
DPA Resistant AES on FPGA using Partial DDL
Jens-Peter Kaps and Rajesh Velegalati
ECE Department, George Mason University

4400 University Drive, Fairfax, VA 22030, USA
Email: {jkaps, rvelegal}@gmu.edu

Abstract—Current techniques to implement Dynamic Differ-
ential Logic (DDL), a countermeasure against Differential Power
Analysis (DPA) on Field Programmable Gate Arrays (FPGAs)
lead to an increase in area consumption of up to factor 11.
In this paper we introduce Partial DDL, a technique in which
DDL is applied only to a part of the cryptographic hardware
implementation. We propose principle rules for Partial DDL to
guide the designer in how to split up a circuit into DDL protected
and unprotected paths. In order to validate our approach we
implemented a lightweight architecture of AES in the Partial
Separated Dynamic Differential Logic (Partial SDDL) for FPGAs.
The results show that our implementation with Partial SDDL
is as resistant to DPA as a full SDDL implementation while it
consumes only 76% of the total area occupied by the full SDDL
design. This is an area increase of 2.3 times over an unprotected
single ended design.

I. INTRODUCTION

With ever increasing miniaturization and ubiquity of com-
puting devices such as smart cards, wireless sensor network
(WSN) nodes, radio frequency identification (RFID) tags etc.,
security threats against them have become a growing con-
cern [1], [2]. Even though these devices protect confidential
information using cryptographic algorithms that withstand
rigorous cryptanalytic attacks, an adversary can obtain the
secret information by observing the so-called side channel
leakage from the cryptographic device. These side channels
can be power consumption, execution time, or electromagnetic
emanations of the device. Amongst these passive non-invasive
side channel attacks (SCA), the power analysis attack [3], [4]
has received the most amount of attention by the research com-
munity because it is very powerful, can easily be conducted,
and has been used successfully many times. It can be applied
to dedicated cryptographic processors as well as to general
purpose processors running a cryptographic software. The
fact that ultra-low power implementations of cryptographic
algorithms perform most operations in a serial fashion, in order
to conserve power, makes them especially susceptible to DPA.

When it turned out that the cryptographic devices are
vulnerable to power analysis, there has been great effort in
the development of countermeasures against DPA. Dynamic
Differential Logic (DDL) styles have been very successful in
thwarting DPA attacks on ASICs [5]. However, current imple-
mentations of DDL styles on FPGAs have a very large area
overhead which is not suitable for low area implementations.

c©2009, IEEE. Jens-Peter Kaps and Rajesh Velegalati. DPA resistant AES
on FPGA using partial DDL. In IEEE Symposium on Field-Programmable
Custom Computing Machines – FCCM 2010, pages 273–280. IEEE, May
2010. http://dx.doi.org/10.1109/FCCM.2010.49

F
L

S
R

AES
S−BOX

8

Key
8

FF1 FF2 Q
8

Protected Part

Fig. 1. Block Diagram of Test Circuit

DDL aims to break the connection between the instantaneous
power consumption of a circuit and the data being processed.
This would make a DPA attack infeasible. DDL accomplishes
this goal through duplicating the circuit into a direct and a
complementary logic. It pre-charges the inputs of the circuit
and the outputs of all memory elements during one half of a
clock cycle (pre-charge phase) and performs the computation
in the other half (evaluation phase). This guarantees constant
switching activity, i.e. either a bit in the direct or the corre-
sponding bit in the complementary logic switch.

For example consider the circuit shown in Fig.1. An 8-bit
LFSR is used to supply inputs to the SBOX. The output of
the SBOX is XORed with key and stored in register FF1. The
register FF2 drives the outputs of the chip and is implemented
in I/O blocks (IOB). Table I shows the comparison between
different DDL styles applied to the test circuit shown in Fig.1.

