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Abstract

Performance in hardware has been demonstrated to be an important factor in the evalu-
ation of candidates for cryptographic standards. Up to now, no consensus exists on how
such an evaluation should be performed in order to make it fair, transparent, practical, and
acceptable for the majority of the cryptographic community. In this report, we formulate
a proposal for a fair and comprehensive evaluation methodology, and apply it to the com-
parison of hardware performance of 14 Round 2 SHA-3 candidates. The most important
aspects of our methodology include the definition of clear performance metrics, the develop-
ment of a uniform and practical interface, generation of multiple sets of results for several
representative FPGA families from two major vendors, and the application of a simple
procedure to convert multiple sets of results into a single ranking. The VHDL codes for
256 and 512-bit variants of all 14 SHA-3 Round 2 candidates and the old standard SHA-2
have been developed and thoroughly verified. These codes have been then used to evaluate
the relative performance of all aforementioned algorithms using seven modern families of
Field Programmable Gate Arrays (FPGAs) from two major vendors, Xilinx and Altera.
All algorithms have been evaluated using four performance measures: the throughput to
area ratio, throughput, area, and the execution time for short messages. Based on these
results, the 14 Round 2 SHA-3 candidates have been divided into several groups depending
on their overall performance in FPGAs.



Chapter 1

Introduction and Motivation

Starting from the Advanced Encryption Standard (AES) contest organized by NIST in
1997-2000 [1], open contests have become a method of choice for selecting cryptographic
standards in the U.S. and over the world. The AES contest in the U.S. was followed by
the NESSIE competition in Europe [2], CRYPTREC in Japan, and eSTREAM in Europe
[3].

Four typical criteria taken into account in the evaluation of candidates are: security,
performance in software, performance in hardware, and flexibility. While security is com-
monly recognized as the most important evaluation criterion, it is also a measure that is
most difficult to evaluate and quantify, especially during a relatively short period of time
reserved for the majority of contests. A typical outcome is that, after eliminating a fraction
of candidates based on security flaws, a significant number of remaining candidates fail to
demonstrate any easy to identify security weaknesses, and as a result are judged to have
adequate security.

Performance in software and hardware are next in line to clearly differentiate among
the candidates for a cryptographic standard. Interestingly, the differences among the cryp-
tographic algorithms in terms of hardware performance seem to be particularly large, and
often serve as a tiebreaker when other criteria fail to identify a clear winner. For example,
in the AES contest, the difference in hardware speed between the two fastest final candi-
dates (Serpent and Rijndael) and the slowest one (Mars) was by a factor of seven [1][4]; in
the eSTREAM competition the spread of results among the eight top candidates qualified
to the final round was by a factor of 500 in terms of speed (Trivium x64 vs. Pomaranch),
and by a factor of 30 in terms of area (Grain v1 vs. Edon80) [5][6].

At this point, the focus of the attention of the entire cryptographic community is on the
SHA-3 contest for a new hash function standard, organized by NIST [7][8]. The contest is
now in its second round, with 14 candidates remaining in the competition. The evaluation
is scheduled to continue until the second quarter of 2012.

In spite of the progress made during previous competitions, no clear and commonly
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accepted methodology exists for comparing hardware performance of cryptographic algo-
rithms [9]. The majority of the reported evaluations have been performed on an ad-hoc
basis, and focused on one particular technology and one particular family of hardware
devices. Other pitfalls included the lack of a uniform interface, performance metrics, and
optimization criteria. These pitfalls are compounded by different skills of designers, using
two different hardware description languages, and no clear way of compressing multiple
results to a single ranking. In this paper, we address all the aforementioned issues, and
propose a clear, fair, and comprehensive methodology for comparing hardware performance
of SHA-3 candidates and any future algorithms competing to become a new cryptographic
standard. Our methodology is based on the use of FPGA devices from various vendors.
The advantages of using FPGAs for comparison include short development time, wide
availability of tools, and a limited number of vendors dominating the market.

The hardware evaluation of SHA-3 candidates started shortly after announcing the
specifications and reference software implementations of 51 algorithms submitted to the
contest [7][8][10]. The majority of initial comparisons were limited to less than five can-
didates, and their results have been published at [10]. The more comprehensive efforts
became feasible only after NISTs announcement of 14 candidates qualified to the second
round of the competition in July 2009. Since then, two comprehensive studies have been
reported in the Cryptology ePrint Archive [11][12]. The first, from the University of Graz,
has focused on ASIC technology, the second from two institutions in Japan, has focused
on the use of the FPGA-based SASEBO-GII board from AIST, Japan. Although both
studies generated quite comprehensive results for their respective technologies, they did
not quite address the issues of the uniform methodology, which could be accepted and
used by a larger number of research teams. Our study is intended to fill this gap, and put
forward the proposal that could be evaluated and commented on by a larger cryptographic
community.



Chapter 2

Methodology

2.1 Choice of a Language, FPGA Devices, and Tools

Out of two major hardware description languages used in industry, VHDL and Verilog
HDL, we choose VHDL. We believe that either of the two languages is perfectly suited
for the implementation and comparison of SHA-3 candidates, as long as all candidates
are described in the same language. Using two different languages to describe different
candidates may introduce an undesired bias to the evaluation.

FPGA devices from two major vendors, Xilinx and Altera, dominate the market with
about 90% of the market share. We therefore feel that it is appropriate to focus on FPGA
devices from these two companies. In this study, we have chosen to use seven families of
FPGA devices from Xilinx and Altera. These families include two major groups, those
optimized for minimum cost (Spartan 3 from Xilinx, and Cyclone II and III from Altera)
and those optimized for high performance (Virtex 4 and 5 from Xilinx, and Stratix II and
III from Altera). Within each family, we use devices with the highest speed grade, and the
largest number of pins.

As CAD tools, we have selected tools developed by FPGA vendors themselves: Xilinx
ISE Design Suite v. 11.1 (including Xilinx XST, used for synthesis) and Altera Quartus II
v. 9.1 Subscription Edition Software.

2.2 Performance Metrics for FPGAs

Choosing proper performance metrics for the implementation of hash functions (or any
other cryptographic transformations) using FPGAs is a non-trivial task, and no clear con-
sensus exists so far on how these metrics should be defined. Below we summarize our
proposed approach, which we applied in our study.

4
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Speed.

In order to characterize the speed of the hardware implementation of a hash function, we
suggest using Throughput, understood as a throughput (number of input bits processed
per unit of time) for long messages. To be exact, we define Throughput using the following
formula:

Throughput =
block size

T · (HTime(N + 1)−HTime(N))
(2.1)

where block size is a message block size, characteristic for each hash function, HTime(N)
is a total number of clock cycles necessary to hash an N-block message, T is a clock period,
different and characteristic for each hardware implementation of a specific hash function.

Throughput defined this way is typically independent of N (and thus the size of the
message), as in all hash function architectures we investigated so far, the expression
HTime(N + 1)−HTime(N) is a constant that corresponds to the number of clock cycles
between processing of two subsequent input blocks.

The effective throughput for short messages is always smaller, and is expressed by the
formula

Throughputeff =
N · block size
T ·HTime(N)

(2.2)

In this paper, we provide the exact formulas for HTime(N) for each SHA-3 candidate
(see Table 4.2), and values of f = 1/T for each algorithm–FPGA device pair (see Tables
4.8 and 4.9). Therefore, we provide sufficient information to calculate and compare values
of the effective throughputs for each specific message size, which may be of interest in a
given application.

For short messages, it is more important to evaluate the total time required to process
a message of a given size (rather than throughput). The size of the message can be chosen
depending on the requirements of an application. For example, in the eBASH study of
software implementations of hash functions, execution times for all sizes of messages, from
0-bytes (empty message) to 4096 bytes, are reported, and five specific sizes 8, 64, 576, 1536,
and 4096 are featured in the tables [13]. The generic formulas we include in this paper (see
Table 4.2) allow the calculation of the execution times for any message size.

In order to characterize the capability of a given hash function implementation for
processing short messages, we present in this study the comparison of execution times for
an empty message (one block of data after padding) and a 100-byte (800-bits) message
before padding (which becomes equivalent for majority, but not all, of the investigated
functions to 1024 bits after padding).

To be exact our parameters are defined as follows

Tempty = T ·HTime(1) (2.3)

T100B = T ·HTime
(
padlen(800)
block size

)
, (2.4)
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where padlan(800) denotes the size of an 800-bit message after padding.

Resource Utilization/Area.

Resource utilization is particularly difficult to compare fairly in FPGAs, and is often a
source of various evaluation pitfalls. First, the basic programmable block (such as CLB
slice in Xilinx FPGAs) has a different structure and different capabilities for various FPGA
families from different vendors. For example, in Virtex 5, a CLB slice includes four 6-input
Look-Up-Tables (LUTs); in Spartan 3 and Virtex 4, a CLB slice includes two 4-input
LUTs. In Cyclone II and Cyclone III, the basic programmable block is called Logic Element
(LE); in Stratix II and III, the basic programmable component has a different structure
and is called ALUT (Adaptive Look-Up Table). Taking this issue into account, we suggest
avoiding any comparisons across family lines. Secondly, all modern FPGAs include multiple
dedicated resources, which can be used to implement specific functionality. These resources
include Block RAMs (BRAMs), multipliers (MULs), and DSP units in Xilinx FPGAs, and
memory blocks, multipliers, and DSP units in Altera FPGAs. In order to implement a
specific operation, some of these resources may be interchangable, but there is no clear
conversion factor to express one resource in terms of the other.

Therefore, we suggest in the general case, treating resource utilization as a vector, with
coordinates specific to a given FPGA family. For example,

Resource UtilizationSpartan3 = (#CLBslices,#BRAMs,#MULs) (2.5)

Resource UtilizationCycloneIII = (#LE,#memory bits,#MULs) (2.6)

Taking into account that vectors cannot be easily compared to each other, we have
decided to opt out of using any dedicated resources in the hash function implementations
used for our comparison. Thus, all coordinates of our vectors, other than the first one have
been forced (by choosing appropriate options of the synthesis and implementation tools)
to be zero. This way, our resource utilization (further referred to as Area) is characterized
using a single number, specific to the given family of FPGAs, namely the number of CLB
slices (#CLBslices) for Xilinx FPGAs, the number of Logic Elements (#LE) for Cyclone
II and Cyclone III, and the number of Adaptive Look-Up Tables (#ALUT ) in Stratix II
and Stratix III.

The resource utilization vector in FPGAs (or even its simplified one-coordinate form,
referred to as Area above) cannot be easily translated to an equivalent area or the number
of transistors in ASICs. Any attempts to define a resource utilization unit that would apply
to both technologies (such as an equivalent logic gate) have been mostly unsuccessful, and
of limited value in practice. The only common denominator is cost, but unfortunately the
prices of integrated circuits, and FPGAs in particular, are not commonly available, and
are affected by multiple non-technical factors (including the number of units ordered, the
relationship between companies, etc.)
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2.3 Uniform Interface

In order to remove any ambiguity in the definition of our hardware cores for SHA-3 candi-
dates, and in order to make our implementations as practical as possible, we have developed
an interface shown in Fig. 2.1a, and described below. In a typical scenario, the SHA core
is assumed to be surrounded by two standard FIFO modules: Input FIFO and Output
FIFO, as shown in Fig. 2.1b. In this configuration, SHA core is an active module, while
a surrounding logic (FIFOs) is passive. Passive logic is much easier to implement, and in
our case is composed of standard logic components, FIFOs, available in any major library
of IP cores.

Each FIFO module generates signals empty and full, which indicate that the FIFO
is empty and/or full, respectively. Each FIFO accepts control signals write and read,
indicating that the FIFO is being written to and/or read from, respectively.

