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Abstract. The results of fast implementations of all five AES final candidates
using Virtex Xilinx Field Programmable Gate Arrays are presented and
analyzed. Performance of several alternative hardware architectures is discussed
and compared. One architecture optimum from the point of view of the
throughput to area ratio is selected for each of the two major types of block
cipher modes. For feedback cipher modes, all AES candidates have been
implemented using the basic iterative architecture, and achieved speeds ranging
from 61 Mbit/s for Mars to 431 Mbit/s for Serpent. For non-feedback cipher
modes, four AES candidates have been implemented using a high-throughput
architecture with pipelining inside and outside of cipher rounds, and achieved
speeds ranging from 12.2 Gbit/s for Rijndael to 16.8 Gbit/s for Serpent. A new
methodology for a fair comparison of the hardware performance of secret-key
block ciphers has been developed and contrasted with methodology used by the
NSA team.

1. Introduction

Advanced Encryption Standard (AES) is likely to become a de-facto worldwide
encryption standard commonly used to protect all means of secret communications
during the next several decades [1]. Ever growing speed of communication networks,
combined with the high-volume traffic and the need for physical security, creates a
large demand for efficient implementations of AES in hardware.

The efficiency of hardware implementations of the AES candidates has been one of
the major criteria used by NIST to select the new federal standard from among five
final candidates. In the absence of any major breakthroughs in the cryptanalysis of
final candidates, and because of the relatively inconclusive results of their software
performance evaluations, hardware evaluations presented during the Third AES
conference [2] provided almost the only quantitative measure that clearly
differentiated AES candidates. The importance of this measure was reflected by a
survey performed among the participants of the AES conference, in which the ranking
of the candidate algorithms [2] coincided almost exactly with their relative speed in
hardware (compare Fig. 1 with Figs. 9 and 11). In October 2000, NIST announced its
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selection of Rijndael as the winner of the AES contest. The NIST final report
confirmed the importance of  the hardware efficiency studies [3].

The issue of implementing AES candidates in hardware will remain important long
after the AES selection process is over. The  winner of the AES contest, Rijndael, will
be in common use for many years. The remaining AES finalists are likely to be
included in products of selected vendors. New architectures developed as a part of the
AES candidate comparison effort will be used in implementations of other secret-key
block ciphers.

In this paper, we focus on implementing and comparing AES candidates using the
reconfigurable hardware technology based on Field Programmable Gate Arrays
(FPGAs). Our work supplements and extends other research efforts based on the same
technology [4], [5], [6], and on the use of semi-custom Application Specific
Integrated Circuits (ASICs) [7], [8], [9].

2. Field Programmable Gate Arrays

Field Programmable Gate Array (FPGA) is an integrated circuit that can be bought
off the shelf and reconfigured by designers themselves. With each reconfiguration,
which takes only a fraction of a second, an  integrated  circuit  can  perform  a
completely  different  function.   From several FPGA families available on the
market, we have chosen the high performance Virtex family from Xilinx, Inc. [10].
FPGA devices from this family consist of  thousands of universal building blocks,
known as Configurable Logic Blocks (CLBs), connected using programmable
interconnects, as shown in Fig. 2a. Reconfiguration is able to change a function of
each CLB and connections among them, leading to a functionally new digital circuit.
A simplified internal structure of a CLB slice (1/2 of a CLB) in the Virtex family is
shown in Fig. 2b. Each CLB slice contains a small block of combinational logic,
implemented using programmable look-up tables, and two one-bit registers [10].
Additionally, Virtex FPGAs contain dedicated memory blocks called Block Select
RAMs.
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For implementing cryptography in hardware, FPGAs provide the only major
alternative to custom and semi-custom Application Specific Integrated Circuits
(ASICs), integrated circuits that must be designed all the way from the behavioral
description to the physical layout, and sent for an expensive and time-consuming
fabrication.

