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Abstract

INVESTIGATION OF DPA RESISTANCE OF BLOCK RAMS IN FPGAS

Shaunak Shah, M.S.

George Mason University, 2010

Thesis Director: Dr. Jens-Peter Kaps

Security at low cost is an important factor for cryptographic hardware implementa-

tions. Unfortunately, the security of cryptographic implementations is threatened by Side

Channel Analysis (SCA). SCA attempts to discover the secret key of a device by exploit-

ing implementation characteristics and bypassing the algorithm’s mathematical security.

Differential Power Analysis (DPA) is a type of SCA, which exploits the device’s power con-

sumption characteristics. Several countermeasures to DPA have been proposed, however,

all of them increase security at the cost of increased area which in-turn leads to increased

power consumption and reduced throughput.

FPGAs are popular due to their reconfigurability, lower development cost, off-the-shelf

availability and shorter time to market. Block RAMs are large memories in FPGAs that

are commonly used as ROM, FIFO, Look-up tables, etc. In this paper we explore the DPA

resistance of Block RAMs and verify if their usage can improve the security of block ciphers

such as the Advanced Encryption Standard (AES). We implemented a small test circuit

comprised of elements from AES on Xilinx Spartan 3E FPGA and discovered that moving

essential parts of AES from look-up tables (LUT) and distributed RAMs to Block RAMs

yields about 26 times increase in DPA resistance without any increase in the area. On the



contrary it reduces the LUT based area consumption by a factor of 4 and increases speed 1.4

times. Subsequently the same techniques when applied to a standard S-Box and a T-Box

implementation of AES showed similar results. The security increased about 9 times, slice

area got reduced about 4 times and speed increased about 1.18 times.



Chapter 1: Introduction

Hardware implementations of cryptographic algorithms are preferred over software imple-

mentations because hardware implementations provide better speed and security [1]. Cryp-

tographic devices are prone to various kind of attacks. One category of the attacks that

pose a serious threat to modern cryptographic implementations is Side Channel Analysis

(SCA). SCA is capable of bypassing the algorithmic and mathematical security leaving the

implementation unsecured.

1.1 Side Channel Analysis

The term Cryptography can be briefly described as a science of hiding information. Along

with it, there is another inevitable term called Cryptanalysis, which can be briefly described

as a science of recovering the hidden information. The cryptographic devices are prone to

various kind of attacks that try to recover the hidden information. Primarily, these attacks

can be classified based on access/manipulation of the cryptographic device. They are Active

attacks and Passive attacks.

• Active Attacks are the attacks where the attacker modifies the cryptosystem. In

case of hardware implementation, the device is manipulated such that it behaves

abnormally in an intended manner. This modification assist in revealing the required

information.

• Passive Attacks are the attacks where the device is predominantly operated nor-

mally or mostly within its specification. The information is revealed by observing

the working device and/or its physical properties. In other words, passive attacks

resembles the nature of eavesdropping without touching or modifying the device.
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Side channel analysis falls under the category of passive attacks. In SCA the hidden

information is recovered by analyzing the characteristic data collected from the physical

implementation of the cryptographic hardware. SCA involves observing or recording the

information revealed by the cryptosystem, by exploiting its electrical characteristics such

as power, current, radiations etc. Another type of classification of attacks is based on

features exploited to reveal the information. They are Timing Analysis, Power Analysis

and Electromagnetic Field Analysis.

• Timing Analysis [2] consists of an attack methodology where the time taken to

perform different computations or multiple instances is measured. This data is then

analyzed to recover the hidden information.

• Power Analysis [3] involves measuring the instantaneous power consumed by the

device during its operation, followed by analyzing and processing the measurements

to reveal the hidden information.

• Electromagnetic Field Analysis [4] consists of attacks where the electromagnetic

field radiation leakages are recorded and that data is analyzed to reveal the hidden

information.

In power analysis attack, the instantaneous power consumption of the cryptographic

device is recorded. The attacker performs analysis on this data to recover the hidden

information. In most cases the hidden information is a secret key used in a cryptographic

algorithm implemented in hardware. In Power analysis, the attacker exploits the fact that

the instantaneous power consumption depends on the operations being performed and the

corresponding data being processed in the device. Power analysis is further classified into

two types i.e. Simple Power Analysis (SPA) and Differential Power Analysis (DPA).

2



1.1.1 A Leakage Model in an FPGA

The total power consumption (Ptot) in a Complementary Metal Oxide Semiconductor

(CMOS) gate is comprised of three basic dissipation sources. They are dynamic power con-

sumption, short circuit power consumption and static power consumption (leakage power).

The dynamic power consumption (Pdyn) is due to the charging and discharging of load ca-

pacitances. The power consumption due to short circuit (Psc) is a result of the short circuit

currents which exist for a very short duration of time, when both the transistors PMOS

and NMOS are ON simultaneously. The static power consumption (Pstat) is due to the flow

of current when there is no switching activity. This is the leakage current flowing through

the reverse biased junctions of the transistors. Details are well explained in [5]. The total

power consumption (Ptot) can be summarized by the Eq. (1.1).

Ptot = Pdyn + Psc + Pstat

Ptot = CLV
2
DDP0→1f+ VDDIpeaktscf+ VDDIleak

(1.1)

CL is the load capacitance, VDD is the voltage of power supply, P0→1 is the probability of

a clock event resulting in a 0 → 1 bit transition, f is the operating frequency, tsc is the time

both transistors are conducting, Ipeak is the peak current and Ileak is the leakage current.

Consider the CMOS inverter in Fig. 1.1, assume currently the input is unchanged HIGH.

The NMOS (bottom transistor) is ON and PMOS (top transistor) is OFF and hence the

output is LOW and remains low till the input is changed. Similarly if the input in unchanged

LOW, the output remains HIGH. During these time there is a leakage current due to reverse

biased transistors resulting in static power consumption (Pstat). Now, when the input

changes from HIGH to LOW, the PMOS starts conducting and NMOS stops conducting.

The load capacitance is charged from the power supply VDD and the output changes from

LOW to HIGH. This results in dynamic power consumption. Similarly when the input

changes from LOW to HIGH, the NMOS starts conducting and PMOS stops conducting

3



Figure 1.1: Power Consumption in a CMOS Inverter

and the load capacitance discharges again resulting in dynamic power consumption (Pdyn).

During either of these transitions i.e. from HIGH to LOW or from LOW to HIGH, for

a short amount of time both the transistors are conducting simultaneously, this results in

power consumption due to short circuit (Psc).

Another important point to note is that the dynamic power consumption is highly

dependent on the input data (or output transitions). In other words, if the input data

remains unchanged (0 → 0 or 1 → 1), then the output remains unchanged, and hence

there is no dynamic power consumption. If the input data changes (0 → 1 or 1 → 0),

then the output value changes accordingly (charging or discharging); thus dynamic power

is consumed.