The aforementioned assumptions about the use of FIFOs as surrounding modules are
very natural and easy to meet. For example, if a SHA core implemented on an FPGA
communicates with an outside world using PCI, PCI-X, or PCIe interface, the implemen-
tations of these interfaces most likely already include Input and Output FIFOs, which can
be directly connected to a SHA core. If a SHA core communicates with another core im-
plemented on the same FPGA, then FIFOs are often used on the boundary between the
two cores in order to accommodate for any differences between the rate of generating data
by one core and the rate of accepting data by another core.

Additionally, the inputs and outputs of our proposed SHA core interface do not need to
be necessarily generated/consumed by FIFOs. Any circuit that can support control signals
src ready and src read can be used as a source of data. Any circuit that can support control
signals dst ready and dst write can be used as a destination for data.

The exact format of an input to the SHA core, for the case of pre-padded messages,
is shown in Fig. 2.2. Two scenarios of operation are supported. In the first scenario,
the message bitlength after padding is known in advance and is smaller than 2w. In this
scenario, shown in Fig. 2.2a, the first word of input represents message length after padding,
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dst_ready	
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clk	
   rst	
  

clk	
   rst	
  

w	
  

a)	
  

fifoin_empty	
  

fifoin_read	
  

idata	
  
w	
   w	
  

odata	
  

fifoout_full	
  

fifoout_write	
  

fifoin_full	
  

fifoin_write	
  

fifoout_empty	
  

fifoout_read	
  

Input	
  
FIFO	
  

SHA	
  core	
  

clk	
   rst	
  

ext_idata	
  

w	
  

ext_odata	
  
din	
   dout	
  

src_ready	
  

src_read	
  

dst_ready	
  

dst_write	
  

din	
   dout	
  

full	
   empty	
  

write	
   read	
  

Output	
  
FIFO	
  

din	
   dout	
  

full	
   empty	
  

write	
   read	
  

w	
  

clk	
   rst	
   clk	
   rst	
  

clk	
   rst	
   clk	
   rst	
   clk	
   rst	
  
b)	
  

Figure 2.1: a) Input/output interface of a SHA core. b) A typical configuration of a SHA
core connected to two surrounding FIFOs.



8 E. Homsirikamol, M. Rogawski, and K. Gaj

msg_len  | last = 1 

message 

w bits 

.	
  

.	
  

.	
  

seg_0_len | last=0 

seg_0 

w bits 

seg_1_len | last=0 

seg_1 

 
 
 

seg_n-1_len | last=1 

seg_n-1 

a) 

msg_len_bp 

seg_n-1_len_bp 

b) 

Figure 2.2: Format of input data for two different operation scenarios: a) with message
bitlength known in advance, and b) with message bitlength unknown in advance. Nota-
tion: msg len – message length after padding, msg len bp – message length before padding,
seg i len – segment i length after padding, seg i len bp – segment i length before padding,
last – a one-bit flag denoting the last segment of the message (or one-segment message),
“|” – bitwise OR.

expressed in bits. This word has the least significant bit, representing a flag called last, set
to one. This word is followed by the message length before padding. This value is required
by several SHA-3 algorithms using internal counters (such as BLAKE, ECHO, Shavite-3,
and Skein), even if padding is done outside of the SHA core. These two control words are
followed by all words of the message.

The second format, shown in Fig. 2.2b, is used when either message length is not known
in advance, or it is greater than 2w. In this case, the message is processed in segments
of data denoted as seg 0, seg 1,. . . ,seg n-1. For the ease of processing data by the hash
core, the size of the segments, from seg 0 to seg n-2 is required to be always an integer
multiple of the block size b, and thus also of the word size w. The least significant bit of
the segment length expressed in bits is thus naturally zero, and this bit, treated as a flag
called last, can be used to differentiate between the last segment and all previous segments
of the message. The last segment before padding can be of arbitrary length < 2w. This
segment is processed in the same way as the entire message in scenario a). This way there
is no need for any additional signal to distinguish between these two scenarios. Scenario a)
is a special case of scenario b). In case the SHA core supports padding, the protocol can
be even simpler, as explained in [14].

Please note that scenario b) is very similar to the way data is processed by a typical
software API for hash functions, such as [15]. The Update function of the software API
corresponds to processing segments from seg 0 to seg n-2. The function Final corresponds
to the processing of the last segment of data, seg n-1.
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2.4 Assumptions and Simplifications

Our study is performed using the following assumptions. Only the SHA-3 candidate vari-
ants with the 256-bit and the 512-bit outputs have been implemented and compared at this
point. Other variants, treated either independently or as combinations of multiple variants
(all-in-one hash cores) may be subjects of future comparisons.

Padding is assumed to be done outside of the hash cores (e.g., in software). All in-
vestigated hash functions have very similar padding schemes, which would lead to similar
absolute area overhead if implemented as a part of the hardware core. The relative area
penalty will be higher for cores with smaller area used for main processing. The complexity
of the padding circuit will also depend on the assumptions regarding the smallest unit of
a message (bit, byte, or word), which may be different for specific applications.

Only the primary mode of operation is supported for all functions. Special modes, such
as tree hashing or MAC mode are not implemented (their implementation would actually
work against the respective candidates, because of the area and speed penalty introduced
by these extra features). There is also no support for providing salt specific to each message.
The salt values are fixed to all zeros in all SHA-3 candidates supporting this special input
(namely BLAKE, ECHO, SHAvite-3, and Skein).

2.5 Optimization Target

We believe that the choice of the primary optimization target is one of the most important
decisions that needs to be made before the start of the comparison. The optimization target
should drive the design process of every SHA-3 candidate, and it should also be used as
a primary factor in ranking the obtained SHA-3 cores. The most common choices are:
Maximum Throughput, Minimum Latency, Minimum Area, Throughput to Area Ratio,
Product of Latency times Area, etc.

Our choice is the Throughput to Area Ratio, where Throughput is defined as Through-
put for long messages, and Area is expressed in terms of the number of basic programmable
logic blocks specific to a given FPGA family. This choice has multiple advantages. First,
it is practical, as hardware cores are typically applied in situations, where the size of the
processed data is significant and the speed of processing is essential. Otherwise, the in-
put/output latency overhead associated with using a hardware accelerator dominates the
total processing time, and the cost of using dedicated hardware (FPGA) is not justified.
Optimizing for the best ratio provides a good balance between the speed and the cost of
the solution.

Secondly, this optimization criterion is a very reliable guide throughout the entire design
process. At every junction where the decisions must be made, starting from the choice of a
high-level hardware architecture down to the choice of the particular FPGA tool options,
this criterion facilitates the decision process, leaving very few possible paths for further
investigation.
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On the contrary, optimizing for Throughput alone, leads to highly unrolled hash func-
tion architectures, in which a relatively minor improvement in speed is associated with
a major increase in the circuit area. In hash function cores, latency, defined as a delay
between providing an input and obtaining the corresponding output, is a function of the
input size. Since various sizes may be most common in specific applications, this parameter
is not a well-defined optimization target. Finally, optimizing for area leads to highly se-
quential designs, resembling small general-purpose microprocessors, and the final product
depends highly on the maximum amount of area (e.g., a particular FPGA device) assumed
to be available.

2.6 Design Methodology

Our design of all 14 SHA-3 candidates followed an identical design methodology. Each
SHA core is composed of the Datapath and the Controller. The Controller is implemented
using three main Finite State Machines, working in parallel, and responsible for the Input,
Main Processing, and the Output, respectively. As a result, each circuit can simultaneously
perform the following three tasks: output hash value for the previous message, process a
current block of data, and read the next block of data. The parameters of the interface are
selected in such a way that the time necessary to process one block of data is always larger
or equal to the time necessary to read the next block of data. This way, the processing of
long streams of data can happen at full speed, without any visible input interface overhead.
The finite state machines responsible for input and output are almost identical for all hash
function candidates; the third state machine, responsible for main data processing, is based
on a similar template. The similarity of all designs and reuse of common building blocks
assures a high fairness of the comparison.

The design of the Datapath starts from the high level architecture. At this point, the
most complex task that can be executed in an iterative fashion, with the minimum overhead
associated with multiplexing inputs specific to a given iteration round, is identified. The
proper choice of such a task is very important, as it determines both the number of clock
cycles per block of the message and the circuit critical path (minimum clock period).

It should be stressed that the choice of the most complex task that can be executed in
an iterative fashion should not follow blindly the specification of a function. In particular,
quite often one round (or one step) from the description of the algorithm is not the most
suitable component to be iterated in hardware. Either multiple rounds (steps) or fractions
thereof may be more appropriate. In Table 2.1 we summarize our choices of the main
iterative tasks of SHA-3 candidates. Each such task is implemented as combinational
logic, surrounded by registers.

The next step is an efficient implementation of each combinational block within the
DataPath. In Table 2.2, we summarize major operations of all SHA-3 candidates that
require logic resources in hardware implementations. Fixed shifts, fixed rotations, and
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Table 2.1: Main iterative tasks of the hardware architectures of SHA-3 candidates opti-
mized for the maximum Throughput to Area ratio

Function Main Iterative Task Function Main Iterative Task
BLAKE Gi..Gi+3 JH Round function R8

BMW entire function Keccak Round R
CubeHash one round Luffa The Step Function, Step
ECHO AES round/AES round/ Shabal Two iterations

BIG.SHIFTROWS, BIG.MIXCOLUMNS of the main loop
Fugue 2 subrounds SHAvite-3 AES round

(ROR3, CMIX, SMIX)
Groestl Modified AES round SIMD 4 steps of the

compression function
Hamsi Truncated Non-Linear Skein 4 rounds of

Permutation P Threefish-512

Table 2.2: Major operations of SHA-3 candidates (other than permutations, fixed shifts
and fixed rotations). mADDn denotes a multioperand addition with n operands.

Function NTT Linear S-box GF MUL MUL mADD ADD Boolean
code /SUB

BLAKE mADD3 ADD XOR
BMW mADD17 ADD,SUB XOR
CubeHash ADD XOR
ECHO AES 8x8 x02, x03 XOR
Fugue AES 8x8 x04..x07 XOR
Groestl AES 8x8 x02..x05, 0x07 XOR
Hamsi LC Serpent XOR

4x4
JH 4x4 x2, x5 XOR

Keccak NOT,AND,XOR
Luffa 4x4 x02 XOR
Shabal x3, x5 ADD,SUB NOT,AND,XOR
SHAvite-3 AES 8x8 x02, x03 NOT,XOR
SIMD NTT x185, x233 mADD3 ADD NOT,AND,OR
Skein ADD XOR
SHA-256 mADD5 NOT,AND,XOR
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other more complex permutations are omitted because they appear in all candidates and
require only routing resources (programmable interconnects). The most complex out of
logic operations are the Number Theoretic Transform (NTT) [16] in SIMD, linear code (LC)
[17] in Hamsi, basic operations of AES (8x8 AES S-box and multiplication by a constant
in the Galois Field GF(28)) in ECHO, Fugue, Groestl, and SHAvite-3; and multioperand
additions in BLAKE, BMW, SIMD, and SHA-256.

For each of these operations we have implemented at least two alternative architectures.
NTT was optimized by using a Fast Fourier Transform (FFT) [16]. In Hamsi, the linear
code was implemented using both logic (matrix by vector multiplications in GF(4)), and
using look-up tables. AES 8x8 S-boxes (SubBytes) were implemented using both look-up
tables (stored in distributed memories), and using logic only (following method described
in [18], Section 10.6.1.3). Multi-operand additions were implemented using the following
four methods: carry save adders (CSA), tree of two operand adders, parallel counter, and
a “+” in VHDL [19]). Finally, integer multiplications by 3 and 5 in Shabal have been
replaced by a fixed shift and addition.

All optimized implementations of basic operations have been applied uniformly to all
SHA-3 candidates. In case the initial testing did not provide a strong indication of supe-
riority of one of the alternative methods, the entire hash function unit was implemented
using two alternative versions of the basic operation code, and the results for a version
with the better throughput to area ratio have been listed in the result tables.

