point of view, the five AES finalists fall into the three distinct classes with different performance characteristics.

The first class includes Twofish and RC6. Both ciphers guarantee compact low-cost implementations with
medium speed compared to other candidates. In particular, because of the area constraints, Twofish and RC6 are
the only ciphers that can be implemented using low cost FPGA devices from the Xilinx XC4000 family. Both
ciphers can be substantially sped-up by outer-round pipelining (for non-feedback modes (ECB, counter mode)),
and - to the lesser extent - by loop-unrolling (for cipher feedback modes (CBC, CFB)). Among the two, Twofish
is in some respects superior to RC6. It is about 70% faster and is more suitable for inner-round pipelining. Both
ciphers use comparable area, and as a result their potential for loop unrolling and outer-round pipelining is
similar.

The second class includes Serpent and Rijndael. Both ciphers guarantee very high speed at the cost of the
relatively large area compared to the ciphers from the first class. The primary way of speeding up these ciphers
for non-feedback cipher modes (ECB and counter mode) is inner-round pipelining. Both ciphers have a similar
speed in the basic architecture. Rijndael can be implemented using about 35% less area. The more regular
architecture of Serpent makes it significantly more suitable for a multi-stage inner-round pipelining.

The third class is composed of Mars itself. This cipher shows the worst hardware characteristics of all five
candidates. It is over twice as slow than the next slowest candidate (RC6), and over 8 times slower than the
fastest AES cipher (Serpent). It also takes over twice the area used by ciphers from the first group, Twofish and
RC6. Further optimizations of the Mars implementation are certainly possible, but would require the higher
development effort than that devoted to other AES candidates.

It is interesting to notice that although four out of five candidates outperform Triple DES in terms of speed,
only Twofish has a comparable performance in terms of the speed/area ratio. Three other candidates, Rijndael,
RC6, and Serpent, have a similar, and much lower than triple DES, value of this performance parameter.

Out of all five candidates, Twofish seems to be the most suitable for applications where the primary
requirement is the limited cost or area of the cryptographic hardware. Serpent and Rijndael both offer superior
performance for applications where the speed itself is a criterion of primary concern.

Acknowledgments
The authors would like to thank Christof Paar and his students, as well as Miles Smid and other members of the NIST
Computer Security Division for valuable comments and discussions. We also would like to thank our students, Po Khuon
and Tanvir Joy, for their work on implementation of Triple DES.

Literature:

[BCD+98] C. Burwick, D. Coppersmith, E. D'Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M. Matyas, L. O'Connor, M.
Peyravian, D. Safford, and N. Zunic, "Mars - A Candidate Cipher for AES," NIST AES Proposal, June 1998.
[CG99] P. Chodowiec and K. Gaj, "Implementation of the Twofish Cipher Using FPGA Devices", Technical Report,
George Mason University, July 1999; available at http://www.counterpane.com/twofish.html.
[CG00] P. Chodowiec and K. Gaj, "Implementations of the AES Candidate Algorithms using FPGA Devices," Technical
Report, George Mason University, April 2000 (to be published on the web).
[EP99] A.J. Elbirt and C. Paar, "An FPGA Implementation and Performance Evaluation of the Serpent Block Cipher,"
Eighth ACM International Symposium on Field-Programmable Gate Arrays, Monterey, California, February 10-11, 2000.
Preprint available at http://ece.wpi.edu/Research/crypt/publications/index.html.
[NBD+99] James Nechvatal, Elaine Barker, Donna Dodson, Morris Dworkin, James Foti, Edward Roback, "Status Report
on the First Round of the Development of the Advanced Encryption Standard," NIST report, August 1999.
[NSA98] National Security Agency, "Initial plans for estimating the hardware performance of AES submissions,"
http://csrc.nist.gov/encryption/aes/round2/round2.htm.
[RH99] M. Riaz and H. Heys, "The FPGA Implementation of RC6 and CAST-256 Encryption Algorithms," accepted for
CCECE'99, Edmonton, Alberta, Canada, 1999.
[RRS+98] R. Rivest, M. Robshaw, R. Sidney, and Y. L. Yin, "The RC6 Block Cipher," NIST AES Proposal, June 1998.
[SKW+98] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, "Twofish: A 128-Bit Block Cipher,"
NIST AES Proposal, June 1998.
[SKW+99] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, "Performance Comparison of the AES
Submissions," Second AES Candidate Conference, Rome, April 1999.
[VCC] Virtual Computer Corporation, http://www.vcc.com/