The dynamic power consumption is very important with respect to the side channel

analysis. Dynamic power consumption depends on the switching activity of the gates,

and also it depicts the relationship between internal data flow and the observed power

consumption. Similarly the dynamic power consumption of an FPGA is due to the switching

activity of FPGA’s elements. The power model of an FPGA can be generated by computing

the change in values of the FPGA cells before and after the clock edge. The number of

bits changed in one clock equals the hamming distance between the data values before and

4



after the clock pulse. This hamming distance is directly proportional to the dynamic power

consumption. Details are well explained in [6]. Hamming distance is discussed in detail in

chapter 4.

1.1.2 Simple Power Analysis

Simple Power Analysis (SPA) is a type of SCA which is well explained by Kocher et al.

in [3] as ”a technique that involves directly interpreting power consumption measurements

collected during cryptographic operations.” A power trace refers to the measured instan-

taneous power consumption of the device or FPGA. The power trace depicts the activity

inside a device, refer to Fig. 1.2. This activity mainly depends on the data being processed

and the operations being performed on the data. Therefore each power trace contains data

dependent information. This dependency is exploited by the attacker to recover the hidden

information. The goal of SPA is to reveal the secret information using only a few power

traces. In extreme cases the attacker tries to find the secret information from one power

trace and that too by observation only. Therefore SPA is used when only a few power traces

are available and each power trace has significant noticeable distinctions. The attacker is

assumed to have access to the attacked device. The attacker should have good detailed

knowledge about the system. In SPA, the power trace is observed across the time axis (i.e.

how the power is consumed over a period of time).

For example, squaring and multiplication operations are easily distinguished in case of

RSA public key cryptosystem. In [7] the author describes an SPA attack on a private RSA

exponentiation and an attack on a DES key schedule.

1.1.3 Differential Power Analysis

In 1998, Kocher introduced and demonstrated a powerful technique for cryptanalysis by

measuring power consumption called Differential Power Analysis (DPA) [3]. DPA is a

sophisticated and effective method of power analysis. The attacker uses statistical method

analysis on multiple sets of collected power traces to recover the key. The attacker is assumed
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Figure 1.2: A Power Trace

to have frequent access to the attacked device. DPA attack differs from SPA attack in many

ways. Unlike SPA, DPA requires multiple power traces and statistical analysis for an attack.

In case of DPA, the power trace is analyzed at fixed moments of time (importance is given to

the data being processed at that particular point of time) [8]. DPA attacks are considered

to be more powerful than SPA attacks. One of the strengths of DPA is that, they are

effective even if the power traces are extremely noisy. Another advantage of DPA over SPA

is that you don’t need to have detailed knowledge about the device, just the knowledge of

the implemented algorithm is sufficient to perform an attack.

1.2 Countermeasures against DPA

Since Kocher et.al. demonstrated DPA as a threat against cryptographic implementations,

there has been significant advances towards DPA countermeasures. The DPA attack works

because the instantaneous power consumed by the device is highly data dependent. The

main goal of the countermeasures is to eliminate or suppress this data dependency. All

the countermeasures that have been published so far can be classified into three groups

Protocol, Hiding and Masking.

6



1.2.1 Protocol

Protocol countermeasures focus on using session keys. A session key is a temporary symmet-

ric key used for encryption during a session. Use of session keys makes power analysis more

difficult because the attacker will be able to analyze only few power traces. Naccache de-

scribes such a countermeasure in his patent [9] using a dynamic secret key algorithm against

DPA attacks. However implementing such a countermeasure is difficult and impractical in

cryptosystems that natively do not use session keys. Further more this countermeasure is

not considered strong enough to prevent power analysis attacks. Kocher explains the coun-

termeasure’s flaw in [10] stating ”Unfortunately, most protocols today are not designed to

withstand leakage. For example, conventional protocols that compute session keys by en-

crypting a counter or hashing a key with a nonce can be attacked using DPA because each

counter/nonce value potentially reveals new information about the key to the adversary”.

Therefore hiding and masking schemes are preferred over this countermeasure.

1.2.2 Masking

The concept of masking is to randomize the intermediate data values. Since the power

consumption is dependent on the intermediate data values, if these values are randomized

before being processed then the resultant power consumption will be independent of the

actual data values. In masking [8], the intermediate value v during algorithmic computa-

tions, is concealed by a random value m called as mask and a new value is generated vm.

This value is then processed and hence the information leakage will be independent of the

original data values. Masking can be summarized by the equation:

vm = v ∗m (1.2)

The operation * is generally XOR, but sometimes it varies depending on the algorithm.

Addition or multiplication operators can also be used. The masking scheme that uses the

XOR as an operator is called Boolean Masking, while the scheme that uses addition

7



or multiplication operators is called Arithmetic Masking. Sometimes the arithmetic

operators are used along with modulus.

The most important aspect in this technique is the mask. The mask has to be chosen

carefully and should be applied to all the intermediate values at every stage of the algo-

rithm. The mask should also be applied to the values which are being derived from any

previous intermediate values. The mask can be applied to a single bit or multiple bits of the

intermediate values. The value of the mask and the operation of the mask should remain

unknown to the attacker because the security of this countermeasure depends on the mask.

Generally the mask is generated inside the device and hence it remains unknown to the

attacker.

Masking can be implemented at gate level or at algorithmic level. Some of the examples

of gate level masking implementations are Masked Dual-rail Precharge Logic (MDPL) [11],

Random Switching Logic (RSL) [12] and Dual-rail Random Switching Logic (DRSL) [13].

All these masking styles use a single mask per intermediate value and are based on secret

sharing schemes on two shares vm and m [14]. In [15] Oswald et.al. demonstrated a masking

implementation of the AES S-Box by shifting the computation of the finite field inversion

in the AES S-Box down to GF (4).

Researchers have implemented these masking countermeasures on various different algo-

rithms evaluating the security. Suzuki et.al. [12] implemented RSL on AES, Kamoun et.al.

[16] demonstrated a DPA secure masked S-Box of AES algorithm as described by Canright

et.al. [17].

1.2.3 Hiding

The concept of hiding is to modify the power consumption characteristics of the device such

that, the power consumption is independent of the data. Most of the hiding schemes modify

power consumption characteristics at the gate level such that the instantaneous power

consumed by the device remains constant in each operation. Some of the hiding schemes

involve techniques that make the instantaneous power consumption of the device completely

8



random. In other words, hiding focuses on increasing the noise or equalize/balance the power

consumption in each operation. Hiding techniques are well recognized and are considered

to be more successful than other methods. Hiding countermeasures involves gate level

modifications. The major types of hiding styles are dual-rail precharge, asynchronous and

current mode logic styles [14].

Dual-rail Precharge (DRP)

In DRP, the concept of dual rail and precharge logic are used together to achieve constant

power consumption. The dual-rail technology implies that for each signal there are two

wires. One wire carries the signal’s original value and the other wire carries the signal’s

complementary value. This is also known as differential encoding. Thus, dual rail technique

hides the original value of the signal. The dual rail cells have complementary wires for inputs

and outputs.