All VHDL codes have been thoroughly verified using a universal testbench, capable
of testing an arbitrary hash function core that follows interface described in Section 2.3
[20]. A special padding script was developed in Perl in order to pad messages included in
the Known Answer Test (KAT) files distributed as a part of each candidates submission
package. An output from the script follows a similar format as its input, but includes
apart from padding bits also the lengths of the message segments, defined in Section 2.3,
and shown schematically in Fig. 2.2b. The generation of a large number of results was
facilitated by an open source tool ATHENa (Automated Tool for Hardware EvaluatioN)
[20]. This benchmarking environment was also used to optimize requested synthesis and
implementation frequencies and other tool options.



Chapter 3

Comprehensive Designs of SHA-3
Candidates

The designs of all 14 SHA-3 candidates followed the same basic design principle with the
core separated into two main units, the Datapath and the Controller. Only the Datapath
diagrams are provided in this chapter as the Controller can be derived from the Datapath
and the specification of the function, and described using ASM charts. The full specification
of each of the algorithms can be found in [21–35].

3.1 Notations and Symbols

Table 3.1 provides the notation and symbols that are being used throughout this chapter.

13
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Table 3.1: Notations and Symbols
Word A group of bits used in arithmetic and logic operations, typically

of the size of 32 or 64 bits.
Block A group of words.
X[i] Refers to an array position i in X.
Xi Refers to a bit position i in X.
salt Salt values are always assumed to be zero and as a result they are

omitted from the diagrams.
b Block size in bits.
h Hash value size in bits.
w Word size in bits.
IV Initialization vector

SEXT Sign extension.
ZEXT Zero extension.
<<<R Rotation left by R positions. If R is a constant: fixed rotation;

if R is a variable: variable rotation implemented using a barrel
rotator.

>>>R Rotation right by R positions. If R is a constant: fixed rotation;
if R is a variable: variable rotation implemented using a barrel
rotator.

<<S Shift left by S positions. If S is a constant: fixed shift; if S is a
variable: variable shift implemented using a barrel shifter.

>>S Shift right by S positions. If S is a constant: fixed shift; if S is a
variable: variable shift implemented using a barrel shifter.

|| Concatenation. By default, the buses concatenate back to the
same arrangement as before the separation (split) occurs.

SIPO
Serial-in-parallel-out unit.

PISO
Parallel-in-serial-out unit.

endian word

switch

Wordwise endianness switching.

switch
endian byte Bytewise endianness switching.
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3.2 Basic Component Description

This section describes implementations of selected basic components used in more than
one algorithm. These components include multiplication by 2 in GF(28), SubBytes, Mix-
Columns, and AES Round.

3.2.1 Multiplication by 2 in the Galois Field GF(28)

Y[5]

X[7]

X[6]

X[5]

X[4]

X[3]

X[2]

X[1]

X[0]

Y[0]

Y[1]

Y[2]

Y[4]

Y[3]

Y[6]

Y[7]

Figure 3.1: Basic : x2

3.2.2 Multiplication by n in the Galois Field GF(28)

Galois Field multiplication by n other than 2 is summarized in Table 3.2.

Table 3.2: Galois Field Multiplication by n
x3(X) = x2(X) ⊕ X
x4(X) = x2(x2(X))
x5(X) = x4(X) ⊕ X

x6(X) = x4(X) ⊕ x2(X)
x7(X) = x4(X) ⊕ x3(X)
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3.2.3 AES

AES is a basic building block of many SHA-3 candidates. An AES round consists of three
basic operations, SubBytes, MixColumns and ShiftRows shown in Figure 3.2. SubByte
operation, shown in Figure 3.3, performs direct substitution on all bytes of its input. Mix-
Columns performs matrix multiplication on each word of its input. A word of AES contains
32 bits. Hence, four instances of MixColumns are required to process the entire AES block
of 128 bits. The SBOX and ShiftBytes operations of AES and their full specifications can
be found in [36] and [37].

MixColumns

x

y

key
128

128

128

128

ShiftRows

SubBytes

Figure 3.2: Basic : AES Round
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y

8 8 8 8

x[0]

8 8 88

y[0]

x[15]

y[15]

128

128

SBOX
AES

SBOX
AES

x

Figure 3.3: Basic : AES SubBytes

b0’

x2x2 x2 x2

b0 b2b1 b3

b0’ b2’ b3’

Note : All buses are 8−bit wide

Figure 3.4: Basic : AES MixColumns
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3.3 BLAKE

3.3.1 Block Diagram Description

Figure 3.5 shows the datapath of BLAKE. In this design, the combinational CORE im-
plements one half of the BLAKE’s round [21]. Thus, two clock cycles are necessary to
implement the full round. First, a message block is loaded into SIPO. Once done, the
block is stored in a temporary register, used to hold the message block until this block is
fully processed by the CORE. This temporary register allows the next message block to
be loaded simultaneously into SIPO. The message block msg and the constant c are then
applied as inputs to the function PERMUTE and the obtained output is passed to the
design’s CORE. Simultaneously, the chaining value, CV, is initialized with the the Initial-
ization Vector, IV , and an input to the CORE, V , is initialized with the value dependent
on the chaining value, the counter, t, and a lower half of the constant c. The initial value
of V is mixed by the CORE with an output of the block PERMUTE, CM , for twenty
clock cycles (10 rounds). Once this operation is completed, an additional clock cycle is
required for finalization. The output of Finalization is used as the next chaining value, for
intermediate message blocks, or as the final hash value for the last message block.

The Initialization unit performs the following function:
v[0] v[1] v[2] v[3]
v[4] v[5] v[6] v[7]
v[8] v[9] v[10] v[11]
v[12] v[13] v[14] v[15]

←−


h[0] h[1] h[2] h[3]
h[4] h[5] h[6] h[7]
c[0] c[1] c[2] c[3]

t[0]⊕ c[4] t[1]⊕ c[5] c[6] c[7]


The Finalization unit performs the following operation:

h′[0]← h[0]⊕ v[0]⊕ v[8]
h′[1]← h[1]⊕ v[1]⊕ v[9]
h′[2]← h[2]⊕ v[2]⊕ v[10]
h′[3]← h[3]⊕ v[3]⊕ v[11]
h′[4]← h[4]⊕ v[4]⊕ v[12]
h′[5]← h[5]⊕ v[5]⊕ v[13]
h′[6]← h[6]⊕ v[6]⊕ v[14]
h′[7]← h[7]⊕ v[7]⊕ v[15]

In Figure 3.6, an operation of the BLAKE’s PERMUTE module is presented. A new
value of the variable m is selected depending on the round number using a wide multiplexer
preceded by constant permutations. A permutation table is shown in Table 3.3. The
selection signal of the multiplexer cycles from 0 to 19 (and then again back to 0 for BLAKE-
64) until all BLAKE’s rounds are executed. Each output of the multiplexer is then mixed
with the respective constant using the transformation XOR W CROSS (defined in the
note to Fig. 3.6) and registered afterwards.
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Table 3.3: BLAKE : Permutation Constants
hi low

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

The CORE unit is shown in Figure 3.7 and represents one half of the BLAKE’s round.
As specified in [21], there are two levels of G functions and therefore a permutation between
the first and the second half-round is required. This permutation is performed wordwise
and is shown in Table 3.4. LVL2 permute transforms the state matrix (output of 4 parallel
G functions) into a new matrix appropriate for the second half-round. LVL1 permute is a
permutation inverse to LVL2 permute.

Table 3.4: BLAKE: Half Round’s Permutation
LVL2 (forward) 0 1 2 3 5 6 7 4 10 11 8 9 15 12 13 14
LVL1 (revert) 0 1 2 3 7 4 5 6 10 11 8 9 13 14 15 12

The G-function in the CORE unit is shown in Figure 3.8. Note that the XOR oper-
ations used to calculate input values CM2i and CM2i+1, which are normally depicted as
a part of the G-function, are omitted in our design. These operations were placed as a
part of the PERMUTE unit and therefore skipped here. R1, R2, R3 and R4 are rotating
constants. The values of these constants are shown in Table 3.5

3.3.2 256 vs. 512 Variant Differences

BLAKE-64 doubles the word size of BLAKE-32, thereby increasing the block size as well.
Hence, the IV and the constant are changed from 512 bits to 1024 bits. These values can

Table 3.5: BLAKE : Rotation Constants of BLAKE-32
R1 R2 R3 R4
16 12 8 7
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Figure 3.6: BLAKE : PERMUTE

Table 3.6: BLAKE: Rotating Constants of BLAKE-64
R1 R2 R3 R4
32 25 16 11

be found in Section 2.2.1 of [21]. BLAKE-64 introduces also an increase in the number of
mixing rounds from 10 to 14. As a result, the number of clock cycles required in our design
for processing a single block of message increases from 21 to 29. The multiplexer selection
signal in the PERMUTE unit loops back when the round number reaches 10. Hence, after
reaching 19, this selection signal goes back to 0. Finally, the rotation constants are adjusted
to reflect the increased word size. These values are described in Table 3.6.
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3.4 Blue Midnight Wish (BMW)

3.4.1 Block Diagram Description

Our design for Blue Midnight Wish (BMW) hashes a block of data within one clock cycle.
Since the number of clock cycles necessary to read a block of a message is greater than
the number of clock cycles required to hash it, an additional clock signal is used in the
circuit as shown in Figure 3.9. This faster clock (io clk) is used to drive the SIPO and
PISO units, allowing them to read and write data at a faster rate than the operation of
other units in the circuit. The rate of reading and writing is determined by the block size
and the number of cycles required to process a block. Since only one clock cycle is used
to process a message block, the frequency of io clk is block size/word size times higher
than the main clock. This ratio is equal to 8 for BMW-256. BMW requires each message
block to go through the endianness switching before the start of processing. A message
block is then mixed with the chaining value in order to obtain the next chaining value.
Once all blocks of the message are processed, a finalization round is initiated. Since there
is no incoming message block, the chaining value and the input message block are replaced
by the constant and the chaining value, respectively. The descriptions of F0, F1, F2 and
AddElements and its associated logical operations can be found in Table 1.3 and Table
2.2-2.4 in [22].

3.4.2 256 vs. 512 Variant Differences

BMW-512 increases the word size of BMW-256 from 32 to 64 bits. As a result, the block
size is doubled as well. Since the block size increases, the number of clock cycles required
to load a message block also increases for io clk from 8 cycles to 16 cycles. Furthermore,
logic functions, specifically shifts and rotations, are adjusted to accommodate the increased
word size. These changes are shown in Table 1.3 of [22]. All other operations remain the
same.
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3.5 CubeHash

3.5.1 Block Diagram Description

A straightforward iterative architecture is used in our design. The datapath of CubeHash
is shown in Figure 3.10. Due to endianness issue, the input message is required to go
through endianness switching twice. First, the bytewise endianness switching is applied,
which is then followed by the wordwise endianness switching. A word of CubeHash consists
of 32 bits.

For each message, the chaining value A is initialized to IV. The 256 leftmost bits of
the chaining value are xored with an input message block. The state is then transformed
for 16 rounds. A round is described in Figure 3.11. Swaps used inside of the round are
described in Figure 3.12. All operations inside the round are performed wordwise. This
process repeats until all message blocks are processed. In the last round of the last message
block, an integer one is xored with the position zero of the chaining value, rp, by activating
the control signal final before the chaining value is inserted back into the state register.
Then, the chaining value is transformed for 160 rounds to get the final hash value. The
hash value is required to go through the endianness switching process again to reach the
correct hash output.