3. Assumptions, compared parameters, and design procedure

The general block diagram of the hardware implementation of a symmetric-key block
cipher is shown in Fig. 3. All five AES candidates investigated in this paper have
been implemented using this block diagram.
Our implementations are intended to support only one key size, 128 bits. To simplify
comparison, the key scheduling is assumed to be performed off-chip. In order to
minimize circuit area, the encryption and decryption parts share as many resources as
possible by the given cipher type. At the same time, an effort was made to maximally
decrease the effect of resource sharing on the speed of encryption and decryption.
The implementations of AES candidates are compared using the following three
major parameters:
a. Encryption (decryption) throughput, defined as the number of bits encrypted

(decrypted) in a unit of time.
b. Encryption (decryption) latency, defined as the time necessary to encrypt

(decrypt) a single block of plaintext (ciphertext).
c. Circuit size (area).
The encryption (decryption) latency and throughput are related by

Throughput = block_size ⋅ #_of_blocks_processed_simultaneously / Latency (1)

In FPGA implementations, the only circuit size measures reported by the CAD tools
are the number of basic configurable logic blocks and the number of equivalent logic
gates. It is commonly believed that out of these two measures, the number of basic
configurable logic blocks approximates the circuit area more accurately.



The design flow and tools used in our group for implementing algorithms in
FPGA devices are shown in Fig. 4. All five AES ciphers were first described in
VHDL, and their description verified using the Active-HDL functional simulator from
Aldec, Inc. Test vectors and intermediate results from the reference software
implementations were used  for debugging and verification of the VHDL source
codes. The revised VHDL code became an input to the Xilinx toolset, Foundation
Series 2.1i, performing the automated logic synthesis, mapping, placing, and routing.
These tools generated reports describing the area and speed of implementations, a
netlist used for timing simulations, and a bitstream to be used to program actual
FPGA devices. The speed reports were verified using timing simulation.

4. Cipher modes

Symmetric-key block ciphers are used in several operating modes. From the point of
view of hardware implementations, these modes can be divided into two major
categories:
a. Non-feedback modes, such as Electronic Code Book mode (ECB) and counter

mode (CTR).
b. Feedback modes, such as Cipher Block Chaining mode (CBC), Cipher Feedback

Mode (CFB), and Output Feedback Mode (OFB).
In the non-feedback modes, encryption of each subsequent block of data can be

performed independently from processing other blocks. In particular, all blocks can be
encrypted in parallel. In the feedback modes, it is not possible to start encrypting the
next block of data until encryption of the previous block is completed. As a result, all
blocks must be encrypted sequentially, with no capability for parallel processing. The
limitation imposed by the feedback modes does not concern decryption, which can be
performed on several blocks of ciphertext in parallel for both feedback and non-
feedback operating modes.

According to current security standards, the encryption of data is performed
primarily using feedback modes, such as CBC and CFB. As a result, using current
standards does not permit to fully utilize the performance advantage of the hardware
implementations of secret key ciphers, based on parallel processing of multiple blocks
of data [12]. The situation can be remedied by including in the NIST new standard on
the AES modes of operation a counter mode and other non-feedback modes of
operation currently under investigation by the cryptographic community [12].

5. Implementation of the AES candidates in feedback cipher modes

5.1 Choice of an architecture

5.1.1 Basic iterative architecture
The basic hardware architecture used to implement an encryption/decryption unit of a
typical secret-key cipher is shown in Fig. 5a. One round of the cipher is implemented
as a combinational logic, and supplemented with a single register and a multiplexer.



In the first clock cycle, input block of data is fed to the circuit through the
multiplexer, and stored in the register. In each subsequent clock cycle, one round of
the cipher is evaluated, the result is fed back to the circuit through the multiplexer,
and stored in the register. The two characteristic features of this architecture are:

• Only one block of data is encrypted at a time.
• The number of clock cycles necessary to encrypt a single block of data is

equal to the number of cipher rounds, #rounds.
The throughput and latency of the basic iterative architecture, Throughputbi and

Latencybi, are given by

Throughputbi = block_size / #rounds ⋅ clock_period (2)

Latencybi = #rounds ⋅ clock_period (3)