As discussed earlier, the dynamic power consumption during the transitions (0 → 0, 0

→ 1, 1 → 0 and 1 → 1) is not always same. Therefore this vulnerability can be exploited by

the attacker. Precharge logic is used to fix this vulnerability. Precharge breaks the signal

sequence and manages the transitions in signal values. It ensures that for every signal in

the circuit there is always going to be one transition form 0 to 1 and one transition from 1

to 0. Precharge implementation generally involves gate level modification.

A constant power consumption can be achieved by balancing wires between the cells

and balancing the internal structure of the cells. Therefore DRP ensures that the total

power consumption of the device is always constant and hence independent of the data

values. DRP logic styles increase overall power consumption. A few examples of DRP

implementation are Sense Amplifier Based Logic (SABL) [18] [19], Simple Dynamic Differ-

ential Logic (SDDL) [20] [21], Wave Dynamic Differential Logic (WDDL) [20] [22], Divided

Wave Dynamic Differential Logic (DWDDL) [20], etc.
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Asynchronous

In this case the circuits are designed as asynchronous circuits. The underlying concept is

that, the asynchronous nature of the circuit induces randomization based on the data flow

paths and gate delays. This randomization leads to randomized power consumption and

thus increases the security. Fournier et.al. [23] demonstrated the security of asynchronous

circuits using a DPA resistant asynchronous processor test chip. However research shows

that the randomization is quite data dependent and hence there is no significant increase in

security. Eventually asynchronous circuits are implemented in conjunction with DRP logic

styles to increase security.

Current Mode Logic (CML)

Unlike DRP, in case of CML the differential encoding is applied to the current flowing

through different paths in the circuit instead of the voltage. The underlying concept is

that the total sum of currents flowing through the circuit remains the same and almost

independent of the output values and hence more secure against DPA. A few examples of

CML are Metal-oxide-semiconductor Current Mode Logic (MCML) and Dynamic Current

Mode Logic (DyCML) [24]. Regazzoni et.al. [25] demonstrated the DPA resistance of a

MCML implementation. One drawback of MCML is that its implementation increases the

power consumption by a huge amount and hence DyCML is used instead of MCML. Toprak

et.al. [26] implemented a low power design for MCML, which consumes power comparable

to classical CMOS cells. Mace et.al. [27] has proposed a DPA resistant design with DyCML.

The advantage of masking over hiding is that masking can be applied at the algorithmic

level and gate level whereas hiding can be applied only at gate level. Another advantage

is that power consumption characteristic of the device need not be forcefully changed. On

the other hand, Hiding techniques are usually considered to be more secure than masking

techniques, based on the number of samples required to break the key and also as cited by

the author in [28]. Chen et.al. [29] demonstrate an attack on arithmetic masking scheme.

Various possible attacks on hiding and masking schemes are discussed in detail in [8].
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1.3 Drawbacks of Countermeasures

All the countermeasures that increase security of the implementation against DPA involve

either one or more of the following: modification at the algorithmic level, changing the basic

gate design, adding extra logic or noise. These techniques ultimately results in increased

logic area, power consumption and time delay. Suzuki et.al. [12] reports his implementation

results of various masking techniques. These results clearly show an increase in area ranging

from 100% to 400% along with an increase in critical path delay by a factor of 1.5 to 2.3.

Kamoun el.al. [16] reports his implementation results of masking S-Box technique on AES

and his results show an increase in area by about 60.1% along with an increase in critical

path by about 4%. Velegalati et.al. [21] implemented SDDL countermeasure and they were

able to improve the security by about 9 times over that of the original design but at the cost

of increased area by about 2.1 times and increase in the delay by about 2 times. Tiri et.al.

[20] compared area utilization and critical path delay of three algorithms namely Kasumi,

Data Encryption Standard (DES) and Advanced Encryption Standard (AES) for a normal

single ended design and a WDDL implementation. The results show an increase in area (in

terms of gates) for the WDDL implementations compared to normal single ended designs

by a factor ranging from 3.2 to 3.6 with a small increase in critical path delay. Yu et.al.

implemented their prototype design on FPGA in [30] and their results show an increase in

slice count for WDDL and DWDDL implementations compared to single ended designs by

a factor of 5.8 and 11.6 respectively. Thus gain in security is achieved at the cost of drastic

increase in area consumption and critical path delay.
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Chapter 2: Elements of an FPGA

Field Programmable Gate Array (FPGA) is a re-programmable integrated circuit. It can

be configured by the designer to realize any digital logic. FPGAs consists of programmable

logic elements to implement the logic, and programmable switch matrix for interconnections.

There are several manufacturers of FPGAs including Xilinx, Altera, Actel, QuickLogic,

etc. They use different technology for manufacturing of FPGAs. For Example Xilinx,

Altera, Lattice Semiconductor uses SRAM based technology, Actel uses antifuse technology.

FPGAs are preferred over ASICs and full custom design chips due to their programmability,

off-the-shelf availability, lower development cost and shorter time to market.

This thesis discusses in detail the Xilinx Spartan 3 family FPGAs [31], which consists

of the following five programmable parts: Logic Blocks, I/O Blocks, Memory Blocks, Mul-

tiplier Blocks and Clock Manager Blocks. These blocks are shown in Fig. 2.1.

2.1 CLBs, Slices and LUTs

Configurable Logic Block (CLB) is the basic block that implements a wide range of se-

quential and combinational logic functions, as well as stores data. Each CLB consist of

four interconnected slices that are grouped in pairs. Each slice contains two flexible Look-

Up Tables (LUTs) that implement logic, two dedicated storage elements that can be used

as flip-flops or latches and few logic elements. The pairs of slices are arranged in form

of columns. The left hand pair of slices is called SLICEM (Fig. 2.2). They are capable

of implementing both logic and memory functions. The right hand pair of slices is called

SLICEL. They can support implementation of only logic functions. Therefore, a slice

contains:

• Two 4-input LUTs

12



a

Figure 2.1: The FPGA Fabric

aFrom Xilinx datasheet

• Two storage elements for implementing a latch or a flip-flop

• Two wide function multiplexers

• Carry and arithmetic logic elements

• Two 16x1 distributed RAM blocks instead of 4-input LUTs (Only in SLICEM slices)

• Two 16 bit shift registers instead of 4-input LUTs (Only in SLICEM slices)

2.1.1 LUTs as Distributed RAMs

The 4-input LUTs in the SLICEM can be programmed as distributed RAM, capable of

storing 16 bits of data. Therefore, one CLB block containing two SLICEMs, is capable

of storing 64 bits of data in Distributed RAMs. It can also be configured as 32 bits of

Dual-ported RAM. This memory is different from the dedicated memories called as Block

13



a

Figure 2.2: SLICEM

aFrom Xilinx datasheet

RAMs (BRAMs). These RAMs use slice area. Distributed RAMs are fast, localized, and

best suited for implementing small data buffers, FIFOs, or register files. In distributed

RAM data write is synchronous while the data read is usually asynchronous. Synchronous

data read can be achieved by using the available register in LUT.