3.5.2 256 vs. 512 Variant Differences

Everything is the same for both variants with the exception of truncation size. CubeHash16/32-
256 truncates the state to 256 bits to obtain the hash value, as opposed to CubeHash16/32-
512 which truncates the state to 512 bits.
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Note : All operations are performed wordwise, with w=32
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3.6 ECHO

3.6.1 Block Diagram Description

ECHO’s top level datapath is shown in Figure 3.13. A message block is first concatenated
with the chaining value to produce the state matrix. The state matrix is viewed as an
array of 16 words with each word representing 128 bits. The state then goes through
10 rounds of iteration for ECHO-256. Note that c represents the number of bits hashed
so far. This value also includes bits of the currently processed block. Once the state
matrix is thoroughly mixed, a new chaining value is computed from the state matrix by
the BIG.Final unit. This operation is described as follows:

v′[0]← v[0]⊕m[0]⊕m[4]⊕m[8]⊕ w[0]⊕ w[4]⊕ w[8]⊕ w[12]
v′[1]← v[1]⊕m[1]⊕m[5]⊕m[9]⊕ w[1]⊕ w[5]⊕ w[9]⊕ w[13]
v′[2]← v[2]⊕m[2]⊕m[6]⊕m[10]⊕ w[2]⊕ w[6]⊕ w[10]⊕ w[14]
v′[3]← v[3]⊕m[3]⊕m[7]⊕m[11]⊕ w[3]⊕ w[7]⊕ w[11]⊕ w[15]
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In Figure 3.14, operations inside of the ECHO round are shown. In our design, each
ECHO round is executed in three clock cycles. BIG.SubBytes is performed in the first two
clock cycles and BIG.ShiftRows and BIG.MixColumns in the third cycle. BigSubBytes
operation is shown in Figure 3.15. The unit takes in the state matrix and the message
length counter, C, and produces the next state. In the first clock cycle of the round
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Figure 3.14: ECHO : Round

operation, the key is chosen to be the length counter plus the numbers between 0 and 15.
These added values follow the word number. Hence, the fourteenth word gets the key as
C + 14. In the next cycle, salt is selected as the key. Since in our implementation, salt is
not used, zero is selected instead.
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Two operations are performed in the third cycle of a round. First, BIG.ShiftRows is
performed. This operation is equivalent to the word permutation given in Table 3.7. Next,
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BIG.MixColumns transforms the permuted state to obtain the final value of a round. In
Figure 3.16, a diagram of BIG.MixColumns is shown. BIG.MixColumns separates the
state into 4 blocks, each block containing 4 128-bit words. A byte of data from each word
is selected to go through the AES MixColumn. All data is then combined together to
produce the final state.

Table 3.7: ECHO : BIG.ShiftRows
Word 0 1 2 3 5 6 7 4 10 11 8 9 15 12 13 14

Permuted Word 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

Note: Buses size are 8−bit wide  unless specified otherwise
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Figure 3.16: ECHO : BIG.MixColumns

3.6.2 256 vs. 512 Variant Differences

ECHO-512 differs from ECHO-256 in its message block and chaining value sizes. The
message block is reduced from 1536 bits to 1024. On the other hand, the chaining value is
increased from 512 to 1024 bits. This change increases the security of ECHO and therefore
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a smaller number of rounds is used. Only 8 rounds are used in ECHO-512. Finally, only
BIG.Final is altered. ECHO-512’s BIG.Final is described as follows:

v′[0]← v[0]⊕m[0]⊕ w[0]⊕ w[8]
v′[1]← v[1]⊕m[1]⊕ w[1]⊕ w[9]
v′[2]← v[2]⊕m[2]⊕ w[2]⊕ w[10]
v′[3]← v[3]⊕m[3]⊕ w[3]⊕ w[11]
v′[4]← v[4]⊕m[4]⊕ w[4]⊕ w[12]
v′[5]← v[5]⊕m[5]⊕ w[5]⊕ w[13]
v′[6]← v[6]⊕m[6]⊕ w[6]⊕ w[14]
v′[7]← v[7]⊕m[7]⊕ w[7]⊕ w[15]
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3.7 Fugue

3.7.1 Block Diagram Description
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Finalization

s

s’

Figure 3.17: Fugue : Datapath

In Figure 3.17, the datapath of Fugue is shown. For every message, the state register
is initialized to IV. The state is viewed as a matrix of 4 by X bytes, where X is the column
length dependent on the block size of Fugue. For Fugue-32, the block size is equal to 960
bits. Hence, the matrix have dimensions 4 x 30. The state is mixed with input message
blocks through the ROUND unit. Once all message blocks are processed, the state goes
through Finalization. For Fugue-32, Finalization is described below:

S′ =
S[1..3] || (S[4]⊕ S[0]) ||

(S[15]⊕ S[0]) || S[16..18]

A round of Fugue is shown in Figure 3.18. The path through the ROUND unit is
selected based on the sequence of operations as described in Section 4.3.5 of F-256 in [25].
TIX operates in parallel as follows:

S′[0] = din
S′[1] = S[1]⊕ S[24]
S′[8] = S[8]⊕ din
S′[10] = S[10]⊕ S[0]
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Table 3.8: Fugue: F-256 ADDFn and RORFn Operation
i y

0
S′[4] = S[4]⊕ S[0]
S′[15] = S[15]⊕ S[0]

ROR15

1
S′[4] = S[4]⊕ S[0]
S′[16] = S[16]⊕ S[0]

ROR14

ROR3 and CMIX are performed consecutively. All RORn operations are bytewise
rotations by n bytes. This is equivalent to >>> (n ∗ 8). As such, ROR3 can be considered
as >>> 24. CMIX operates as follows:

S′[0] = S[0]⊕ S[4]
S′[1] = S[1]⊕ S[5]
S′[2] = S[2]⊕ S[6]
S′[15] = S[15]⊕ S[4]
S′[16] = S[16]⊕ S[5]
S′[17] = S[17]⊕ S[6]

The ADDFn and RORFn operations are selected by the i control signal. The selection
process is described in Table 3.8.

Finally, the SMIX operation is described in Figure 3.19. The SMIX operation first
splits an input into an array of 128-bit blocks. Then, each block is further splitted into 16
bytes. These bytes are transformed using AES SBOX and the resulting vector of 16 bytes is
used as an input to the Matrix Multiplier. The Matrix Multiplier performs multiplication
of a constant matrix by an input vector. The value of the constant matrix is shown in
Table 3.9. Empty positions in this table correspond to the values zero. All multiplications
are defined as multiplications in GF (28).

3.7.2 256 vs. 512 Variant Differences

Fugue-512 increases the state size to 4 x 36 which is equivalent to 1152 bits. Additionally,
TIX, CMIX, ADDFn, RORFn and Finalization have been modified. TIX is now performed
in parallel as follows:

S′[0] = din
S′[1] = S[1]⊕ S[24]
S′[4] = S[4]⊕ S[27]
S′[7] = S[7]⊕ S[30]
S′[8] = S[8]⊕ din
S′[22] = S[22]⊕ S[0]
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Table 3.9: Fugue: Matrix Multiplier Table
X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8] X[9] X[10] X[11] X[12] X[13] X[14] X[15]

Y[0] 1 4 7 1 1 1 1
Y[1] 1 1 1 4 7 1 1
Y[2] 1 1 7 1 1 4 1
Y[3] 1 1 1 4 7 1 1
Y[4] 4 7 1 1 1
Y[5] 1 1 4 7 1
Y[6] 1 1 7 1 4
Y[7] 4 7 1 1 1
Y[8] 7 6 4 7 1 7
Y[9] 7 7 1 6 4 7
Y[10] 7 1 6 4 7 7
Y[11] 7 4 7 1 6 7
Y[12] 4 4 5 4 7 1
Y[13] 1 5 4 7 4 4
Y[14] 4 7 1 5 4 4
Y[15] 4 5 4 7 1 5

Table 3.10: ADDFn and RORFn Operation
i y i y

0

S′[4] = S[4]⊕ S[0]
S′[9] = S[9]⊕ S[0]
S′[18] = S[18]⊕ S[0]
S′[27] = S[27]⊕ S[0]

ROR9

2

S′[4] = S[4]⊕ S[0]
S′[9] = S[9]⊕ S[0]
S′[19] = S[19]⊕ S[0]
S′[27] = S[27]⊕ S[0]

ROR9

1

S′[4] = S[4]⊕ S[0]
S′[10] = S[10]⊕ S[0]
S′[18] = S[18]⊕ S[0]
S′[27] = S[27]⊕ S[0]

ROR9

3

S′[4] = S[4]⊕ S[0]
S′[9] = S[9]⊕ S[0]
S′[19] = S[19]⊕ S[0]
S′[28] = S[28]⊕ S[0]

ROR8

CMIX is now performed as follows:

S′[0] = S[0]⊕ S[4]
S′[1] = S[1]⊕ S[5]
S′[2] = S[2]⊕ S[6]
S′[18] = S[18]⊕ S[4]
S′[19] = S[19]⊕ S[5]
S′[20] = S[20]⊕ S[6]

The ADDFn and RORFn operations are adjusted to the Fugue-512 and described in
Table 3.10.

Finally, Finalization is performed as follows:
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S′ =
S[1..3] || (S[4]⊕ S[0]) || (S[9]⊕ S[0]) || S[10..12] ||

(S[18]⊕ S[0]) || S[19..21] || (S[27]⊕ S[0]) || S[10..12]
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Table 3.11: Groestl: Matrix Multiplier Table
B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7]

B’[0] 2 2 3 4 5 3 5 7
B’[1] 7 2 2 3 4 5 3 5
B’[2] 5 7 2 2 3 4 5 3
B’[3] 3 5 7 2 2 3 4 5
B’[4] 5 3 5 7 2 2 3 4
B’[5] 4 5 3 5 7 2 2 3
B’[6] 3 4 5 3 5 7 2 2
B’[7] 2 3 4 5 3 5 7 2

3.8 Groestl

3.8.1 Block Diagram Description

Groestl is an example of another SHA-3 candidate based on AES. A block diagram in
Figure 3.20 shows datapath used in our design. As opposed to a straightforward design, a
pipelined architecture is applied. The pipeline register is inserted between SubBytes and
ShiftBytes operations. A message block is xored with an initialized chain register to create
an input for the operation P in the first cycle of processing. In the next cycle, an input
message is loaded directly to the state register as an input to the operation Q. At the same
time when the first stage of the pipeline starts executing the operation Q, the second stage
of the pipeline continues the execution of the operation P. The first stage of the pipeline
consists of the ADD SUB unit. The second stage of the pipeline consists of the ShiftBytes
and MixBytes units. A part of the function P is always performed one cycle ahead of the
corresponding part of function Q. Finalization in this design takes two clock cycles. First,
the chaining value is xored with the final value of P, while Q is being still processed. In
the subsequent cycle the final result of Q is mixed with the chaining value as well. The
entire process is repeated until all blocks of a message are thoroughly mixed. Finally, a
hash value is taken from the bottom half of the chaining value.

Figure 3.21, describes how the AddConstant and SubBytes are performed in our design.
A round number is xored with the first byte of a message in the P operation. In the Q
operation, a complemented round number is xored into the 8th byte. After that, all bytes
go through the SBOX of AES.

ShiftBytes operation is performed by rotating all bytes in row i to the right by σi,
where σ is given as σ = [0, 1, 2, 3, 4, 5, 6, 7]. Figure 3.22 describes MixBytes operation.
The MixBytes operation splits an input into b/64 64-bit words. Each word becomes an
input into Groestl matrix multiplication. The constant matrix multiplication table used
in Groestl is given in Table 3.11. All operations are performed in GF (28), the same as in
AES, as shown in Table 3.2.
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3.8.2 256 vs. 512 Variant Differences

In Groestl-512 the block size is doubled. This means that the state size is increased
by a factor of two as well. All basic operations of Groestl remain the same with the
exception of ShiftRows. The ShiftRows rotation constants for each row are now changed
to σ = [0, 1, 2, 3, 4, 5, 6, 11]. Finally, the number of rounds for Groestl-512 is increased to
14.
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3.9 Hamsi

3.9.1 Block Diagram Description

The datapath of Hamsi is shown in Figure 3.23. For every message block, an expanded
message is concatenated with the chaining value to form a state. This state is viewed as
an array of 32-bit words. The state is transformed through P or Pf rounds, using ACC,
Substitution Layer and Diffusion Layer in each round. For Hamsi-256, P and Pf are equal
to 3 and 8, respectively. Pf is selected as a number of rounds during processing of the last
block of a message. After completing all rounds, the state is truncated and xored with the
previous chaining value to form a new one.