5.1.2 Partial and full loop unrolling
An architecture with partial loop unrolling is shown in Fig. 5b. The only difference
compared to the basic iterative architecture is that the combinational part of the circuit
implements K rounds of the cipher, instead of a single round. K must be a divisor of
the total number of rounds, #rounds.
The number of clock cycles necessary to encrypt a single block of data decreases by a
factor of K. At the same time the minimum clock period increases by a factor slightly
smaller than K, leading to an overall relatively small increase in the encryption
throughput, and decrease in the encryption latency, as shown in Fig. 6. Because the
combinational part of the circuit constitutes the majority of the circuit area, the total
area of the encryption/decryption unit increases almost proportionally to the number
of unrolled rounds, K. Additionally, the number of internal keys used in a single clock
cycle increases by a factor of K, which in FPGA implementations typically implies
the almost proportional growth in the number of CLBs used to store internal keys.
Architecture with full loop unrolling is shown in Fig. 5c. The input multiplexer and
the feedback loop are no longer necessary, leading to a small increase in the cipher
speed and decrease in the circuit area compared to the partial loop unrolling with the
same number of rounds unrolled.

In summary, loop unrolling enables increasing the circuit speed in both feedback
and non-feedback operating  modes.  Nevertheless  this  increase  is  relatively  small,
and  incurs a large area penalty.  As a result, choosing this architecture can be
justified only for feedback cipher modes, where none other architecture offers speed
greater than the basic iterative architecture, and only for implementations where large
increase in the circuit area can be tolerated.

5.1.3 Resource sharing
For majority of ciphers, it is possible to significantly decrease the circuit area by

time sharing of certain resources (e.g., function h in Twofish, 4x4 S-boxes in
Serpent). This is accomplished by using the same functional unit to process two (or
more) parts of the data block in different clock cycles, as shown in Fig. 7. In Fig. 7a,
two parts of the data block, D0 and D1, are processed in parallel, using two



independent functional units F. In Fig. 7b, a single unit F is used to process two parts
of the data block sequentially, during two subsequent clock cycles.
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5.1.4 Deviations from the basic iterative architecture
Three final AES candidates, Twofish, RC6, and Rijndael, can be implemented using
exactly the basic iterative architecture shown in Fig. 5a. This is possible because all
rounds of these ciphers perform exactly the same operation. For the remaining two
ciphers, Serpent and Mars, this condition is not fulfilled, and as a result, the basic
iterative architecture can be defined in several different ways.

Serpent consists of 8 different kinds of rounds. Each round consists of three
elementary operations. Two of these operations, key mixing and linear transformation
are identical for all rounds; the third operation, S-Boxes, is different for each of the
eight subsequent rounds.

Two possible ways of defining the basic iterative architecture of Serpent are shown
in Fig. 8. In the first architecture, we call Serpent I1, shown in Fig. 8a, the
combinational part of the circuit performs a  single regular cipher round. To enable
switching between 8 different types of rounds, the combinational part includes 8 sets
of S-boxes, each fed by the output from the key mixing. Based on the current round
number, the output of only one of the eight S-boxes is selected using the multiplexer
to feed the input of the linear transformation. In this architecture, Serpent is treated
literally as a cipher with 32 rounds.

In the second architecture, we call Serpent I8, shown in Fig. 8b, eight regular
cipher rounds are treated as a single implementation round, and implemented one
after the other using a combinational logic. The implementation round needs to be
computed only 4 times, to implement all 32 regular cipher rounds. Thus, in this
architecture, Serpent is treated as a cipher with 4 extended cipher rounds.

Both conventions have their advantages and disadvantages. The first architecture
takes less area (especially taking into account the area required for key scheduling
and/or key storage). The second architecture is significantly faster.

5.1.5 Our choice
We chose to use the basic iterative architecture in our implementations. The reasons
for this choice were as follows:
• As shown in Fig. 6, the basic iterative architecture assures the maximum

speed/area ratio for feedback operating modes (CBC, CFB), now commonly used
for bulk data encryption. It also guarantees near optimum speed, and near
optimum area for these operating modes. Therefore it is very likely to be
commonly used in majority of practical implementations of the AES candidates.

• The basic architecture is relatively easy to implement in a similar way for all
AES candidates, which supports fair comparison.

• Based on the performance measures for basic architecture, it is possible to derive
analytically approximate formulas for parameters of more complex architectures.

For Serpent, we chose to implement its basic iterative architecture shown in Fig.
8b, we refer to as Serpent I8.