2.1.2 LUTs as Shift Registers SRL16

The 4-input LUTs in the SLICEM can also be programmed as a 16-bit shift register. There-

fore, one CLB block containing two SLICEMs, is capable of implementing one big 64-bit

Shift Register. The advantage of this implementation is that, a large shift register can be

implemented without using flipflop chains. The associated flip-flop can be used along with

shift registers to achieve synchronous output.

2.2 I/O Blocks

Input/Output Blocks (IOBs) controls the dataflow between the I/O pins(external world)

and the internal logic implemented in the device. IOBs support programmable uni-directional

or bi-directional data flow with a wide variety of interface standards. It also supports 3-state

logic when the output is high impedance.
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2.3 Multiplier Block

Dedicated 18x18 bit multipliers are useful for implementing fast DSP logic. They are

available only in selected FPGAs of the Spartan-3 family. The Spartan-3A DSP family

of FPGAs has the high performance DSP multiply-accumulate blocks known as DSP48.

Each block accepts two 18-bit numbers (signed/unsigned) as inputs and calculate their

product. This block is also capable of performing other arithmetic functions such as 48-

bit addition or subtraction. These DSP blocks share the dedicated routing resources with

Block RAMs. These blocks also have dedicated registers for pipelining and other useful

DSP implementations.

2.4 Digital Clock Manager Block

Digital Clock Manager (DCM) Block provides advanced clocking facilities. DCMs help

resolve many of the common clocking issues and also help in improving performance, as

discussed below:

• DCM helps to Eliminate Clock Skew within the device or even to the external

components, thus improving overall performance of the system and eliminating the

delays due to clock distribution.

• It facilitates complete or partial Phase Shift by a fixed fractional amount of the

incoming clock signal, mainly used for delaying the clock.

• It is capable of Frequency Synthesis by multiplying or dividing the input clock,

or even generate a new frequency by a mixture of clock multiplication and division

operations.

• It also Conditions the Clock, ensuring a clean output clock with a 50% duty cycle.

• It can also Mirror, Forward, or Rebuffer the input clock. It helps converting the

incoming clock signal to a required I/O standard, minimize skew, etc.
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The DCM can perform any or all the above functions simultaneously.

2.5 Dedicated Multiplexers

A multiplexer (Mux) is a very basic block used in the digital logic designs. The Spartan-

3 family FPGAs support Wide-function multiplexers which efficiently combine the LUTs

inside the slice and across the slices in order to achieve more complex logic operations.

Each slice has two 4-input LUTs. Each LUT can implement a 2:1 mux. The dedicated

mux F5MUX present in the bottom portion of the slice, combines the two LUTs in a

slice implementing a 4:1 mux. The dedicated mux FiMUX in the top portion of the slice

combines these 4:1 muxes across the slices. Therefore, a 16:1 mux can be implemented in a

CLB without using any routing resources and thus avoiding routing delays.

2.6 Carry and Arithmetic Logic

Most of the digital system design circuits requires basic blocks such as adders, counters,

comparators, etc. Although these all can be implemented using the LUTs; dedicated re-

sources are available to improve the performance and reduce the routing delays. The carry

chain consist of dedicated gates, multiplexers and connections with other logic gates. It

facilitates fast and efficient implementations of adders.

2.7 Memory Blocks

These are dedicated memory elements present in an FPGA. There are many applications

that require memories for storing data, configurations, etc. In case of Spartan-3 family there

are dedicated memory blocks with their dedicated routing resources. These memory blocks

are called Block RAMs (BRAMs). Unlike Distributed RAMs, BRAMs are completely

synchronous. The BRAMs are discussed in detail in the next chapter.
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Chapter 3: Block RAMs

These days memory blocks are an inevitable part in a system’s design. They have many

applications such as FIFO, circular buffers, delay lines, complex state machines etc. These

days BRAMs have gained popularity for their ability to reduce slice area consumption in

certain implementations, which are discussed later in this chapter.

BRAMs are generally located close to IOBs and CLBs and have their own dedicated

routing resources. BRAMs are organized in form of columns. The Block RAM consists

of fast static SRAM cells. Each BRAM can store upto 18,432 (18K) bits, of which 16,384

(16K) is allocated for data and 2,048 (2K) is allocated for parity or additional data. The

total number of BRAMs and memory bits depends on a particular FPGA. Each BRAM

supports many aspect ratios and can be configured depending upon the number of input

address lines and output data lines. Physically, the BRAMs are dual ported having two

completely independent access ports. Each BRAM is completely symmetrical, and both

ports are interchangeable. Both ports support independent data read and write operations

having their own clock, clock enable and write enable.

Unlike Distributed RAMs, BRAMs are completely synchronous. The writes as well

as the reads are synchronous with their clock edge. BRAMs can be operated in any of

three different write modes. The first one is WRITE FIRST mode, in this case the data

is written into the destination memory and simultaneously provided on the data-out port.

The second one is READ FIRST mode, in this case the current data of the target memory

location appears on the output port, and the new data is written into the memory location.

The third one is NO CHANGE mode. In this mode memory read is not performed, the

data on output port remains unchanged from the previous clock cycle, and new data is

written into the memory location.
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BRAMs can be realized using either of the two methods i.e. inference or instantiation.

In case of inference, the tool infers the BRAM directly from the HDL code, (provided all the

options in the tool are enabled properly). In case of instantiation a core format is provided

and it is modified as required. Some sample codes are available in the manual [31] [32].

Some tools also have core generators. Also, there are some attributes available, which force

the compiler to implement a particular HDL code using a BRAM.

3.1 Block RAM Applications

There many applications of BRAMs, described in detail in [33]. A few of them are explained

below:

• First-In First-Out (FIFO), is one of the most common applications for BRAMs.

It is used for efficiently ordering, resynchronizing and manipulating data as required

in the application.

• Circular Buffers, are implemented using BRAMs and a counter. They are used in

many Digital Signal Processing (DSP) applications such as Finite Impulse Response

(FIR) filters, cross-correlations, etc.

• Fast Complex State Machines, since the BRAMs can be initialized with any set

of values, they are an excellent choice for implementing complex state machines con-

taining its next state sequence along with the state outputs. It can also be configured

using BRAM’s dual port nature and thus separating its next state from its state

outputs.

• Content-Addressable Memory (CAM), commonly known as associative memory.

It is a very important and well known application for most embedded systems and a

variety of networking and DSP applications.