In Figure 3.24, Message Expansion is shown. Message Expansion expands an input
word of the size of w bits to an output of the size of half of the block size b/2. Each word
is split into an array of bytes. Each byte becomes an input to a ROM-based look-up table,
which produces a 32-bit output. The outputs from w/8 neighboring look-up tables are
xored together to produce a portion of the overall output of the Message Expansion. All
ROMs contain different dataset values, which can be obtained from a reference software
implementation included in the submission package of [27].

Concatenation is performed as follows:

y = m[0..1]||c[0..3]||m[2..5]||c[4..7]||m[6..7]

ACC refers to Addition of Constants and Counter step. This step can be described by
the following sequence of operations:

s′ = s⊕ α
s′[2] = s′ ⊕ c

Substitution Layer is shown in Figure 3.25. An input is split into four equal blocks.
Then the corresponding bits of each block form an input to the Hamsi SBOX. This SBOX
is defined in Table 3.12.

Table 3.12: Hamsi: SBOX
X 0 1 2 3 4 5 6 7 8 9 A B C D E F

s[X] 8 6 7 9 3 C A F D 1 E 4 0 B 5 2

The Diffusion Layer is based on the logic function L, shown in 3.26. This function
performs the following sequence of operations:

(s[0], s[5], s[10], s[15]) = L(s[0], s[5], s[10], s[15])
(s[1], s[6], s[11], s[12]) = L(s[1], s[6], s[11], s[12])
(s[2], s[7], s[8], s[13]) = L(s[2], s[7], s[8], s[13])
(s[3], s[4], s[9], s[14]) = L(s[3], s[4], s[9], s[14])
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Finally, Truncation is performed as follows:

y = s[0..3] || s[8..11]

3.9.2 256 vs. 512 Variant Differences

An input to Hamsi-512 is increased to 64 bits. As a result, the size of ROMs used in the
Message Expansion unit is increased as well. Similar to Hamsi-256, the data to populate
these ROM-based look-up tables can be found in the reference software implementation.
The rest of the operations remain largely the same with the following exceptions: Concate-
nation, Diffusion Layer, and Truncation.

Concatenation of Hamsi-512 is performed as follows:

y =
m[0..1]||c[0..3]||m[2..5]||c[4..7],m[6..9]||c[8..9]||
m[10..11]||c[10..13]||m[12..13]||c[14..5]||m[14..15]

Diffusion Layer of Hamsi-512 is defined using the following sequence of operations:
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Note : All bus sizes are 32 bits
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Figure 3.26: Hamsi : L

(s[0], s[9], s[18], s[27]) = L(s[0], s[9], s[18], s[27])
(s[1], s[10], s[19], s[28]) = L(s[1], s[10], s[19], s[28])
(s[2], s[11], s[20], s[29]) = L(s[2], s[11], s[20], s[29])
(s[3], s[12], s[21], s[30]) = L(s[3], s[12], s[21], s[30])
(s[4], s[13], s[22], s[31]) = L(s[4], s[13], s[22], s[31])
(s[5], s[14], s[23], s[24]) = L(s[5], s[14], s[23], s[24])
(s[6], s[15], s[16], s[25]) = L(s[6], s[15], s[16], s[25])
(s[7], s[8], s[17], s[26]) = L(s[7], s[8], s[17], s[26])

(s[0], s[2], s[5], s[7]) = L(s[0], s[2], s[5], s[7])
(s[16], s[19], s[21], s[22]) = L(s[16], s[19], s[21], s[22])
(s[9], s[11], s[12], s[14]) = L(s[9], s[11], s[12], s[14])

(s[25], s[26], s[28], s[31]) = L(s[25], s[26], s[28], s[31])

Truncation of Hamsi-512 is performed as follows:

y = s[0..7] || s[16..23]
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3.10 JH

3.10.1 Block Diagram Description

The block diagram of JH is shown in Figure 3.27. To process a message, the state register
is initialized to IV, the temporary register takes the value of an input message block and the
key register is initialized to C IV. The state is transformed using R8 for 36 rounds. Each
of these rounds use different key generated by the key generator, R6. Once processing is
completed, the output from R8 is degrouped and xored with an input message stored in the
temporary register to create a new chaining value. If there are more message blocks, the
chaining value is xored with an input message and grouped together. The aforementioned
steps are repeated until all message blocks are processed. The hash value is taken from the
new chaining value of the last block processed.

The operations Group and Degroup are permutations specific to JH. Group and De-
group can be described by the following sequence of operations. Note that k is the keysize
and b is equal to the input block size.� �
Group :
f o r i = 0 : k/2−1

y (b−i ∗8−1..b−i ∗8−4) = x(b−1 − i ) | | x (b−1 − ( i+k ) ) | | x (b−1 − ( i+2∗k ) ) | | x (b−1 − ( i+3∗k ) ) ;
y (b−i ∗8−5..b−i ∗8−8) = x(b−1 − ( i + k /2)) | | x (b−1 − ( ( i+k) + (k /2 ) ) ) | |

x (b−1 − ( i+2∗k + k/2)) | | x (b−1 − ( i+3∗k + k /2 ) ) ;
end� �

� �
Degroup :
f o r i in 0 to k/2−1 loop

dg (b−1 − i ) := rd (b−i ∗8−1);
dg (b−1 − ( i+k ) ) := rd (b−i ∗8−2);
dg (b−1 − ( i+2∗k ) ) := rd (b−i ∗8−3);
dg (b−1 − ( i+3∗k ) ) := rd (b−i ∗8−4);
dg (b−1 − ( i + k /2)) := rd (b−i ∗8−5);
dg (b−1 − ( i+k + k/2)) := rd (b−i ∗8−6);
dg (b−1 − ( i+2∗k + k/2)) := rd (b−i ∗8−7);
dg (b−1 − ( i+3∗k + k/2)) := rd (b−i ∗8−8);

end loop ;� �
In Figure 3.28, a generic description of a JH round is shown. The same unit is used for

R6 and R8. The differences are the key and input sizes. Where R6 uses values 64 and 256
for the key and the input sizes respectively, R8 uses values 256 and 1024. In a JH Round,
an input is viewed as an array of 4-bit blocks. These blocks go through either S0 or S1

s-boxes, defined in Table 3.13.

Table 3.13: JH: SBOX
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S0[x] 9 0 4 11 13 12 3 15 1 10 2 6 7 5 8 14
S1[x] 3 12 5 13 5 7 1 9 15 2 0 4 11 10 14 8

Next, outputs from these sboxes are selected by a corresponding input key. Two con-
secutive outputs form an input to the linear transformation unit, L. A diagram of this unit
is shown in Figure 3.29. The transformed outputs are then permuted by the PERMUTE
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block. PERMUTE can be described by a series of permutations given by the code below.
x, y and k refer to input, output and the size of the key, respectively.� �
f o r i = k/4−1:0

a ( i ∗4 + 0) <= x( i ∗4 + 0 ) ;
a ( i ∗4 + 1) <= x( i ∗4 + 1 ) ;
a ( i ∗4 + 2) <= x( i ∗4 + 3 ) ;
a ( i ∗4 + 3) <= x( i ∗4 + 2 ) ;

end generate ;
f o r i = k/2−1:0

b( i ) <= a( i ∗2 ) ;
b( i + k/2) <= a( i ∗2 + 1 ) ;

end
f o r i = k/2−1:0

y ( i ) <= b( i ) ;
end generate ;
f o r i = k/4−1:0

y ( i ∗2 + k/2) <= b( i ∗2 + 1 + k /2 ) ;
y ( i ∗2 + 1 + k/2) <= b( i ∗2 + k /2 ) ;

end generate ;� �

}

1<<<

1<<<

DC

A B

4

4

4

4

4

4

4

4

4

4 4

4

4

00||A(3)||0

}00||D(3)||0

Figure 3.29: JH : Linear Transformation

3.10.2 256 vs. 512 Variant Differences

All operations are the same for both variants. The only exception is the output selection
function of JH-512, where 512 bits of the chaining value are selected instead of 256 bits in
JH-256.
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3.11 Keccak

3.11.1 Block Diagram Description

Keccak is based on four basic logic operations: xor, and, not and rotate. Based on the
authors’ recommendations, Keccak-1600 is chosen as a candidate for SHA-3. For Keccak-
256, an input message block has the size of 1088 bits. The datapath is shown in Figure
3.30. For every message block, an input is zero-extended to produce a 1600-bit state. This
state can be viewed as a 5x5 array of 64-bit words as shown in Figure 3.31. An extended
input is xored with the chaining value. For the first message block, the chaining value is
zero. The state is then transformed using Keccak Round for 24 rounds. Finally, a hash
value is selected from the chaining value of the last message block. The description of the
Keccak’s Round is shown in Figures 3.32, 3.33.
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Figure 3.30: Keccak : Datapath
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3.11.2 256 vs. 512 Variant Differences

All operations are the same for both variants. The only exception is the output selection
of Keccak-512, where 512 bits of the chaining value are selected instead of 256 bits in
Keccak-256.
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3.12 Luffa

3.12.1 Block Diagram Description

The datapath of Luffa is shown in Figure 3.34. For every message block, an input block
is injected into the chain value via the Message Injection (MI) unit. The initial chaining
value is equal to IV. The MI unit is shown in Figure 3.35. The Galois field multiplication
(x2), used in the MI unit, is also shown in Figure 3.1.
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Figure 3.34: Luffa : Datapath

The state is then rotated wordwise using the Tweak operation shown in Figure 3.36.
The number of positions by which each word is rotated depends on the position of the
word in the input to the Tweak function. Next, the state is transformed through the Step
function for 8 rounds. A diagram of the Step function is shown in Figure 3.37. The Step
function consists of SubCrumb, MixWord and AddConstant operations. SubCrumb and
MixWord are shown in Figures 3.38 and 3.39, respectively. AddConstant is an addition of a
constant to the first and the fifth word of the state array. The constant is selected depending
on the round number. The values of these constants can be found from Appendix B of
[30]. The process repeats itself until all message blocks are fully injected. Once processing
is completed, the state’s 256-bit blocks are xored together to form the hash value.

3.12.2 256 vs. 512 Variant Differences

Luffa-512 increases the state array size from 3 to 5. This means that the state’s size is
equal to 1280 bits. The Message Injection block is also redefined appropriately, as shown
in Figure 3.40. Since the finalization process only produces 256 bits at a time, the chain
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value is hashed with another message block of value zero to produce the second half of a
512-bit hash value.
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3.13 SHA-2

3.13.1 Block Diagram Description

Our design of SHA-2 is based on [38]. A diagram of our SHA-2 circuit is shown in Figure
3.42. The detailed definitions of all SHA-2 operations shown in our diagram can be found
in [31].

din
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+ CSA CSA

0σ

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

Wt

R16

SHA−2 Message Scheduler

Figure 3.41: SHA2 : Message Scheduler

3.13.2 256 vs. 512 Variant Differences

The differences between the two variants include: change in the word size from 32 bits to
64 bits, word selection in the Message Scheduling unit, different operations Σ0 and Σ1, and
different constants Kt.