5.2 Our results and comparison with other groups

The results of implementing AES candidates, according to the assumptions and
design procedure summarized in section 3, are shown in Figs. 9 and 10.  All
implementations were based on Virtex XCV-1000BG560-6, one of the largest
currently available Xilinx Virtex devices. For comparison, the results of
implementing the current NIST standard, Triple DES, are also provided.
Implementations of all ciphers took from 9% (for Twofish) to 37% (for Serpent I8) of
the total number of 12,288 CLB slices available in the Virtex device used in our
designs. It means that less expensive Virtex devices could be used for all
implementations. Additionally, the key scheduling unit could be easily implemented
within the same device as the encryption/decryption unit.

In Figs. 11 and 12, we compare our results with the results of research groups from
Worcester Polytechnic Institute and University of Southern California, described in
[4] and [5]. Both groups used identical FPGA devices, the same design tools and
similar design procedure. The order of the AES algorithms in terms of the encryption
and decryption throughput is identical in reports of all research groups. Serpent in
architecture I8 (see Fig. 8b) and Rijndael are over twice as fast as remaining
candidates. Twofish and RC6 offer medium throughput. Mars is consistently the
slowest of all candidates. Interestingly, all candidates, including Mars are faster than
Triple DES. Serpent I8 (see Fig. 8b) is significantly faster than Serpent I1 (Fig. 8a),
and this architecture should clearly be used in cipher feedback modes whenever the
speed is a primary concern, and the area limit is not exceeded.

The agreement among circuit areas obtained by different research groups is not as
good as for the circuit throughputs, as shown in Fig. 12. These differences can be
explained based on the fact that the speed was a primary optimization criteria for all
involved groups, and the area was treated only as a secondary parameter. Additional
differences resulted from different assumptions regarding sharing resources between
encryption and decryption, key storage, and using dedicated memory blocks. Despite
these different assumptions, the analysis of results presented in Fig. 12 leads to
relatively consistent conclusions. All ciphers can be divided into three major groups:
1) Twofish and RC6 require the smallest amount of area; 2) Rijndael and Mars
require medium amount of area (at least 50% more than Twofish and RC6); 3)
Serpent I8 requires the largest amount of area (at least 60% more than Rijndael and
Mars). Serpent I1 belongs to the first group according to [5], and to the second group
according to [4].

The overall features of all AES candidates can be best presented using a two-
dimensional diagram showing the relationship between the encryption/decryption
throughput and the circuit area. In Fig. 13, we collect our results for the Xilinx Virtex
FPGA implementations, and in Fig. 14 we show for comparison the results obtained
by the NSA group for ASIC implementations [7], [8]. Comparing diagrams shown in
Fig. 13 and Fig. 14 reveals that the speed/area characteristics of the AES candidates is
almost identical for the FPGA and ASIC implementations. The primary difference
between the two diagrams comes from the absence of the ASIC implementation of
Serpent I8 in the NSA report [8].

All ciphers can be divided into three distinct groups:
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• Rijndael and Serpent I8 offer the highest speed at the expense of the relatively
large area;

• Twofish, RC6, and Serpent I1 offer medium speed combined with a very small
area;

• Mars is the slowest of all AES candidates and second to last in terms of the
circuit area.

Looking at this diagram, one may ask which of the two parameters: speed or area
should be weighted more during the comparison? The definitive answer is speed. The
primary reason for this choice is that in feedback cipher modes it is not possible to
substantially increase encryption throughput even at the cost of a very substantial
increase in the circuit area (see Fig. 6). On the other hand, by using resource sharing
described in section 5.1.3, the designer can substantially decrease circuit area at the
cost of a proportional (or higher) decrease in the encryption throughput. Therefore,
Rijndael and Serpent can be implemented using almost the same amount of area as
Twofish and RC6; but Twofish and RC6 can never reach the speeds of the fastest
implementations of Rijndael and Serpent I8.