• Shift Registers, using the READ FIRST mode and a counter the designer can

implement a fast shift register.
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Recently, Block RAMs have gained popularity for implementations involving reduced

slice area usage. In 2003, Chodowiec and Gaj [34] demonstrated the most compact 32-bit

datapath architecture for AES-128 utilizing 222 slices and 3 BRAMs; following them Rou-

vroy et.al. in 2004 [35] used similar concept and achieved better results utilizing 163 slices

and 3 BRAMs; and finally in 2007, Huang et.al. [36] implemented the same architecture

maximizing BRAM usage and achieved results utilizing 148 slices and 11 BRAMs. Chaves

et.al. [37] demonstrates an efficient use of BRAMs in a reconfigurable memory based co-

processor. In [38] Chang et.al. explains the use of BRAMs to save on area and implements

an AES with 8 bit datapath using only 130 slices and 4 BRAMs. Drimer et.al. [39] shows

an efficient method to maximize the use of BRAMs and other elements while minimizing

the use of LUTs, implementing a 32-bit AES T-Box design using only 93 slices with 2

BRAMs and 4 DSP blocks. These implementations clearly demonstrates that careful usage

of BRAMs leads to drastic reduction of slice area consumption.

3.2 Security Analysis of BRAMs

In the world of cryptographic hardware implementations, there are two very important

factors to consider; security and low area. As discussed previously, all countermeasures

improve the security of the cryptographic hardware implementations at the cost of increased

area. Most of them also cause an increase in critical path delay making the circuit slower.

Many countermeasures involve modifications at the cell level which is very difficult to realize

in different technologies and leads to increased area and power consumption. Therefore a

good countermeasure would provide better security, occupy less area, consume less power

and would be easy to realize.

Several features of BRAMs indicate that their use might lead to implementations that

are more resistant to DPA attacks than implementations in other resources such as LUTs

or Distributed RAMs.

19



3.2.1 Reduced Glitches

A 8x8 S-Box (2048 bits) implementation using LUTs, occupies nearly 64 Slices, similarly

a 8x32 T-Box (8192 bits) implementation using LUTs, occupies about 256 Slices. Two of

these S-Boxes or even T-Boxes can fit in one single BRAM. Therefore it is common practice

to use BRAM implementations in order to conserve slice area. This area reduction leads to

less utilization of corresponding routing resources and avoids glitches. Furthermore BRAMs

are inherently glitch free.

Glitches are unexpected output transitions due to hazards, resulting from combinational

logic gates delays and routing delays. Therefore, glitches are data dependent and influence

the dynamic power consumption. This results in information leakage which can be exploited

by DPA. BRAM cells do not have any combinational path from address to the output.

Further more the output ports are latched with a self-timed circuit providing glitch-free

read operations.

3.2.2 BRAMs are Fast Static SRAM Cells

BRAMs consist of fast static SRAM cells. Konur et.al. [40] explain in detail the structure

of an SRAM cell, its operation and power consumption leakage during memory read and

write operations. After preforming various experiments, they concluded that the power

consumed by an SRAM cell during memory read operation remains the same, irrespective

of reading 0 or 1. Therefore, using a BRAM as a ROM should provide security against

power analysis attacks.

Because of reduced slice area consumption, glitch free property and SRAM cell structure

of BRAMs, the implementations using BRAMs are expected to be less susceptible to DPA.

In order to explore the DPA resistance of BRAMs, we implement designs by varying BRAM

usage towards both possible extremities.
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Chapter 4: Attack Methodology

4.1 Hamming Distance Model and Correlation Attack

As discussed in Chapter 1, the power consumption of FPGA is directly proportional to

the total number of gate outputs changing from 1 to 0 (capacitance discharging) or 0 to 1

(capacitance charging).

Hamming Weight is the total number of non zero characters present in a given set,

string or word. Digital circuits consist of binary systems, thus hamming weight is the total

number of bits that are set (ON) in a particular string or word. Therefore the hamming

weight model can be used for analysis of system at a given particular instant with a known

output, without being referenced to any previous or next output values. In other words,

this model is more favorable for SPA attacks. According to the power model of FPGAs,

the dynamic power consumption depends on the change of bits and not just on the final

value of bits, therefore hamming distance model is more suitable for our analysis. Hamming

weight model can also be applied to DPA, but it is a weaker attack compared to hamming

distance model.

Hamming Distance is the total number of positions, where the characters differ after

comparing two strings of equal length. Digital circuits consist of binary systems, thus it

is the total number of bits that change value. As discussed earlier, the power model of

an FPGA is generated by computing the change in values of the FPGA cells before and

after the clock edge. Thus hamming distance model resembles the leakage model of FPGAs

and hence it can be used to create an expected power model. The power model may differ

from design to design depending on the position of the attack and elements under attack.

This power model is then correlated with the actual power consumption recorded by the

oscilloscope.
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Correlation can be described as the degree to which two variables are related to each

other, or to measure the degree of dependence. We use correlation as a statistical method

to analyze the relationship between the actual power trace and calculated power model.

Correlation power analysis is also used as an attack method [41], it is based on ham-

ming distance calculations. In this thesis, Pearson product-moment correlation coefficient,

commonly known as Pearson’s correlation is used to compute correlation. This method

is sensitive to linear dependence between two variables. The correlation is calculated by

Eq. (4.1)
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where rxy is the Pearson’s correlation coefficient for variables X and Y , X is the actual

power consumption and Y is the calculated hypothetical power model.

The absolute value of Pearson’s correlation coefficient ranges from -1 to +1. The +1

value signifies that the two variables are perfectly linear dependent on each other and related

in a positive direction i.e. if one variable increases then the other variable also increases.

The -1 value signifies that the two variables are perfectly linear dependent on each other

but related in a negative direction i.e. if one variable increases then the other variable

decreases. The 0 value means there is NO linear relation between the two variables.

4.2 Experiment Designs

Several designs are implemented by varying the utilizations of LUTs, Distributed RAMs

and BRAMs. The designs are divided into two groups, small scale implementations (Test

Design) and real world implementations (AES-128 cipher). The advantage of small scale

implementations is that, they are very easy to control, manipulate and analyze. This Test

Design is similar to designs used by Yu et.al.[30] and Velegalati et.al.[21] for WDDL and

SDDL countermeasures respectively. The Test Design incorporates essential components

of the block cipher AES. The real world implementations are that of AES-128 bit cipher
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[42] with a standard S-Box design and a T-box design. Analysis on larger-scale/real-world

implementations allows us to relate and confirm whether the use of BRAMs leads to more

DPA resistant implementation. These designs are discussed in detail in the next chapters.

4.3 Measurement Setup

The experiments were performed using a Xilinx Spartan 3E starter kit with a XC3S500eFG320-

4 FPGA. We removed the capacitors around the FPGA and the core voltage net in order

to obtain the unfiltered power signals. An external DC power supply was used to power

the FPGA core. Power consumption was measured using Tektronics CT-1 current probe

and an Agilent DSO6054A oscilloscope, which has a bandwidth of 500MHz and can record

samples up to 4GSa/sec. We applied an input clock frequency between 100KHz-500KHz.