62 E. Homsirikamol, M. Rogawski, and K. Gaj

S
H

A
−

2
5

6
: 

A
ll

 b
u

s
e
s
 a

re
 3

2
−

b
it

 w
id

e
 w

it
h

 z
 =

 2
5

6

F
  

=
G

t+
1

H
t+

1

H
t+

1

W
t+

1

t+
1

K

C
S
A

C
S
A

C
S
A

S
E  

  
t

C
E

 
  

  
t

C
A  

  
t

S
A  

  
t

F
t

t
G

E
t

F
t

A
t

B
t

B
t

C
t

C
t

D
t

D
t

F
t

C
h

t
G

Σ
1

E
t

+
E

t+
1

E
t

+

F
t

C
h

t
G

Σ
1

E
t

+

M
a
j

Σ
0

B
t

C
t

t
A

t+
1

A
t

A
+

H
H

H
G

H
F

H
E

H
D

H
B

H
A

H
C

PISO

BCDH G F

H
G

H
H

AE

R
e
s
e
t

00 H
A

H
E

H
B

’

H
C

H
D

H
F

’

H
G

H
F

’

H
B

’

S
E

C
E

S
A

C
A

z

d
o
u

t

S
H

A
−

5
1

2
: 

A
ll

 b
u

s
e
s
 a

re
 6

4
−

b
it

 w
id

e
 w

it
h

 z
 =

 5
1

2

t

Figure 3.42: SHA2 : Datapath
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3.14 Shabal

3.14.1 Block Diagram Description

The block diagram of Shabal is shown in Figure 3.43. W in the diagram represents a
counter. This counter counts the number of message blocks that has been hashed so far.
This value also includes the current message block. At a minimum, W has a value of one.
Shabal contains four state registers, A, B, C and M, each containing an array of 32-bit
words. The Shabal architecture used in this thesis is a twice unrolled architecture. An
input message block has its endianess switched before the start of processing. Hash value
is also required to switch its endianness before the data can be transmitted out.

In the first clock cycle, the following operations are performed:

A← Aiv[0..1]⊕ w[0..1] || Aiv[2..11]
B ← ((Biv +Mw) <<< 17)
C ← Civ

M ← Mw

In the next 24 clock cycles, two rounds of the main iteration unit are executed. This
means that all state registers get their data shifted. The last clock cycle prepares the state
for the next message block, if any. The performed operation, somewhat similar to the
operation executed in the first clock cycle, is shown below:

A← ap[0..1]⊕ w[0..1] || ap[2..11]
B ← (((C −M) +Mw) <<< 17)
C ← B
M ← Mw

Finally, if the message block is the last one, an output is produced out of the truncated
and endian-switched state B.

3.14.2 256 vs. 512 Variant Differences

There is no difference between the two variants except that no truncation is needed for
Shabal-512.

3.15 SHAvite-3

3.15.1 Block Diagram Description

SHAvite-3 works like a block cipher. Three round keys are generated for every round,
based on an input message block. The datapath of SHAvite-3-256 is shown in Figure 3.44.
For SHAvite-3-256, a block of message contains 512 bits, and 128 bits are loaded into
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the key generation unit at a time. For every message, the state register S and the chain
value CV are initialized to IV. The state register is then processed for 12 rounds. When
the processing is completed, the obtained output is xored with the current chain value to
generate a new chain value. If it is the last block of the message, the bottom half of the
chain value is used as a hash value.
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Figure 3.44: SHAvite-3: Datapath

The SHAvite-3 ROUND unit is shown in Figure 3.45. Each main round, executed by
the ROUND unit, consists of 3 internal rounds. At the beginning of each main round, the
top half of the state is xored with the round key, keyx. The result is applied to the input
of the AES round. All internal rounds are provided with a key from the key generation
unit, with the exception of the last internal round where the string of zeros is used as a
key. After executing three internal rounds, the obtained result is xored with the bottom
half of the state and concatenated back to create a new state. This process is repeated
until all 12 main rounds are completed. As a result, 36 clock cycles are required to hash a
single message block.

The key generation unit is shown in Figure 3.46. Key and/or keyx are generated for
each main round using this circuit.
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3.15.2 256 vs. 512 Variant Differences

SHAvite-3-512 has the state size doubled compared to SHAvite-3-256. The basic operation
in the top level datapath remains the same. The number of main rounds is increased from
12 to 14. The ROUND unit is also doubled in size. Figure 3.47 illustrates changes in the
ROUND unit for SHAvite-3-512. The same operation as Round256 is performed with the
exception that the number of internal rounds is increased from 3 to 4. Figure 3.48 describes
a new key generation circuit. Once again, one can find similarity in terms of the design,
with the exception that all major building blocks are duplicated. Note that in this design
four clock cycles are required to load a 1024-bit message block, 256 bits per clock cycle.
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3.16 SIMD

3.16.1 Block Diagram Description

The block diagram of SIMD is shown in Figure 3.49. The design executes four steps at
a time, and requires 9 clock cycles to process a message block. The Message Expansion
unit requires a total of 8 clock cycles to fully expand a message block. Assuming that the
message block is expanded, the first block of the message is xored with IV and used as a
state. This state is transformed for 9 clock cycles (or four and a half rounds). If there is
more than one message block, the chaining value is xored with a new message block and
the same process is repeated again. The final hash value is obtained by truncating the
chaining value. Both the input message block and the output hash value are required to
switch their endianness in order to maintain correct operation.

The Message Expansion unit can be considered as a whole core by itself. In our design,
an additional controller is added between FSM1 and FSM2 to control this unit. This
ensures that we can keep processing an input block while reading the next message at the
same time. The first part of Message Expansion is its NTT unit. The NTT unit is based
on a folded 7-stage DFT that uses DFT stage as its basic building block. First, each byte
of an input is zero-extended to 9 bits. Then, these 9-bit blocks are inserted into the DFT
stage with its respective twiddle factor as an input. The twiddle factor is chosen based on
the DFT stage number. The calculation of the twiddle factors can be performed using the
following VHDL code:� �
type ha l f p t sx8 i s array ( natura l range <>) OF s t d l o g i c v e c t o r (7 downto 0 ) ;

f unc t i on twidd le gen ( po int : i n t e g e r ; pts : i n t e g e r ) return ha l f p t sx8 i s
v a r i ab l e tw i dd l e f a c t o r : ha l f p t sx8 ( 0 to pts /2 −1 ) := tw idd l e f a c t o r g en ( pts ) ;
va r i ab l e y : ha l f p t sx8 ( 0 to pts /2 −1 ) ;
va r i ab l e s tep : i n t e g e r := ( pts / point ) ;
va r i ab l e cu r s t ep : i n t e g e r := 0 ;

begin
i f ( s tep = pts /2 ) then

s tep := 0 ;
end i f ;
f o r i in 0 to pts/2−1 loop

y ( i ) := tw i dd l e f a c t o r ( cu r s t ep ) ;
cu r s t ep := cu r s t ep + step ;
i f ( cu r s t ep >= pts /2) then

cu r s t ep := cu r s t ep − pts /2 ;
end i f ;

end loop ;
return y ;

end twidd le gen ;� �
The function takes two inputs, point and pts, and returns one output, y. The value of

point is equal to 2stage+1, where stage is the number of the current DFT stage executed
by the unit. The variable pts represents the maximum value of the variable point. For
SIMD-256, pts is always equal to 128 as there are seven stages of DFT with 128 points.
For SIMD-512, pts is always equal to 256.

The main building block of NTT, referred to as DFT stage, is shown in Figure 3.51.
This unit is built using several repetitions of the butterfly unit. The input is viewed as an
array of 9 bit values. Two consecutive values go into each butterfly unit, and their outputs
are combined to form a result. In a Butterfly unit, a modulo 257 reduction is applied to
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ensure that there is no bit growth. The Modulo 257 unit is shown in Figure 3.52.
Since there are 7 stages for a 128-point DFT, it is necessary to permute an input

before entering each next stage, so that the inputs are applied in the correct order. The
permutation can be derived from any diagrams illustrating the operation of FFT (many of
such diagrams are available on the internet). The final operation of the NTT unit involves
an addition between the output of the DFT and an addition factor. Addition factor final
is selected if the expanded message block is the last block of the message. Addition factor
and addition factor final can be calculated using the following VHDL function, where final
is high for calculation of addition factor final and pts is equal to 128 for SIMD-256 and
256 for SIMD-512:� �
type ptsx10 i s array ( natura l range <>) OF s t d l o g i c v e c t o r (9 downto 0 ) ;

f unc t i on a f gen ( f i n a l : i n t e g e r ; pts : i n t e g e r ) return ptsx10 i s
v a r i ab l e y : ptsx10 (0 to pts −1);
va r i ab l e b e t a i : s t d l o g i c v e c t o r (17 downto 0 ) ;
va r i ab l e beta : s t d l o g i c v e c t o r (7 downto 0 ) ;

begin
i f ( pts = 128 ) then

beta := c onv s t d l o g i c v e c t o r ( 9 8 , 8 ) ;
e l s e

beta := c onv s t d l o g i c v e c t o r ( 163 , 8 ) ;
end i f ;
y (0 ) := c onv s t d l o g i c v e c t o r ( 1 , 1 0 ) ;
f o r i in 1 to pts−1 loop

b e t a i := y ( i −1) ∗ beta ;
b e t a i := c onv s t d l o g i c v e c t o r ( ( conv in t eg e r ( b e t a i ) mod 257 ) , 18 ) ;
y ( i ) := b e t a i (9 downto 0 ) ;

end loop ;
i f ( f i n a l = 1 ) then

i f ( pts = 128 ) then
beta := c onv s t d l o g i c v e c t o r ( 5 8 , 8 ) ;

e l s e
beta := c onv s t d l o g i c v e c t o r ( 4 0 , 8 ) ;

end i f ;
b e t a i := "000000000000000001" ;
f o r i in 0 to pts−1 loop

y ( i ) := y ( i ) + be t a i (9 downto 0 ) ;
b e t a i := b e t a i (9 downto 0) ∗ beta ;
b e t a i := c onv s t d l o g i c v e c t o r ( ( conv in t eg e r ( b e t a i ) mod 257 ) , 18 ) ;

end loop ;
end i f ;

return y ;
end a f gen ;� �

The last step of the Message Expansion unit is to perform Concatenated Code and
Permute. These operations are described in Section 1.2.2 of [34]. A diagram of Concat
Permute (CP) is shown in Figure 3.53. To reduce the resource requirements in Concate-
nated Code, Permute is performed first. An input is viewed as an array of 9 bit values. For
SIMD-256, this array size is equal to 128. Permute 1 forms a matrix of 32 x 4 of 18 bits
each. This doubles the size of an input. The permutation of Permute 1 is given as follows:

with0 ≤ j ≤ 3

Z ′i
j =


x[8i+ 2j] || x[8i+ 2j + 1] when 0 ≤ i ≤ 15

x[8i+ 2j − 128] || x[8i+ 2j − 64] when 16 ≤ i ≤ 23
x[8i+ 2j − 191] || x[8i+ 2j − 127] when 24 ≤ i ≤ 31


Next, the matrix Z ′ is permuted to form W ′ in Permute 2. The permutation table is

given in Table 3.14, where W ′i
j = Z

′P (i)
j .