The Single Ended (SE) implementation of the circuit shown
in Fig.1 makes heavy use of Wide Dedicated Multiplexers
(WDM)s, a special intrinsic features in Xilinx FPGAs, when
synthesizing the S-Box. The Separated Dynamic Differential
Logic for FPGAs (SDDL for FPGAs) [6] design does not use
the WDMs. Hence, the area consumption of the SDDL for
FPGA design is nearly 4 times that of Single Ended (SE)
design. The WDDL implementation has an area overhead of
nearly 5 times and DWDDL nearly 11 times to that of a
SE design. DWDDL is the most secure of the three DDL
styles although its area consumption makes it impracticable
for many FPGA applications. The area consumption and
security estimates of SDDL for FPGAs style is taken from [6]
and that of Wave Dynamic Differential Logic (WDDL) and
Double Wave Dynamic Differential Logic (DWDDL) is taken
from [7], [8].

Although DDL implementations on FPGAs are explored
in [5], [9]–[11], to our knowledge not much work has been
done to reduce the area overhead incurred due to DDL styles.
In [9] Guilley et al. presented optimization techniques which
reduce the size of a WDDL implementations on FPGAs. They
were able to reduce the size of their WDDL implementation



TABLE I
COMPARISON BETWEEN DIFFERENT DDL STYLES APPLIED TO THE TEST CIRCUIT

Design Methodology SE SDDL for FPGAs WDDL DWDDL
DPA Resistance No Medium Medium High
Area Consumed (in slices) 70 283 409 818
Increase in Area Over SE 1.00 4.04 5.84 11.68

Unprotected
Data Path

Controller

Data Path
Protected

Data Path
Protected

(complementary)(direct)

Fig. 2. Block Diagram of Partial DDL Implementation

of Triple DES by 23% [8] through a new synthesis flow.
However, this design is still much larger than a single ended
design due to the use of only positive logic as required by
WDDL.

It is the goal of this paper to introduce Partial DDL,
propose principle design rules of Partial DDL, and show
its effectiveness in terms of area saving and DPA resistance
through a proof-of-concept implementation of a lightweight
AES design using SDDL for FPGAs and comparing it with
one using Partial SDDL for FPGAs.

The rest of the paper is structured as follows. Section II
explains the concept of Partial DDL and the principle rules
for implementing Partial DDL. The secure design flow for
implementing Partial DDL on FPGAs is described in Sec-
tion III. Next, in Section IV the lightweight implementation
of AES, the attack methodology, and the design considerations
for AES Partial SDDL are discussed. In Section V we present
the implementation results secured AES using Partial SDDL.
Section VI concludes the paper and discusses future research
perspectives related to Partial DDL.

II. PARTIAL DDL

Partial DDL describes the notion that DDL is applied to only
a part of the cryptographic implementation. Consider the block
diagram shown in Fig 2. The data path of the cryptographic
implementation is divided into two parts, Data Path Protected
and Data Path Unprotected. DDL is implemented only on the
protected data path splitting it into a direct and a complemen-
tary part (indicated as DataPath). DDL is not applied to the
unprotected path and the control block of the implementation.
It is already a common practice [9], [12] to not protect
the control logic as it manipulates only public information
of the algorithm. The protected and unprotected data paths
are interconnected but there is no connection between the
complementary data path and the unprotected data path, shown
as crossed out line in Fig 2. The advantage of Partial DDL
is that the area overhead is reduced (2 x protected data path)
compared to the area overhead incurred due to applying DDL
over the entire design. The drawback of Partial DDL is that
the power consumption will not be as constant as when DDL
is applied to the entire data path.

A. Partitioning the Data path

The first step in a DPA attack is to choose an intermediate
result of the cryptographic algorithm being executed, which
should be a function of input data and the secret key. Then
we calculate the hypothetical power model depending upon
these intermediate values. Some intermediate results are easier
to model while others are harder. We partition the data path
depending upon the complexity of these power models. The
protected data path contains the parts of the cryptographic
algorithm which are easier to model and thus need to be
protected. The unprotected data path contains the parts of the
cryptographic algorithm which are harder to model, requiring
complex statistical test (template attacks etc.) and much larger
number of measurements to disclose the key.