4.4 DPA Attack

DPA attacks were performed on all designs discussed in this thesis. It A DPA attack involves

various steps which can be summarized as follows:

1. Analyze the design and derive equations: The design is analyzed and a particular

register or memory element is selected for the attack. The step size/bit size (number

of bits attacked simultaneously) from the total number of bits is decided. This is

important because all the mathematical computations and complexity depends upon

the attack bit size. The higher the bit size, better is the attack because more bits

are used for correlation but it also results in larger computation complexity. Usually

the number of bits attacked (step size) is 8. Therefore there are 28 different possible

combinations for the unknown key. The equations are then derived from the previous

and next values at the point of attack in a clock event.

2. Generate the expected power model: The hamming distance is calculated using

the previously derived equations, for all possible values of the key, and a power model

is calculated for that design.
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3. Implement on FPGA: The HDL code is synthesized and implemented on the FPGA

chip.

4. Measure Power: The experimental setup is used to measure the instantaneous power

consumption when algorithm is being executed on the FPGA.

5. Correlation: The actual recorded power trace and the calculated power model are

correlated using the Pearson’s correlation method. The result shows the correlation

of each assumed key value with the actual power trace.

6. Calculate MTD: The security of design against DPA attacks is determined by the

number of measurements required to recover the key, also known as Measurements

To Disclosure (MTD). This is the minimum required number of measurements after

which, the correlation of a particular key value dominates all other key values. Data

from one encryption operation is considered one measurement.
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Chapter 5: Test Design

The Test Design consists of a synchronous (Sync.) S-Box whose input is connected to an

8-bit LFSR and output is xored with an 8-bit Key. The result is stored in a register. The

block diagram of this circuit is shown in Fig. 5.1.

A sync. S-Box is a S-Box look-up table (8x8) followed by a register. It can be im-

plemented as one block using BRAMs, absorbing the register. A sync. XOR block is a

8-bit logic XOR gate followed by a register. To implement this block using BRAMs, the

logic gate is replaced by a precomputed look-up table followed by a register. We attack the

design at the output of the LFSR. The hamming distance equation for this attack is shown

in Eq. (5.1)

Pest. = HD(lfsr(i−1),SBOX−1(kguess ⊕Qi)) (5.1)

Apart from the block diagram design, the actual implementation has a wrapper circuit

containing additional counters and multiplexers (muxes). The main purpose of the counter

is to keep track of the number of encryptions. A multiplexer is used for selecting different

key values. The counter and some muxes are also used to perform other functions such as:

control and verify the final outputs on FPGA board I/Os, generate a trigger signal that will

indicate the start of an encryption which is used as a reference point for the DPA attack,

control logic to start and stop the encryption, etc. The main purpose of wrapper circuit is

to manage the number of I/O ports required by the design with the available I/O ports on

a given FPGA.
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Figure 5.1: Block Diagram of Test Design

Table 5.1: Various Implementations of Basic Test Design

Circuit No. S-Box in XOR in

1. LUTs LUTs

2a. Distributed RAMs LUTs

2b. LUTs Distributed RAMs

2c. Distributed RAMs Distributed RAMs

3a. BRAMs LUTs

3b. LUTs BRAMs

3c. BRAMs BRAMs

5.1 Basic Test Design Circuits

The Test Design was implemented using various resources such as 1.) LUTs, 2.) Distributed

RAMs and 3.) BRAMs; for individual components such as S-Box and XOR, which are

also the basic components used in many cryptographic algorithms. The various possible

implementations are summarized in Table 5.1.

5.1.1 Results

All the 7 circuits were implemented, and the post-place-and-route results are summarized

in Table 5.2.

The best results for minimum area are achieved by circuits 3a and 3c. Both circuits

use BRAMs for the implementation of S-Box, thus resulting in slice area reduction by over

a factor of 5 compared to LUT implementations. Implementing the XOR in BRAM does

not lead to any significant reduction in slice area because it was occupying only a few slices

originally.
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Table 5.2: Implementation Results of Basic Test Design Circuits

4 input Minimum
Circuit No. Circuits Slices FFs

LUTs
BRAMs

Delay
MTD

1. S-Box and XOR 85 24 161 0 7.737 ns > 456

in LUTs

2a. Only S-Box 95 23 191 0 7.727 ns > 256

in Distributed RAMs

2b. Only XOR 117 32 219 0 9.115 ns > 256

in Distributed RAMs

2c. S-Box and XOR 128 32 247 0 6.695 ns > 256

in Distributed RAMs

3a. Only S-Box 16 16 29 1 5.710 ns > 13, 000

in BRAMs

3b. Only XOR 86 24 157 1 8.350 ns > 256

in BRAMs

3c. S-Box and XOR 15 16 25 2 5.569 ns > 13, 000

in BRAMs

Circuits 3a and 3c are also the fastest implementations. The critical path of a LUT based

S-Box implementation consist of multiple LUTs and corresponding connections, leading to

a slower design.

The security of design against DPA attacks is determined by the number of measure-

ments required to recover the key, also known as Measurements To Disclosure (MTD). It

is clearly visible that S-Box in BRAM implementations (circuits 3a and 3c) have about

26 times higher MTD compared to S-Box in LUTs, hence provide an increased resistance

against DPA. It is an important point to note that, implementing only XOR in BRAM does

not increase the security of the design.

Another important point to note is that the position of the XOR and S-Box does not

affect the security at all. All the 7 circuits mentioned above were implemented with the

positions of XOR and S-Box swapped with each other. The MTD and area results were

almost same.
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5.1.2 MTD Graphs

The various correlation plots and MTD plots for all Basic Test Design circuits are shown

below. A fixed key of value decimal 173 was selected during the experiments to verify the

results. The MATLAB figures show the correct key as 174 because in case of MATLAB,

the key guess file starts with value decimal 1 and goes till decimal 256 instead of 0 to

255. The power trace data sample collected from oscilloscope contained 1024 data samples

for correlation, which was sufficient to crack the key for most of the circuits as seen in

Table 5.2. For two circuits involving S-Box in BRAM, a single power trace containing 1024

encryptions was not sufficient to crack the correct key. Therefore multiple power traces

were collected and appended together for computations. The MTD plot shows the value

after which the correct key dominates all other keys, in correlation with the actual power

consumption data. All the MTD results were also verified with different set of keys.

5.2 Duplicate Test Design Circuits

The results from basic design implementations show that circuits 3a and 3c have the best

resistance against DPA, occupy the least slice area and have minimum critical path delay.