A multiplexer selects appropriate data depending on the cycle number. A selected value
is viewed as an array of 4 x 4 with 18 bits at each location. Each 18-bit value is split in
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Table 3.14: SIMD: Permute 2
cycle 0 1 2 3
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 4 6 0 2 4 5 3 1 15 11 12 8 9 13 10 14
cycle 4 5 6 7
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 17 18 23 20 22 21 16 19 30 24 25 31 27 29 28 26

half and entered into Lift module shown in Figure 3.54. An output from the Lift module
is then multiplied by a constant. The constant is 185 for the first four cycles and 233 for
the last four cycles. The outputs are combined back into a 4 x 4 matrix of 32-bit words.
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Figure 3.53: SIMD : Concatenate and Permute (CP)

The core operation of our SIMD’s design is the Half Round module. This module is
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equivalent to four steps of the SIMD round. A block diagram of the Half Round operation
is shown in Figure 3.55. Half Round is based of 16 QS units with quarterstep as its core.
quarterstep is shown in Figure 3.56. There are four inputs to quarterstep. ain comes from
its adjacent quarterstep controlled by a multiplexer. w comes from the message expansion
unit. r and s are rotation constants depending on the round number. Additionally, phi
is selected to perform IF or MAJ depending on the round number. These constants are
given as follows:

φ(i) r(i) s(i)

IF π0 π1

IF π1 π2

IF π2 π3

IF π3 π0

MAJ π0 π1

MAJ π1 π2

MAJ π2 π3

MAJ π3 π0

Round π0 π1 π2 π3

0 3 23 17 27
1 28 19 22 7
2 29 9 15 5
3 4 13 10 25

Finally, a permutation given for Ain is given as follows :

p(0)(j) = j ⊕ 1
p(1)(j) = j ⊕ 2
p(2)(j) = j ⊕ 3

3.16.2 256 vs. 512 Variant Differences

The biggest change in SIMD-512 is the increase in the block size. This change causes
the size of NTT to increase. DFT now requires 8 stages instead of 7 and the size of the
butterfly increases by a factor of two. In the CP unit, Permute 1 is defined as follows:
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with0 ≤ j ≤ 7

Z ′i
j =


x[8i+ 2j] || x[8i+ 2j + 1] when 0 ≤ i ≤ 15

x[8i+ 2j − 256] || x[8i+ 2j − 128] when 16 ≤ i ≤ 23
x[8i+ 2j − 383] || x[8i+ 2j − 255] when 24 ≤ i ≤ 31


Additionally, the Feistal Ladder is increased from 4 to 8. This necessitates the change

in the Ain permutation to the mux. The permutation for SIMD-512 of Ain is given as
follows:

p(0)(j) = j ⊕ 1
p(1)(j) = j ⊕ 6
p(2)(j) = j ⊕ 2
p(3)(j) = j ⊕ 3
p(4)(j) = j ⊕ 5
p(5)(j) = j ⊕ 7
p(6)(j) = j ⊕ 4
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3.17 Skein

3.17.1 Block Diagram Description

The datapath of Skein is shown in Figure 3.57. This diagram is based on the Skein-512-256
construction. The datapath of Skein can be separated into two main parts, key generation
and the Skein’s round. The round includes a layer of 64-bit additions and 4x unrolled MIX
and PERMUTE unit. An input message block is used to initialize the internal state of
Skein. This state is viewed as an array of eight 64-bit words. For every message block, a
subkey is added to the state once for every 4 rounds of the MIX and PERMUTE operation.
The total number of rounds for Skein-256 is 72. Because of the 4x unrolled architecture,
these rounds are executed in 18 clock cycles. Then, the finalization is performed after the
last round is executed. The finalization is performed at the end of each message block
processing, in order to generate a new chaining value. This operation is equivalent to an
addition between the state and the key, followed by an xor with the current message block.
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The key generation unit takes two input sources, the chaining value and the tweak. The
chaining value acts as a key to the key generation unit. It is computed from the previous
message block or taken as an initialization vector at the beginning of the message. A tweak
is controlled by the controller. Its full specification can be found under Section 3.4 of [35].
In Figure 3.58, a key generation unit for our design is shown. s is the subkey counter. It
gets reset for every new message block.

In Figure 3.59, a 4-times unrolled MIX and PERMUTE unit is shown. This unit is
based on 16 instantiations of the MIX operation. The MIX operation is shown in Figure
3.60. The rotation constants are given in Table 3.15. The round number is calculated
modulo 8. The permutation executed between each round of MIX is also given in Table
3.16.

Table 3.15: Skein: Rotation Constants, Nw is the number of words, Nw=8 in the imple-
mented variants of the function

Nw 4 8 16
j 0 1 0 1 2 3 0 1 2 3 4 5 6 7
0 14 16 46 36 19 37 24 13 8 47 8 17 22 37
1 52 57 33 27 14 42 38 19 10 55 49 18 23 52
2 23 40 17 49 36 39 33 4 51 13 34 41 59 17
3 5 37 44 9 54 56 5 20 48 41 47 28 16 25
4 25 33 39 30 34 24 41 9 37 31 12 47 44 30
5 46 12 13 50 10 17 16 34 56 51 4 53 42 41
6 58 22 25 29 39 43 31 44 47 46 19 42 44 25
7 32 32 8 35 56 22 9 48 35 52 23 31 37 20

Table 3.16: Skein: Permutation
x 0 1 2 3 4 5 6 7
y 2 1 4 7 6 5 0 3

3.17.2 256 vs. 512 Variant Differences

Skein-512 as submitted to the SHA-3 contest is based on Skein-512-512. The same design
as used in Skein-256 is applied to Skein-512, with the exception of the output register
(PISO), where 512-bit instead of 256-bit register is used.
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Chapter 4

Design Summary and Results

4.1 Design Summary

The major parameters of both hash function variants (with a 256-bit and a 512-bit output)
are summarized in Table 4.1.

In Table 4.2, we provide the I/O Data Bus Widths, and the exact formulas for the Hash
Function Execution Time (in clock cycles) and Throughput (in Mbits/s) for our designs of
all SHA-3 candidates and the current standard, SHA-2. The equations are derived from
the analysis of block diagrams of the respective designs, and have been confirmed through
simulation. All numerical values of timing parameters presented in this report are based
on these equations.

The I/O Data Bus Width, w, is a feature of our interface described in Section 2.3. It is
the size of the data buses, din and dout, used to connect the SHA core with external logic
(such as Input and Output FIFOs). The parameter w has been chosen to be equal to 64,
unless there was a compelling reason to make it smaller. The value of 64 was considered
to be small enough so that the SHA cores fit in all investigated FPGAs (even the smallest
ones) without exceeding the maximum number of user pins. At the same time, setting this
value to any smaller power of two (e.g., 32) would increase the time necessary to load input
data from the input FIFO and store the hash value to the output FIFO. In some cases,
it would also mean that the time necessary for processing a single block of data would be
smaller than the time of loading the next block of data, which would decrease the overall
throughput. The only exceptions are Fugue-256, Hamsi-256, and Fugue-512, for which we
choose w=32, because they all have block size equal to 32 bits, and thus cannot be sped up
by using a wider I/O data bus. Similarly, SHA-256 can start processing data after receiving
just one 32-bit word, and cannot be easily sped-up by using a wider input data bus. In
case of BMW, an additional faster i/o clock was used on top of the main clock shown in
Fig. 2.1a. This faster clock is driving input/output interfaces of the SHA core, as well as
surrounding FIFOs. The ratio of the i/o clock frequency to the main clock frequency was

85
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selected to be 8 for BMW-256 and 16 for BMW-512, so the entire block of message (512
bits for BMW-256 and 1024 for BMW-512) can be loaded in a single clock cycle of the
main clock (8 and 16 cycles of the fast i/o clock, respectively).

The next column of Table 4.2 contains the detailed formulas for the number of clock
cycles necessary to hash N blocks of the message after padding. The formulas include the
time necessary to load the message length, load input data from the FIFO, perform all
necessary initializations, perform main processing, perform all required finalizations, and
then send the result to the output FIFO. Finally, the last column (per each hash function
variant) contains the formula for the circuit throughput for long messages as defined by
Equation (2.1).

Table 4.1: Major parameters of the 256-bit and 512-bit variants of all SHA-3 candidates
and the current standard, SHA-2. Values different between 256-bit and 512-bit variants
are shown in bold. The first approximations of the predicted area ratio (512 vs. 256-bit
variant) and the predicted throughput ratio (512 vs. 256-bit variant) are given in the last
two columns.

256-bit variant 512-bit variant Predicted Predicted
state Block Round Word State Block Round Word Area Thr
size size no size size size no size Ratio Ratio

BLAKE 512 512 10 32 1024 1024 14 64 2 1.43
BMW 512 512 16 32 1024 1024 16 64 2 2
CubeHash 1024 256 16 32 1024 256 16 32 1 1
ECHO 2048 1536 8 32 2048 1024 10 32 1 0.53
Fugue 960 32 2 32 1152 32 4 32 1.2 0.5
Groestl 512 512 10 64 1024 1024 14 64 2 1.43
Hamsi 512 32 3 32 1024 64 6 32 2 1
JH 1024 512 36 64 1024 512 36 64 1 1
Keccak 1600 1088 24 64 1600 576 24 64 1 0.53
Luffa 768 256 8 32 1280 256 8 32 1.67 1
Shabal 1408 512 48 32 1408 512 48 32 1 1
SHAvite-3 512 512 36 32 1024 1024 56 32 2 1.29
SIMD 512 512 36 32 1024 1024 36 32 2 2
Skein 512 512 72 64 512 512 72 64 1 1
SHA-2 256 512 64 32 512 1024 80 64 2 1.6

4.2 Relative Performance of the 512 and 256-bit Variants of
the SHA-3 Candidates

In the last two columns of Table 4.1, we provide the first rough approximation of the
predicted area ratio (512 vs. 256-bit variant) and the predicted throughput ratio (512 vs.
256-bit variant). In general, the area of the circuit optimized for the maximum throughput
to area ratio is most affected by the state size. As a result, the predicted area ratio between
the 512 and 256-bit variants can be roughly approximated as shown in Eq. 4.1 below.
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Table 4.2: The I/O Data Bus Width (in bits), Hash Function Execution Time (in clock
cycles), and Throughput (in Mbits/s) for the 256-bit and 512-bit variants of all SHA-3
candidates and the current standard, SHA-2. T denotes the clock period in µs. Values
different between 256-bit and 512-bit variants are shown in bold.

256-bit variants 512-bit variants
Function I/O Bus Hash Time Throughput I/O Bus Hash Time Throughput

width [cycles] [Mbit/s] width [cycles] [Mbit/s]
BLAKE 64 2+8+21·N+4 512/(21·T) 64 2+16+29·N+8 1024/(29·T)
BMW 64 2+8/8+N+1 512/T 64 2+16/16+N+8/16 1024/T
CubeHash 64 2+4+16·N+160+4 256/(16·T) 64 2+4+16·N+160+8 256/(16·T)
ECHO 64 3+24+27·N+4 1536/(27·T) 64 3+16+31·N+8 1024/(31·T)
Fugue 32 2+N+18+8 32/T 32 2+4·N+21+16 32/(4·T)
Groestl 64 3+8+21·N+4 512/(21·T) 64 3+16+29·N+8 1024/(29·T)
Hamsi 32 3+1+3·(N-1)+6+8 32/(3·T) 64 3+1+6·(N-1)+6+8 64/(6·T)
JH 64 3+8+36·N+4 512/(36·T) 64 3+8+36·N+8 512/(36·T)
Keccak 64 3+17+24·N+4 1088/(24·T) 64 3+9+24·N+8 576/(24·T)
Luffa 64 3+4+9·N+9+4 256/(9·T) 64 3+4+9·N+2·9+8 256/(9·T)
Shabal 64 3+8+1+25·N+3·25+4 512/(25·T) 64 3+8+1+25·N+3·49+8 512/(25·T)
Shavite-3 64 3+8+37·N+4 512/(37·T) 64 3+16+57·N+8 1024/(57·T)
SIMD 64 3+8+8+9·N+4 512/(9·T) 64 3+16+9+9·N+8 1024/(9·T)
Skein 64 2+4+19·N+4 512/(19·T) 64 2+8+19·N+8 512/(19·T)
SHA-256 32 2+1+65·N+8 512/(65·T) 64 2+1+81·N+8 1024/(81·T)

Predicted Area Ratio512/256 =
State size512

State size256
. (4.1)

Additional factors that can affect the actual area ratio include:

• message block size, which determines the size of the input shift register,

• output size, which determines the size of the output shift register,

• logic of the main round, which may be more complex in case of a 512-bit variant of
a function,

• logic required for message expansion or key generation, which may be more complex
in case of a 512-bit variant of a function,

• logic required for initialization and finalization, which may not follow the datapath
width,

• size of the control unit, which is likely to remain constant between two variants, but
typically contributes only small percentage to the total circuit area.