B. Principle Rules for Partial DDL

We propose the following principle rules for implementing
Partial DDL on cryptographic implementations:

• The cryptographic implementations should be thoroughly
analyzed with respect to DPA and only then the data path
should be partitioned.

• The controller and the unprotected data path block should
be placed inside the FPGA fabric in such a way that the
distance of the signals from the control block and the
output signals from the unprotected data path to the direct
and complementary part should be as similar as possible,
so that there would not be any delay of operation between
the direct and complementary part. As the routing of these
signals is performed by the FPGA tools in our design
flow, we can not control the routing precisely.

• Special care must be taken when connecting the unpro-
tected data path to the complementary circuit. The output
signals from unprotected data path should either be in-
verted (which will result in additional area consumption)
or appropriate changes in the LUT logic equation must be
made. Control signals to the complementary part should
not be inverted.

• Output signals from the complementary circuit either
to the unprotected data path or to the IOBs will be
terminated in the slice itself.

We demonstrate the partial DDL approach on a lightweight
implementation of AES on FPGA in the next sections.

III. SDDL FOR FPGA

Our SDDL model [6] is shown in Fig. 3. Instead of applying
De-Morgan’s law to obtain the duplicate part we simply
invert the inputs and outputs of the original logic gate. This
technique is not suitable for ASICs because placing a inverter
on both inputs and outputs will increase the area consumption.



Q

D Q
Latch

en clr

D Q
Latch

en clr

A
B

A
B

Q

Q

a) WDDL NAND Gate

A
B

A
B

A

B
Q’

Q
Q’

Precharge

b) SDDL for FPGA

Fig. 3. Proposed SDDL Model

Whereas in FPGAs, we need to modify only the logic equation
in the LUTs, which will not cause any area overhead. FPGA
CAD tools are given the maximum flexibility to optimize a
given design for the target FPGA thus, allowing logic packing
in LUTs and also make use of all the intrinsic features present
in the FPGA with the exception of WDMs.

A. Hard-Macro for Register Pre-Charging

During our work on exploring the DPA resistance of WDMs
when applied to SDDL [6] we made the following observa-
tions:

• The connection between the LUT and the flip-flop/latch
in the same slice does not leak exploitable information.

• The connection between two slices in the same Config-
urable Logic Block (CLB) does not leak any exploitable
information.

• Any connection between CLBs leaks exploitable informa-
tion. This includes even the fast dedicated interconnects
used by WDMs.

Hence the pre-charge circuit for registers should be present in
the same CLB so that sensitive information is not leaked.

Pre-charge circuits are inserted into an SE design using the
technique described in [6], [7]. In Xilinx Spartan3 FPGAs a
CLB is comprised of four slices, each containing two Look-
up Tables (LUT) which are always followed by two storage
elements that can be used as either flip-flop or latch. The
pre-charge circuit is implemented by using an asynchronously
cleared latch to ensure the propagation of the ’0’ wave even if
the output of an LUT is ’1’. If a flip-flop is already used in the
design then the pre-charge circuit should be inserted in a slice
from the same CLB so that the routing between the two slices
is at minimum. For designs that use low area resources, it is
possible to control the Place and Route (PAR) tool to leave
the slices present near the registers in the same CLB empty.
However for larger designs, controlling the PAR tool becomes
too cumbersome. Hence we use a hard macro to pre-charge
the output of the register.