Hence, an argument can be made that the low area consumption which leads to lower

dynamic power consumption might be the cause for the higher DPA resistance. Therefore,

in order to verify this claim, we increased the area consumption through replication of the

circuit 3a. Circuits 4a, 4b and 4c are duplication, triplication and quadruplication of circuit

3a respectively, as shown in Table 5.3. In order to create circuits 4a, 4b and 4c, and to

exactly replicate circuit 3a, Xilinx Design Language (XDL) was used. A slight variation is

observed in the slice area because circuit 3a has a few slices which are not required to be

replicated.
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Figure 5.2: Diagrams for Everything in LUTs (Circuit 1)
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Figure 5.3: Diagrams for only S-Box in Distributed RAM (Circuit 2a)
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Figure 5.4: Diagrams for only XOR in Distributed RAM (Circuit 2b)
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(a) Correlation after 1024 measurements for
Circuit 2c
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Figure 5.5: Diagrams for both S-Box and XOR in Distributed RAM (Circuit 2c)
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(a) Correlation after 14848 measurements for
Circuit 3a
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Figure 5.6: Diagrams for only S-Box in BRAM (Circuit 3a)
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Figure 5.7: Diagrams for only XOR in BRAM (Circuit 3b)

30



50 100 150 200 250
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 key guess

 c
or

re
la

tio
n 

Key = 174Key = 174
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Figure 5.8: Diagrams for both S-Box and XOR in BRAM (Circuit 3c)

Table 5.3: Various Implementations of Duplicate Test Design

Circuit No. Circuit

4a. Duplicate Circuit 3a

4b. Triplicate Circuit 3a

4c. Quadruplicate Circuit 3a

4d. Dummy Circuit 3a
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Table 5.4: Implementation Results of Duplicate Test Design

4 input Minimum
Circuit Slices FFs

LUTs
BRAMs

Delay
MTD

3a. Only S-Box in BRAMs 16 16 29 1 5.710 ns > 13, 000

4a. Duplicate 3a Circuit 26 32 41 2 5.710 ns > 6, 000

4b. Triplicate 3a Circuit 35 48 53 3 5.710 ns > 3, 000

4c. Quadruplicate 3a Circuit 44 64 65 4 5.710 ns > 500

4d. Dummy 3a Circuit 101 32 194 1 6.839 ns > 13, 000

5.2.1 Results

All 4 circuits were implemented, and the post-place-and-route results are summarized in

Table 5.2.

From the implementation results shown in Table 5.4, a drastic reduction in MTD is

observed for circuits 4a, 4b and 4c because of increase in related logic. This might imply

that the earlier claim is true and the increase in security is due to low area consumption. On

the other hand, by replicating circuit 3a, an unfair scenario was created, because same data

inputs were applied and signal strength was increased along with data dependent power

consumption. Therefore in order to further investigate this drastic drop in MTD, circuit 4d

was created.

In circuit 4d, the area consumption of circuit 3a was increased by adding a LUT based S-

Box whose inputs are connected to an LFSR with different feedback coefficients. Hence this

LFSR produces independent data from the original circuit. The results of this circuit show

that even after increasing the area, and inevitably the total dynamic power consumption,

the circuit still maintains the same DPA resistance as the original circuit 3a.

The results in Table 5.4 show that adding unrelated logic to circuits does not impact the

security. This confirms that the resistance to DPA does not depend on the total amount of

power consumption but on the power consumed by related logic.
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5.2.2 MTD Graphs

The various correlation plots and Measurement To Disclosure (MTD) plots for all Duplicate

Test Design circuits are shown below.
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Figure 5.9: Diagrams for Duplicate Design (Design 4a)
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Figure 5.10: Diagrams for Triplicate Design (Design 4b)
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Figure 5.11: Diagrams for Quadruplicate Design (Design 4c)
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Chapter 6: AES 128-bit Design

Advanced Encryption Standard (AES) [42] is a block cipher and the current encryption

standard adopted by the U.S. government. In 2001, AES was announced by National

Institute of Standards and Technology (NIST) as U.S. FIPS PUB 197 (FIPS 197) and

then it became a federal government standard in 2002. Three out of five cipher options

were selected as standards i.e. AES-128, AES-192 and AES-256 from originally published

Rijndael. Each AES cipher has a similar architecture with a datapath of 128-bits and key

sizes of 128, 192 and 256 bits, respectively. Various implementations such as high speed,

high throughput, low power etc, have been reported by the researchers based on different

datapath sizes (8, 16, 32, 64, 128-bit).

AES is an iterative cipher executing a round function several times. The number of

rounds varies depending on the size of key. The round function consists of four different

transformations: SubBytes, ShiftRows, MixColumns and AddRoundKey.

• SubBytes is a non-linear operation where each input byte is replaced by another

byte based on the look-up table defined in the AES specification. This look-up table

is commonly known as substitution box (S-Box).

• ShiftRows is a transpositional step where the bytes in a row are shifted along the

row by a specific number of places.

• MixColumns is a mixing operation where the four bytes in a column are combined

by modulo multiplication with a fixed polynomial.

• AddRoundKey is a step where the output is bitwise xored with the round key.

Each round uses an intermediate key called “round key” which is derived from the original

key through key scheduling. The different round keys can be pre-computed and stored in a
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Figure 6.1: Block Diagram of AES-128 test Circuit

RAM or can be computed on the fly during the round.

We have implemented an AES cipher with 128-bit key length and 128 bit wide datapath.

It is an encryption only design with on-the-fly key scheduling and it requires 11 clock cycles

for one encryption. The SubBytes function is realized through 16 sync. S-Boxes. The cipher

is implemented in Output Feedback (OFB) mode and can therefore generate new outputs

without requiring new plaintext. This facilitates easy collection of multiple power samples

for DPA. The block diagram for this design is shown in Fig. 6.1.

We attack the design at the output of the sync. S-Boxes, after the last round of encryp-

tion. The equation for calculating Hamming Distance is shown in Eq. (6.1) where Q11 is

the output of the last round which xored with the plaintext PT to produce the ciphertext

CT . Because of the OFB mode, the output of the last round Q11 is the same as the input

to the next round Q′
1.

Pest. = HD(SBOX(CT ⊕ PT ),SBOX(kguess ⊕Q′
1))

Pest. = HD(SBOX(Q11),SBOX(kguess ⊕Q11))

(6.1)

From the basic Test Design Circuit’s results it can be concluded that LUT based imple-

mentations and distributed RAM based implementations have similar results. The reason

is that the distributed RAMs are implemented by LUTs. On the other hand the MTD is

largely affected by varying the BRAM usage with respect to S-Box implementations. There-

fore in AES designs, the comparison is done between the implementation using Distributed

RAMs and implementations maximizing BRAM usage.
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6.1 Standard S-Box Implementation using Distributed RAMs

In this design (5a.), the S-Box is implemented using distributed RAMs. The design uses 20

S-Boxes each of size 28x8 (2K bits), 16 S-Boxes performing the SubBytes operation on 16

bytes of data simultaneously and 4 S-Boxes performing the SubBytes operation in the key

scheduling section.

6.2 Standard S-Box Implementation using Block RAMs

In this design (5b), the sync. S-Box is implemented using BRAM, absorbing the register

after the S-Box. Each BRAM is capable of storing 18K bits, with dual port architecture.

Therefore 20 S-Boxes can be implemented using 10 partially filled BRAMs. This reduces

slice area by approximately 20*(64 slices) = 1280 Slices.