6. Implementation of the AES candidates in non-feedback cipher
modes

6.1 Choice of an architecture

6.1.1 Alternative architectures
Traditional methodology for design of high-performance implementations of secret-
key block ciphers, operating in non-feedback cipher modes is shown in Fig. 15. The
basic iterative architecture, shown in Fig. 15a is implemented first, and its speed and
area determined. Based on these estimations, the number of rounds K that can be
unrolled without exceeding the available circuit area is found. The number of unrolled
rounds, K, must be a divisor of the total number of cipher rounds, #rounds. If the
available circuit area is not large enough to fit all cipher rounds, architecture with
partial outer-round pipelining, shown in Fig. 15b, is applied. The difference between
this architecture and the architecture with partial loop unrolling, shown in Fig. 5b, is
the presence of registers inside of the combinational logic on the boundaries between
any two subsequent cipher rounds. As a result, K blocks of data can be processed by
the circuit at the same time, with each of these blocks stored in a different register at
the end of a clock cycle. This technique of paralell processing multiple streams of
data by the same circuit is called pipelining. The throughput and area of the circuit
with partial outer-round pipelining increase proportionally to the value of K, as shown
in Fig. 17, the encryption/decryption latency remains the same as in the basic iterative
architecture, as shown in Fig. 18. If the available area is large enough to fit all cipher
rounds, the feedback loop is not longer necessary, and full outer-round pipelining,
shown in Fig. 15c, can be applied.
Our methodology for implementing non-feedback cipher modes is shown in Fig. 16.
The primary difference is that before loop unrolling, the optimum number of pipeline
registers is inserted inside of a cipher round, as shown in Fig. 16b. The entire round,
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including internal pipeline registers is than repeated K times (see Fig. 16c). The
number of unrolled rounds K depends on the maximum available area or the
maximum required throughput.

The primary advantage of our methodology is shown in Fig. 17. Inserting registers
inside of a cipher round significantly increases cipher throughput at the cost of only
marginal increase in the circuit area. As a result, the throughput to area ratio increases
until the number of internal pipeline stages reaches its optimum value kopt. Inserting
additional registers may still increase the circuit throughput, but the throughput to
area ratio will deteriorate. The throughput to area ratio remains unchanged during the
subsequent loop unrolling. The throughput of the circuit is given by

Throughput (K, k) = K ⋅ block_size / #rounds ⋅ TCLKinner_round (k) (4)

where k is the number of inner-round pipeline stages, K is the number of outer-round
pipeline stages, and TCLKinner_round (k) is the clock period in the architecture with the k-
stage inner-round pipelining.



For a given limit in the circuit area, mixed inner- and outer-round pipelining shown
in Fig. 16c offers significantly higher throughput compared to the pure outer-round
pipelining (see Fig. 17). When the limit on the circuit area is large enough, all rounds
of the cipher can be unrolled, as shown in Fig. 16d, leading to the throughput given by

Throughput (#rounds, kopt) = block_size / TCLKinner_round (kopt) (5)

where kopt is the number of inner-round pipeline stages optimum from the point of
view of the throughput to area ratio.

The only side effect of our methodology is the increase in the
encryption/decryption latency. This latency is given by

Latency(K, k) = #rounds ⋅ k ⋅ TCLKinner_round (k) (6)

It does not depend on the number of rounds unrolled, K.
The increase in the encryption/decryption latency, typically in the range of single

microseconds, usually does not have any major influence on the operation of the high-
volume cryptographic system optimized for maximum throughput. This is particularly
true for applications with a human operator present on at least one end of the secure
communication channel.

6.1.2 Our choice
In our opinion, a fair methodology for comparing hardware performance of the

AES candidates should fulfill the following requirements.
a) It should be based on the architecture that is likely to be used in practical

implementations, because of the superior throughput/area ratio.
b) It should not favor any group of ciphers or a specific internal structure of a

cipher.
For feedback cipher modes, both conditions are very well fulfilled by the basic

iterative architecture, and this architecture was commonly used for comparison. For
non-feedback cipher modes, the decisions about the choice of the architecture varied
and no consensus was achieved.