Hard macros are block level designs of logic functions
that specify how the logic elements are interconnected and
the connections between the components routed. There are 8
flip-flops in a CLB hence the maximum register length with
a corresponding pre-charge circuit is 4 bits. We created a
4-bit register/pre-charge hard macro (see Fig. 4) as it fully
utilizes a CLB and does not restrict the Xilinx router, which
larger hard macros would. All registers in the AES module

Pre_Charge
Latch

Pre_Charge
Latch

LUT

SLICE_3

LUT

Pre_Charge
Latch

Pre_Charge
Latch

LUT

LUT

SLICE_1

Flip Flop

Flip Flop

SLICE_0

SLICE_2

Flip Flop

Flip Flop

Fig. 4. Hard-Macro of Four Flip-Flops with Pre-Charge

O O
A2 Original

A1

CTRL_SIG

A4

LUT

A2

A1

CTRL_SIG

A4

LUT

Duplicate

Fig. 5. Controlled Complementing of Logic

are a multiple of 4 in length. The dotted lines are the
interconnects between the flip-flops and their corresponding
pre-charge circuits. These routes are inter-slice connections
and pass through the switch box.

B. Duplicating and Complementing

We duplicate the protected data path part only. The dupli-
cation and relocation processes are described in [6].

If f(x) is the equation which defines a LUT in the direct
path, then its complementary equation g(x̄) is given by

g(x̄) = f(x̄) = f(x) (1)

Since we do not apply SDDL to the control block of the
implementation, the control signals that are to be connected to
the complementary block are not inverted. Creating inverted
control signals causes area overhead. Therefore, care must be
taken, so that the control signals are not inverted in the logic
equation, as shown in Fig. 5. When connecting the unprotected
data path to the complementary path we follow the same
principle.

C. Secure Design Flow for Partial SDDL

Our design flow for implementing Partial SDDL on FPGAs
uses Xilinx ISE Design suite 10.1 and Perl scripts. It consists
of three phases, as shown in Fig 6.

In the first phase, the single ended design is synthesized
and implemented. We apply area constraints to perform the
following tasks:



Remove I/O Connections

VHDL

Hard
Macro

FF−Pre

Place & Route

Duplicate and Complement

Re−entrant
Routing

Synthesis
Place & Route

SDDL Implementation

Insert Precharge

Area Constraints

Controlled Placement
+

Phase_1

Phase_2

Phase_3

Fig. 6. SDDL Design Flow

• Limit the design to one section of the FPGA fabric,
keeping other sections empty so that we can use them
to place the complementary path.

• The controller block and unprotected data path part have
to be constrained in such a way that the distance form
them to the direct and complementary part are as similar
as possible. This will minimize differences in the arrival
time of unprotected data and control signals and hence
ensure that the principles of SDDL on FPGAs are not
violated.

In the second phase, the circuit description file from the first
phase is converted into ASCII representation with help of the
XDL (Xilinx Design Language) tool. Perl scripts interpret the
XDL file and insert pre-charge. Subsequently only Place and
Route is executed.

In the third phase, the I/O connections are removed and the
design is again converted into XDL format. Our Perl scripts
duplicate and complement the protected data path part. This
duplication preserves the routing of the original design. Hence,
each gate output in the original design drives an equivalent
load as the corresponding output in the complementary part.
The scripts are also used to link the unprotected data path
and all control signals to the complementary circuit. However,
the signals from the I/O pins and all signals connecting the
complementary part to the controller block and unprotected
data path are still not routed. In order to preserve the routing
of the original and complementary parts we use Place and
Route in re-entrant routing mode.

IV. AES IMPLEMENTATION AND ATTACK METHODOLOGY

A. AES Implementation

The Advanced Encryption Standard (AES) [13] is one of the
most widely used block ciphers. It was designed to be resistant

R3

R2

R4

R1

da
ta

bu
s

Data Store

XOR

SBox

Mix Column

Key Gen

Key Store

Control

Rcon

Protected Unprotected

R0

Fig. 7. Block Diagram of AES Module

towards linear and differential cryptanalysis. AES is a block
cipher of fixed input size of 128 bits and key length of either
128 or 192 or 256 bits. For our AES implementation [14]
we chose to use a key length of 128 bits. AES applies the
same round function ten times to its inputs during encryption.
The round function consists of four different transformations
SubBytes, ShiftRows, MixColumns and AddRoundKey each
changing the input by applying linear, non linear and key
dependent transformations. Our AES implementation also
assumes that the data input and the secret key are stored
in memory. The AES transformations are grouped into four
stages

1) Initial AddRoundKey-SubBytes-ShiftRows
2) MixColumns
3) AddRoundKey-SubBytes-ShiftRows
4) FinalAddRoundKey
The data path of our AES implementation is shown in Fig. 7.