6.3 T-box Implementation using Block RAMs

This is a special design proposed by the authors of AES in [43]. It was initially intended

for software implementations on 32-bit micro-processors. Later-on Fischer demonstrated its

hardware implementation in [44]. The T-box design features computation of a complete AES

round just by using Look-up tables and XOR gates. In T-Box architecture, the SubBytes

operation and MixColumns operation is reformulated and implemented using 8x32 look-up

tables followed by a large XOR network. The T-box operation and the T-box equations are

well explained in [43] and [45].

In this design (5c.), the T-Boxes are implemented using BRAMs. Since each BRAM is

capable of storing 18K bits, with dual port architecture, 20 T-Boxes can be implemented

using 10 completely filled BRAMs.
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Table 6.1: Summary of Implementation Results from AES-128 designs

4 input Minimum
Design No. Design Slices FFs

LUTs
BRAMs

Delay
MTD

5a. Standard AES-128, 1,727 422 3,374 0 15.876 ns 300-1,300

Distributed RAMs

5b. Standard AES-128, 412 262 787 10 13.875 ns > 9, 500

BRAMs

5c. T-box AES-128, 370 262 705 10 13.461 ns > 11, 500

BRAMs

6.4 Results

The post-place-and-route results for all three AES-128 implementations mentioned earlier

are summarized in Table 6.1. All the results are for the core design only, excluding the

wrapper circuit.

The best result for minimum area is achieved by design 5b and 5c. Design 5b implements

the S-Box using BRAMs and design 5c implements the S-Box and partial MixColumn

operation using BRAMs. Thus both designs demonstrate reduction in slice area by more

than 4 times compared to Distributed RAM based implementation, at the cost of additional

10 BRAMs usage.

In terms of security, the results follow the same trend as that of the Test design circuits.

The MTD results clearly show an increase in DPA resistance with BRAMs implementing

more amount of the related logic. The standard AES implementation with its S-Box im-

plemented in BRAM is about 7 times more secure than S-Box in Distributed RAMs. The

T-box design which has S-Box and partial mix-columns in BRAMs, is about 9 times more

secure. Along with higher security and less area, a small increase in speed is also achieved.

6.5 MTD Graphs

The correlation plots and MTD plots for all AES designs are shown below.
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Figure 6.2: Diagrams for AES-128, S-Box in Distributed RAMs (Design 5a)

The key size for our AES design is 128 bits, which is very long and difficult to break at

once. Therefore the attack is done with a step size of 8-bits. The attack position is the last

round of the encryption. We attack the first byte of the subkey. Its value in that round

is 43. The MATLAB figures show the correct key as 44 as in case of MATLAB the key

guess file starts with value decimal 1 and goes till decimal 256 instead of 0 to 255. The

power trace data sample collected from the oscilloscope contained 1000 data samples for

correlation, which was sufficient to recover the correct key for design 5a, as seen in Table

6.1, but for the other two designs a single power trace containing 1000 encryptions was

not sufficient to recover the correct key. Therefore multiple power traces were collected

and appended together for computations. The MTD plot shows the value after which the

correct key dominates all other keys in correlation with the actual power consumption data.

All the answers were also verified with different set of keys.
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Figure 6.3: Diagrams for AES-128, S-Box in BRAMs (Design 5b)
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Figure 6.4: Diagrams for AES-128, T-Box in BRAMs (Design 5c)
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Chapter 7: Comparison of various Countermeasures

Table 7.1 shows a detailed comparison of various countermeasures for DPA published by

other researchers. This table gives a brief idea about other countermeasures, their advan-

tages, disadvantages and a comparison with our designs.

An excellent comparison is possible between Yu et.al. [30], Velegalati and Kaps [21] and

our basic test designs, as all three have similar LFSR + S-Box design structure. Yu et.al.

[30] did not document MTD but confirmed WDDL being unsecure and DWDDL being more

secure. The drawbacks were, increase in area by 484% (5.8 times) & 1068% (11.7 times) and

increase in delay by about 390% (4.9 times) & 423% (5.2 times) for WDDL and DWDDL

designs respectively. Velegalati et.al. [21] demonstrated (MTD> 10, 000) about 10 times

increase in security. The drawbacks were, increase in area by 111% (2.1 times) & 107% (2.1

times) and increase in delay by about 100% (2 times) & 94% (1.9 times) for Mux-4 SDDL

and Mux-16 SDDL designs respectively. Finally in our case, BRAM implementations have

(MTD> 13, 000) about 26 times increase in security which is similar in strength compared

to Velegalati and Kaps [21]. Along with it we have other advantages such as decrease in

slice area by 84% (5.3 times) for LFSR + S-Box design and about 79% (4.7 times) for AES

design, and decrease in delay by about 26% (1.4 times) and 15% (1.2 times) respectively.
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Table 7.1: Comparison Across Countermeasures

Authors Technology Implementations Area Minimum MTD

Delay (ns)

Hwang TSMC original AES 79 Kgates 3 320 -

et.al.[22] 6M 0.18 µm 8,168

AES WDDL AES 245 Kgates 11.7 21,185 -

Co-processor 1,276,186a

Yu et.al. Spartan 3E SE 70 Slices 3.99 NO

[30] LFSR + S-Box WDDL 409 Slices 19.54 NO

DWDDL 818 Slices 20.88 YES

Velegalati Spartan 3E Mux-4 SE 134 Slices 9.08 1,024

et.al.[21] LFSR + S-Box Mux-4 SDDL 283 Slices 18.16 > 10, 000

Mux-16 SE 80 Slices 7.51 1,024

Mux-16 SDDL 166 Slices 14.59 > 10, 000

This Thesis Spartan 3E S-Box 95 Slices 7.727 > 256

LFSR + S-Box Distributed RAM

S-Box BRAM 16 Slices+ 5.710 > 13, 000

1 BRAM

This Thesis Spartan 3E S-Box 1,727 15.876 300-1,300

AES-128 Distributed RAM Slices

S-Box BRAM 412 Slices+ 13.875 > 9, 500

10 BRAM

Tbox BRAM 370 Slices+ 13.461 > 11, 500

10 BRAM

a5 Key-bytes were not found after 1.5M measurements
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Chapter 8: Conclusion and Future Work

8.1 Conclusion

Previous work by the research community indicates that a good level of hardware security

is generally accompanied with a large increase in area and delay. Our experimental results

show that moving DPA vulnerable components from LUTs to BRAMs provides a moder-

ate level of security against DPA attacks. The security is comparable to current SDDL

implementations on FPGAs [21]. Unlike other countermeasures, the increase in security is

without any increase in area or delay, on the contrary it demonstrates significant reduction

in slice area and delay, at the cost of BRAMs. The technique is easy to implement and does

not require low level design changes such as complimentary logic or symmetric routing.

8.2 Future Work

We want to investigate if BRAM implementations along with some other appropriate hiding

or masking countermeasures would provide a better level of security at incremental area

cost. We would also like to explore the applicability of this technique to FPGAs from other

vendors.
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