The NSA team chose to use for comparison the full outer-round pipelining [7], [8].
In our opinion, this choice does not fulfill either one of the formulated above
requirements. As shown in Fig. 17, the outer-round pipelining offers significantly
worse throughput to area ratio compared to the architecture with the mixed inner- and
outer-round pipelining. Therefore, the use of this architecture may lead to
suboptimum designs, which are not likely to be used in practice. Secondly, the choice
of the outer-round pipelining favors ciphers with a short and simple cipher round,
such as Serpent and Rijndael. The AES candidates with  more complex internal
rounds, such as Mars, RC6, and Twofish, are adversely affected.

Throughputfull_outer_round = block_size /TCLKbasic (7)

where TCLKbasic is a delay of a single round.
The throughput does not depend any longer on the number of cipher rounds, but is

inversely proportional to the delay of a single round. Ciphers with the large number of
simple rounds are favored over ciphers with the small number of complex rounds.



On the other hand, the throughput in the full mixed inner and outer-round
pipelining is given by

Throughputfull_mixed = block_size /TCLKinner_round (kopt) (8)

where TCLKinner_round(kopt) is the delay of a single pipeline stage for the optimum
number of registers introduced inside of a single round. In FPGA implementations,
this delay is determined by the delay of a single CLB slice and delays of interconnects
between CLBs. As a result, the throughput does not depend on the complexity of a
cipher round and tend to be similar for all AES candidates. Based on these
observations, we have decided that full mixed inner- and outer-round pipelining
should be the architecture of choice for comparing hardware performance of the AES
candidates in non-feedback cipher modes.

6.2 Our results and comparison with results of other groups

The results of our implementations of four AES candidates using full mixed inner-
and outer-round pipelining and Virtex XCV-1000BG560-6 FPGA devices are
summarized in Figs. 19, 21, and 22. Because of the timing constraints, we did not
attempt to implement Mars in this architecture, nevertheless, we plan to pursue this
project in the future. In Fig. 20, we provide for comparison the results of
implementing all five AES finalists by the NSA group, using full outer-round
pipelining and semi-custom ASICs based on the 0.5 µm CMOS MOSIS library [8].

To our best knowledge, the throughputs of the AES candidates obtained as a result
of our design effort, and shown in Fig. 17, are the best ever reported, including both
FPGA and ASIC technologies. Our designs outperform similar pipelined designs
based on the use of identical FPGA devices, reported in [4], by a factor ranging from
3.5 for Serpent to 9.6 for Twofish. These differences may be attributed to using a
suboptimum number of inner-round pipeline stages and to limiting designs to single-
chip modules in [4]. Our designs outperform NSA ASIC designs in terms of the
encryption/decryption throughput by a factor ranging from 2.1 for Serpent to 6.6 for
Twofish (see Figs. 19 and 20). Since both groups obtained very similar values of
throughputs for the basic iterative architecture (see Figs. 13 and 14), these large
differences should be attributed primarily to the differences between the full mixed
inner- and outer-round round architecture employed by our group and the full outer-
round architecture used by the NSA team.
By comparing Figs. 19 and 20, it can be clearly seen that using full outer-round
pipelining for comparison of the AES candidates favors ciphers with less complex
cipher rounds. Twofish and RC6 are over two times slower than Rindael and Serpent
I1, when full outer-round pipelining is used (Fig. 20); and have the throughput greater
than Rijndael, and comparable to Serpent I1, when full mixed inner- and outer-round
pipelining is applied (Fig. 19). Based on our basic iterative architecture
implementation of Mars, we predict that the choice of the pipelined architecture
would have the similar effect on Mars.

The deviations in the values of the AES candidate throughputs in full mixed
inner- and outer-round pipelining do not exceed 20% of their mean value. The
analysis of critical paths in our implementations has demonstrated that all critical



paths contain only a single level of CLBs and differ only in delays of programmable
interconnects. Taking into account already small spread of the AES candidate
throughputs and potential for further optimizations, we conclude that the
demonstrated differences in throughput are not sufficient to favor any of the AES
algorithms over the other. As a result, circuit area should be the primary criterion of
comparison for our architecture and non-feedback cipher modes.