It is characterized by a pipelined architecture for stages 1 and
3. This enables us to re-use registers and minimize the number
of internal memory accesses which in turn reduces the number
of clock cycles. Five registers R0, R1, R2, R3, R4 are used
of which R0 is used exclusively for RotWord operation. R1

is used for key computation and state computation in Mix-
Columns operation, R2, R3, R4 are used for state computation.
The boxes labeled as Key store and Data store are 128 bit
registers used for Round keys and State Memory respectively.

In order to provide different plain text and key as input to the
AES module we built a wrapper circuit, as shown in Fig. 8. A
128-bit Linear Feedback Shift Register (LFSR) provides input
data to the AES module. An 8-bit wide 32:1 multiplexer is
used to select data or key depending upon the address from
the AES module.

B. Design consideration for AES- Partial SDDL

The implementation of the single ended AES design (AES
SE) consumes 393 slices excluding the wrapper circuit. Ta-
ble II breaks down the area consumption of AES into its
components. The pre-charge design is the result of the second
step of our SDDL design flow.



COUNTER

128−bit LFSR

SECRET KEY

AES

MODULE

ADDRESS
LINES

DATA
IN

RESET

CLOCK

128

1

8 DATA OUT

8

5

Fig. 8. AES Module With a Wrapper Circuit

TABLE II
ESTIMATED SLICE CONSUMPTION OF INDIVIDUAL COMPONENTS IN AES

Slice Count
AES-Component SE Pre- Partial Full

Design charge SDDL SDDL
Data Store + Mix Columns 106 178 356 356
Key Store + Key Expansion 98 98 98 196
AES Computations 51 71 142 142
SBOX 64 129 258 258
Controller and Address 74 74 74 148
Total 393 550 928 1100

Pre-charging increases the slices consumed by a register
by factor 2. In our design we substituted the registers with
the hard macro. For example the data store register which
is 128-bits in length can be implemented in 64 slices in
the SE design. After pre-charging the area consumed by the
data store component becomes 128 slices. We restricted our
pre-charged AES design to use only 4:1 multiplexers as our
earlier experiments [6] showed that the use of WDMs leaks
information. Due to this restriction the slice consumption of
the SBOX component increases to twice that of the original
value.

The third and fourth column in Table II estimate the slice
count for the Partial SDDL and full SDDL implementations
respectively. For the full SDDL implementation the entire pre-
charge implementation is duplicated with the exception of the
wrapper circuit. The Partial SDDL implementation does also
not duplicate the Key Store, Key Expansion, Controller, and
Address generation units. In summary, SDDL implementations
of simple logic functions incur an area increase of factor 2 due
to duplication of logic. This penalty is increased when the
original SE design uses WDMs. The overhead for registers
is a factor 4 due to pre-charge and duplication. This greatly
effects lightweight implementations which are severely area
constraint.

C. Attack Methodology

Consider the data flow from R2 to R3 and R4 in Fig. 7.
Resetting the AES module changes the data value in these
registers to 0x00. In the first clock cycle, the first byte of
the key is loaded into R1. Registers R2, R3, and R4 are
not enabled and hence remain at 0x00. In the second clock
cycle the output of the register R3 changes from 0x00 to
0x63 i.e. SBOX(R2) and the data value in R2 changes to the
input data XORed with key from R1. In the subsequent clock
cycle the data value in the register R3 changes from 0x63 to

S−Box

S−Box

Unit
Control

Core

AES
Core

AES

Store
Key

Store

Wrapper

Store
Data

AES

Data

Fig. 9. Placement of AES Modules on FPGA Fabric

SBOX(R2). This sequence of change in the data values of the
register R3 i.e 0x00 → 0x63 → SBOX(Key⊕Inputdata)
occurs every time the AES module is reseted. Thus we know
two consecutive data values of a register and can apply
the Hamming Distance (HD) model to simulate the power
consumption of the register. Therefore, we use a counter to
reset the AES module after every 10 clock cycles. The power
model for the single ended design is given by Equation (2).
It calculates the HD between the SBOX value of key guess
XOR data and the hex value of 0x63.