As shown in Fig. 21, Serpent and Twofish require almost identical area for their
implementations based on full mixed inner- and outer-round pipelining. RC6 imposes
over twice as large area requirements. Comparison of the area of Rijndael and other
ciphers is made difficult by the use of dedicated memory blocks, Block SelectRAMs,
to implement S-boxes. Block Select RAMs are not used in implementations of any of
the remaining AES candidates, and we are not aware of any formula for expressing
the area of Block Select RAMs in terms of the area used by CLB slices. Nevertheless,
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we have estimated that an equivalent implementation of Rijndael, composed of CLBs
only, would take about 24,600 CLBs, which is only 17 and 25 percent more than
implementations of Twofish and Serpent.

Additionally, Serpent, Twofish, and Rijndael all can be implemented using two
FPGA devices XCV-1000; while RC6 requires four such devices. It should be noted
that in our designs, all implemented circuits perform both encryption and decryption.
This is in contrast with the designs reported in [4], where only encryption logic is
implemented, and therefore a fully pipelined implementation of Serpent can be
included in one FPGA device.

Connecting two or more Virtex FPGA devices into a multi-chip module working
with the same clock frequency is possible because the FPGA system level clock can
achieve rates up to 200 MHz [10], and the highest internal clock frequency required
by the AES candidate implementation is 131 MHz for Serpent. New devices of the
Virtex family, scheduled to be released in 2001, are likely to be capable of including
full implementations of Serpent, Twofish, and Rijndael on a single integrated circuit.

In Fig. 22, we report the increase in the encryption/decryption latency resulting
from using the inner-round pipelining with the number of stages optimum from the
point of view of the throughput/area ratio. In majority of applications that require
hardware-based high-speed encryption, the encryption/decryption throughput is a
primary performance measure, and the latencies shown in Fig. 22 are fully acceptable.
Therefore, in this type of applications, the only parameter that truly differentiates
AES candidates, working in non-feedback cipher modes, is the area, and thus the cost,
of implementations. As a result, in non-feedback cipher modes, Serpent, Twofish, and
Rijndael offer very similar performance characteristics, while RC6 requires over
twice as much area and twice as many Virtex XCV-1000 FPGA devices.

7. Summary

We have implemented all five final AES candidates in the basic iterative architecture,
suitable for feedback cipher modes, using Xilinx Virtex XCV-1000 FPGA devices.
For all five ciphers, we have obtained the best throughput/area ratio, compared to the
results of other groups reported for FPGA devices. Additionally, we have
implemented four AES algorithms using full mixed inner- and outer-round pipelining
suitable for operation in non-feedback cipher modes. For all four ciphers, we have
obtained throughputs in excess of 12 Gbit/s, the highest throughputs ever reported in
the literature for hardware implementations of the AES candidates, taking into
account both FPGA and ASIC implementations.

We have developed the consistent methodology for the fast implementation and
fair comparison of the AES candidates in hardware. We have found out that the
choice of an optimum architecture and a fair performance measure is different for
feedback and non-feedback cipher modes.

For feedback cipher modes (CBC, CFB, OFB), the basic iterative architecture is
the most appropriate for comparison and future implementations. The
encryption/decryption throughput should be the primary criterion of comparison
because it cannot be easily increased by using a different architecture, even at the cost



of a substantial increase in the circuit area. Serpent and Rijndael outperform three
remaining AES candidates by at least a factor of two in both throughput and latency.
Our results for feedback modes have been confirmed by two independent research
groups.

For non-feedback cipher modes (ECB, counter mode), an architecture with full
mixed inner- and outer-round pipelining is the most appropriate for comparison and
future implementations. In this architecture, all AES candidates achieve
approximately the same throughput. As a result, the implementation area should be
the primary criteria of comparison. Implementations of Serpent, Twofish, and
Rijndael consume approximately the same amount of FPGA resources; RC6 requires
over twice as large area. Our approach to comparison of the AES candidates in non-
feedback cipher modes is new and unique, and has yet to be followed, verified, and
confirmed by other research groups.

Our analysis leads to the following ranking of the AES candidates in terms of the
hardware efficiency: Rijndael and Serpent close first, followed in order by Twofish,
RC6, and Mars. Combined with rankings of the AES candidates in terms of the
remaining evaluation criteria, such as security, software efficiency, and flexibility, our
study fully supports the choice of Rijndael as the new Advanced Encryption Standard.
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