The key register R0 is a probable attack point, although the
attack itself will be difficult, i.e. it will probably require more
Measurements To Disclosure (MTD) compared to attacking
the registers R3 or R4. The reason is that we cannot compute
an HD model as the key store register output is always an
unknown value (Round Keys). In this case the Hamming
weight (HW) model as shown in Equation (4) can be used. In
order to attack the register R0 the adversary has to identify the
power consumption levels corresponding to the HW of the data
being processed. This requires complex statistical testing [15].
Due to this reason and the fact that the SDDL version of
the key store register will cause a large area over head, we
decided not to duplicate the key store register. This is a risk
we are taking to limit the area overhead although the security
of the final SDDL design may decrease. We also decided not to
duplicate the controller as it leaks only the public information
of the algorithm. The Controller does not manipulate any
sensitive information. Fig. 7 shows the blocks which are pre-
charged and duplicated on the left and the unprotected blocks
on the right.

We perform Correlation Power Analysis [16] using Pear-
son’s Correlation [16], [17] in conjunction with either Ham-
ming Distance model or Hamming Weight model (depending
upon the situation).



Pguess = HD(0x63, (SBOX((Keyguess ⊕ Input))i) (2)

Pguess = HD(0x00, (SBOX((Keyguess ⊕ Input))i) (3)

Pguess = HD(0x00, (Keyguess)i) = HW(Keyguess) (4)

We estimate the output of the SBOX for all possible
key guesses and mount a DPA attack on SE design using
Equation (2). We use a different power model to mount a
DPA attack on SDDL designs, given by Equation (3). The
pre-charge phase sets all logic outputs to ’0’ therefore, the
Hamming distance is computed between ’0’ and the estimated
outputs of the SBOX for all possible key guesses.

D. Placement of AES Modules

The placement of the AES modules of our partial SDDL
design is shown in Fig. 9. The SBOX, Data Store, and AES
Computation (AES Core) are duplicated and complemented
such that they use the same CLB and routing resources. We
placed these closely connected parts near each other. The
location of the controller and the key store register inside the
FPGA fabric has an impact on the DPA resistance. We placed
the control unit close to the AES Core which it controls. The
key store is placed between the data stores as they all have
to communicate with the AES wrapper. It can clearly be seen
that it is impossible to have symmetrical connections from the
protected modules SBOX, Data Store, and AES computation
to the unprotected path.

V. RESULTS AND ANALYSIS

A. Experimental Setup

The target platform for our designs is a Xilinx Spartan
3e starter board containing a XC3S500eFG320-4 FPGA. We
removed the capacitances of the core voltage net and con-
nected it to an external regulated power supply in order
to obtain a clear power measurement. Power consumption
is measured using a Tektronics CT-1 current probe and an
Agilent DSO6054A oscilloscope, which has a bandwidth of
500MHz and samples at 4GSa/sec.

B. Analysis of AES test circuit

We implemented three different designs of our AES circuit.
AES-SE is a single ended design which use 32:1 WDMs. AES-
Partial SDDL is the symmetrically routed design of the said
single ended and AES SDDL is a full SDDL implementation.
Figure 10 shows the power consumption traces for all three
designs. The single ended wave form has its peaks near the
rising edge of the clock. The SDDL designs show lower
peaks during pre-charge phase and higher peaks during the
evaluation phase. It can also be clearly seen that the peaks of
the SDDL designs are more uniform compared to the ones of
the single ended. The largest peaks in the waveform of both
designs occur when the 128-bit LFSR is clocked.

The key byte which we are attacking is a fixed value of
10 for all designs. The correlation plot between power guess
and power measured for the AES SE implementation taken

b) AES SDDL

c) AES Partial SDDL

a) AES SE

Fig. 10. Power Traces (5 mV/div, 1µs/div)

TABLE III
RESULTS OF AES-PARTIAL SDDL IMPLEMENTATION

Increase in
Design Slices Area over SE MTD
AES SE 393 1 500
AES Partial SDDL 928 2.3 > 12, 000
AES SDDL 1222 3.1 > 12, 000

over 500 measurements shows a sharp peak at the key guess
10, as shown in Fig. 11. Corresponding to Fig. 11 is Fig 14
in which the blue lines indicate the maximum and minimum
correlations of all key guesses depending on the number of
measurements. The red line indicates the correlation of the
correct key over number of measurements. The point in which
the red line crosses the blue line and the red line maintains
a clear maximum constitutes the number of measurements
to disclosure of the key (MTD). The correlation plots for
the SDDL designs did not show a definite peak after 500
measurements. Therefore, we had to take multiple sets of
measurements. We obtained a clear peak for the correct key
after more than 12,000 measurements for Partial SDDL as
well as for full SDDL as shown in Fig. 15 and Fig. 16. The
corresponding correlation plots are in Fig. 12 and Fig. 13.

Table III shows the comparison of the AES designs and their
respective MTD. The final AES Partial SDDL implementation
is larger than the AES SE by a factor of 2.3. The area
consumption of AES Full SDDL is 3.1 times larger then the
single ended design. The partial SDDL is 76% of the total area
consumed by AES Full SDDL implementation. The security
provided by the AES Partial SDDL is 30 times to that of the
AES SE design and similar to the full SDDL implementation.
The area consumption of the SDDL designs are very close to
the ones we expected from our estimation in Table II.

VI. CONCLUSION AND FUTURE WORK

Securing cryptographic implementations using DDL logic
leads to a large area penalty. We have shown through our
example implementation of AES using SDDL for FPGAs, that
partial DDL can significantly reduce the area consumption
of a DDL implementation by 24%, yet maintain the same



0 50 100 150 200 250

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 Key Guess

 C
o

rr
e

la
ti
o

n

Key = 10

Fig. 11. AES SE — Key Correlation after 500 Measurements

50 100 150 200 250
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 Key Guess

 C
or

re
lat

ion

Key = 10

Fig. 12. AES SDDL — Key Correlation after 30,000 Measurements

level of resistance against DPA. Our Partial SDDL can still be
broken due to glitches and imbalance of power consumption
between the direct and complementary circuits. The next step
of our research is to verify that partial DDL offers similar
advantages for other ciphers and implementation techniques
(e.g. using Block RAMs) and also for other DDL logic styles
such as WDDL. Our future work also includes investigating
more closely the effect of the placement of protected and
unprotected parts with regards to information leakage and to
reduce the glitches.

REFERENCES

[1] M. Hutter, S. Mangard, and M. Feldhofer, “Power and EM attacks
on passive 13.56 MHz RFID devices,” in Cryptographic Hardware

50 100 150 200 250
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 Key Guess

 C
or

re
lat

ion

Key = 10

Fig. 13. AES Partial SDDL — Key Correlation after 30,000 Measurements

5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of Measurements x 10

Co
rre

lat
ion

 

Key = 10

MTD

Fig. 14. AES SE — Measurements to Disclosure

5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of Measurements x 103

Co
rre

lat
ion

 

Key = 10
MTD

Fig. 15. AES SDDL — Measurements to Disclosure

and Embedded Systems - CHES 2007, ser. Lecture Notes in Computer
Science (LNCS), vol. 4727. Springer, 2007, pp. 320–333.

[2] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations
of power analysis attacks on smartcards,” in USENIX Workshop on
Smartcard Technology, 1999, pp. 151–161.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology - CRYPTO’99, ser. Lecture Notes in Computer Science
(LNCS), vol. 1666. Berlin: Springer Verlag, Aug 1999, pp. 388–397.

[4] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks, Revealing
the Secrets of Smart Cards. Springer, 2007.

[5] K. Tiri and I. Verbauwhede, “A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation,” in Proc. Design,
Automation and Test in Europe (DATE’04). IEEE Computer Society,
Feb 2004, pp. 246–251.

[6] R. Velegalati and J.-P. Kaps, “DPA resistance for light-weight implemen-
tations of cryptographic algorithms on FPGAs,” in Field Programmable
Logic and Applications, FPL 2009, M. Daněk, J. Kadlec, and B. Nelson,
Eds. IEEE, Aug 2009, pp. 385–390.

5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of Measurements x 103

Co
rre

lat
ion

 

Key = 10MTD

Fig. 16. AES Partial SDDL — Measurements to Disclosure



[7] P. Yu and P. Schaumont, “Secure FPGA circuits using controlled
placement and routing,” in CODES+ISSS ’07: Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign
and system synthesis. New York, NY, USA: ACM, 2007, pp. 45–50.

[8] S. Guilley, L. Sauvage, J.-L. Danger, and P. Hoogvorst, “Area opti-
mization of cryptographic co-processors implemented in dual-rail with
precharge positive logic,” in Field Programmable Logic and Application
– FPL 2008, U. Kebschull, M. Platzner, and J. Teich, Eds. IEEE, Sep
2008, pp. 161–166.

[9] S. Guilley, L. Sauvage, J. Danger, T. Graba, and Y. Mathieu, “Evalua-
tion of power-constant dual-rail logic as a protection of cryptographic
applications in FPGAs,” in Secure System Integration and Reliability
Improvement (SSIRI ’08). IEEE, Jul 2008, pp. 16–23.

[10] T. Popp and S. Mangard, “Masked dual-rail pre-charge logic: DPA-
resistance without routing constraints,” in Cryptographic Hardware and
Embedded Systems – CHES 2005, ser. Lecture Notes in Computer
Science (LNCS), J. R. Rao and B. Sunar, Eds., vol. 3659. Heidelberg:
Springer, 2005, pp. 172–186.

[11] R. P. McEvoy, C. C. Murphy, W. P. Marnane, and M. Tunstall, “Isolated
WDDL: A hiding countermeasure for differential power analysis on
FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 2, no. 1, pp.
1–23, Mar 2009.

[12] S. Guilley, S. Chaudhuri, L. Sauvage, T. Graba, J.-L. Danger,
P. Hoogvorst, Vinh-Nga, and M. Nassar, “Place-and-route impact on
the security of DPL designs in FPGAs,” in Hardware-Oriented Security
and Trust, HOST 2008. IEEE, 2008, pp. 26–32.

[13] Advanced Encryption Standard (AES), National Institute of Stan-
dards and Technology (NIST), FIPS Publication 197, Nov 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[14] J.-P. Kaps and B. Sunar, “Energy comparison of AES and SHA-1 for
ubiquitous computing,” in Embedded and Ubiquitous Computing (EUC-
06) Workshop Proceedings, ser. Lecture Notes in Computer Science
(LNCS), X. Z. et al., Ed., vol. 4097. Springer, Aug 2006, pp. 372–381.

[15] S. Mangard, “A Simple Power-Analysis (SPA) Attack on Implemen-
tations of the AES Key Expansion,” in Information Security and
Cryptology ICISC 2002, ser. Lecture Notes in Computer Science, P. Lee
and C. Lim, Eds., vol. 2587. Berlin: Springer, Nov 2002, p. 343358.

[16] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems –
CHES 2004, ser. Lecture Notes in Computer Science, vol. 31. Berlin
/ Heidelberg: Springer, Aug 2004, pp. 135–152.

[17] S. Aumônier, “Generalized correlation power analysis,” in Ecrypt Work-
shop Tools For Cryptanalysis 2007, 2007.