Similarly, the throughput ratio between 512 and 256-bit variants can be estimated
under the assumption that the critical path, and thus the clock period, are similar in both
variants.
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Predicted Throughput Ratio512/256 =
Thr512

Thr256
=

Block size512
Round no512

Block size256
Round no256

. (4.2)

In the actual circuits, the clock period, T , may change due to the increase in the critical
path in case of a 512-bit variant of a function. For both predictions, the actual results will
most likely vary and be dependent on a particular FPGA family, and selected tools.

Based on the above predictions, we can divide the 15 investigated algorithms into 6
major groups:

• Group 1: area and throughput are not affected by the change of the output size:
CubeHash, JH, Shabal, Skein.

• Group 2: area and throughput both double: BMW, SIMD.

• Group 3: area and throughput both increase, but area increases more: BLAKE,
Groestl, SHAvite-3, and SHA-2.

• Group 4: area stays the same and throughput decreases: ECHO, Keccak.

• Group 5: area increases and throughput stays the same: Hamsi, Luffa.

• Group 6: area increases and throughput decreases: Fugue.

From the point of view of the throughput to area ratio, Groups 1 and 2 are the best,
followed by Groups 3, 4, and 5, and ending with the Group 6, with the worst trend. Among
the Groups 1 and 2, belonging to the Group 2 is less desirable, especially for the algorithms
that already take significant area for a 256-bit variant, such as BMW and SIMD.

In Table 4.3, we report ratios of the two major performance measures for a 512-bit
variant vs. a 256-bit variant (namely, Area ratio = Area(512)/Area(256) and Thr ratio =
Thr(512)/Thr(256). Both actual (A) and predicted (P) values of the respective ratios are
reported, together with the relative difference (RD), and major reasons for this difference.
The actual values (A) are averaged (using geometric mean) over all seven FPGA families.
This table demonstrates a relatively good agreement between our predictions and actual
experimental results.

4.3 Results

In Tables 4.4 and 4.5, the actual performance measures of the 256 and 512-bit variants of
all investigated algorithms are reported for the case of Xilinx Virtex 5 and Altera Stratix
III, respectively.

In Tables 4.6 and 4.7, the absolute results obtained for our implementations of the
current standard SHA-2 are summarized. The results are repeated across seven selected
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Table 4.3: Ratio of the respective performance measures (Area and Throughput) for a
512-bit variant vs. 256-bit variant. Notation: A – actual ratio (averaged, using geometric
mean, over all 7 FPGA families), P – predicted ratio (based on Equations 4.1 and 4.2),
RD – relative difference in % ((A-P)/P*100%).

Area ratio (512 vs. 256 bit variant) Throughput ratio (512 vs. 256 bit variant)
A P RD [%] Major Reasons A P RD [%] Major Reasons

BLAKE 1.89 2 -5.61 - 1.13 1.43 -21.17 64-bit vs. 32-bit addition
BMW 1.99 2 -0.29 - 1.11 2 -44.48 routing congestion
CubeHash 0.97 1 -3.42 - 0.97 1 -2.9 -
ECHO 1.09 1 9 - 0.46 0.54 -14.81 routing congestion
Fugue 1.09 1.2 -9.17 - 0.54 0.5 8 -
Groestl 1.96 2 -1.94 - 1.42 1.43 -0.45 -
Hamsi 2.4 2 19.8 look-up tables of the message expan-

sion unit increase by a factor of 4
0.69 1 -30.93 table look-up time in the message

expansion unit increase by a factor
of 2

JH 1.03 1 3.46 - 1 1 -0.18 -
Keccak 0.89 1 -10.96 smaller message block size (576 vs.

1088 bits) = smaller input shift reg.
0.54 0.53 1.01 -

Luffa 2.08 1.67 24.53 larger constants in the GF (28) muls
in the Message Injection phase

0.94 1 -5.72 -

Shabal 1.02 1 1.55 - 1.02 1 2.36 -
SHAvite-3 2.07 2 3.64 - 1.19 1.29 -7.41 -
SIMD 2.11 2 5.26 - 1.86 2 -7.14 -
Skein 1.02 1 1.78 - 1 1 0 -
SHA-2 1.67 2 -16.62 control unit relatively large com-

pared to the datapath
1.58 1.6 -1.4 -

Table 4.4: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Xilinx Virtex 5 FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [CLB slices]

512 256 ratio 512 256 ratio 512 256 ratio 512 256 ratio
BLAKE 106.01 117.06 0.91 3743.28 2853.91 1.31 3276 1871 1.75 1.14 1.53 0.75
BMW 8.45 10.89 0.78 8655.87 5576.70 1.55 10401 4400 2.36 0.83 1.27 0.66
CubeHash 215.33 219.30 0.98 3508.77 3445.31 1.02 707 764 0.93 4.59 4.87 0.94
ECHO 200.97 234.85 0.86 6430.88 13874.33 0.46 5958 5445 1.09 1.08 2.55 0.42
Fugue 138.49 98.47 1.41 1107.88 3151.17 0.35 924 956 0.97 1.20 3.30 0.36
Groestl 325.63 350.51 0.93 11498.00 8545.72 1.35 3155 1716 1.84 3.64 4.98 0.73
Hamsi 171.38 248.08 0.69 1828.05 2646.15 0.69 2201 946 2.33 0.83 2.80 0.30
JH 275.48 278.09 0.99 3917.97 3955.02 0.99 1165 1108 1.05 3.36 3.57 0.94
Keccak 276.86 238.38 1.16 6644.52 10806.51 0.61 1236 1229 1.01 5.38 8.79 0.61
Luffa 220.12 281.53 0.78 7043.81 8008.02 0.88 2164 1154 1.88 3.25 6.94 0.47
Shabal 135.30 128.12 1.06 2770.94 2623.96 1.06 1372 1266 1.08 2.02 2.07 0.97
SHAvite-3 213.45 208.55 1.02 3834.56 2885.89 1.33 1954 1130 1.73 1.96 2.55 0.77
SIMD 36.37 40.89 0.89 4138.55 2325.90 1.78 17016 9288 1.83 0.24 0.25 0.97
Skein 104.34 104.34 1.00 2811.72 2811.72 1.00 1520 1463 1.04 1.85 1.92 0.96
SHA-2 215.84 207.00 1.04 2728.68 1630.49 1.67 646 433 1.49 4.22 3.77 1.12
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Table 4.5: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Altera Stratix III FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [ALUTs]

512 256 ratio 512 256 ratio 512 256 ratio 512 256 ratio
BLAKE 93.41 124.55 0.75 3298.34 3036.65 1.09 3414 1779 1.92 0.97 1.71 0.57
BMW 7.44 16.45 0.45 7618.56 8422.40 0.90 25225 12632 2.00 0.30 0.67 0.45
CubeHash 218.05 236.07 0.92 3488.80 3777.12 0.92 1924 1928 1.00 1.81 1.96 0.93
ECHO 246.00 N/A N/A 7872.00 N/A N/A 20085 N/A N/A 0.39 N/A N/A
Fugue 206.27 123.64 1.67 1650.16 3956.48 0.42 2775 3594 0.77 0.59 1.10 0.54
Groestl 250.38 270.27 0.93 8841.00 6589.44 1.34 6288 3103 2.03 1.41 2.12 0.66
Hamsi 181.16 294.81 0.61 1932.37 3144.64 0.61 5668 2320 2.44 0.34 1.36 0.25
JH 358.94 364.96 0.98 5104.92 5190.54 0.98 3222 3107 1.04 1.58 1.67 0.95
Keccak 269.61 296.30 0.91 6470.64 13432.27 0.48 3575 4458 0.80 1.81 3.01 0.60
Luffa 268.02 307.31 0.87 8576.64 8741.26 0.98 6888 3304 2.08 1.25 2.65 0.47
Shabal 126.44 126.87 1.00 2589.49 2598.30 1.00 3753 3600 1.04 0.69 0.72 0.96
SHAvite-3 215.38 255.00 0.84 3869.28 3528.65 1.10 5610 2497 2.25 0.69 1.41 0.49
SIMD 43.38 47.40 0.92 4935.68 2696.53 1.83 47671 22376 2.13 0.10 0.12 0.86
Skein 92.10 92.10 1.00 2481.85 2481.85 1.00 4563 4499 1.01 0.54 0.55 0.98
SHA-2 234.80 212.81 1.10 2968.34 1676.29 1.77 1620 963 1.68 1.83 1.74 1.05

FPGA families. In terms of the design, an architecture by Chaves et al. [38], [39] is selected,
as it is considered one of the best known SHA-2 architectures, and is optimized specifically
for the maximum throughput to area ratio.

Table 4.6: Results for the reference implementation of SHA-256 (architecture with
rescheduling)

Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
Max. Clk Freq. [MHz] 90.84 183.02 207.00 111.04 126.86 158.08 212.81
Throughput [Mbit/s] 715.56 1441.60 1630.49 874.65 999.27 1245.18 1676.29
Area 838 838 433 1655 1653 973 963
Throughput to Area Ratio 0.85 1.72 3.77 0.53 0.60 1.28 1.74

Table 4.7: Results for the reference implementation of SHA-512 (architecture with
rescheduling)

Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
Max. Clk Freq. [MHz] 90.06 168.75 215.84 93.54 113.15 177.34 234.80
Throughput [Mbit/s] 1138.51 2133.31 2728.68 1182.53 1430.44 2241.93 2968.34
Area 1367 1403 646 2916 2915 1639 1620
Throughput to Area Ratio 0.83 1.52 4.22 0.41 0.49 1.37 1.83

Tables 4.8 and 4.9 summarize the clock frequencies of the implemented algorithms
across seven selected FPGAs. For 512-bit variants, some algorithms are unable to fit in the
selected FPGAs. These cases are denoted by ‘N/A’ in the following tables. Specifically,
BMW is unable to fit in Cyclone II, Cyclone III and Stratix II due to the routing congestion.
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This congestion is due to multi-operand additions exhausting available routing resources.
For BMW and SIMD in Spartan 3 and ECHO in Cyclone II, resource utilization of its 512-
bit variant exceeds the available resources of the largest FPGA device in a given family.

Table 4.8: Clock frequencies of all SHA-3 candidates (256-bit variants) and SHA-256 ex-
pressed in MHz (post placing and routing)

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
BLAKE 45.98 85.90 117.06 56.97 66.38 103.21 124.55
BMW 4.19 12.37 10.89 7.69 8.41 13.45 16.45
CubeHash 91.27 186.50 219.30 115.89 133.19 179.37 236.07
ECHO 52.10 131.90 234.85 N/A 105.70 109.50 164.20
Fugue 39.67 72.86 98.47 53.25 60.71 83.75 123.64
Groestl 105.72 234.74 355.87 132.00 148.46 216.73 270.27
Hamsi 90.37 200.88 248.08 148.83 183.52 193.87 294.81
JH 129.75 271.67 278.09 174.61 222.72 268.31 364.96
Keccak 96.32 202.47 238.38 165.07 174.28 198.65 296.30
Luffa 129.84 260.28 281.53 171.64 173.43 219.88 307.31
Shabal 30.99 114.03 128.12 69.57 68.76 105.40 126.87
SHAvite-3 84.60 152.23 208.55 95.40 114.40 170.00 255.00
SIMD 17.20 29.25 40.89 21.66 23.97 37.07 47.40
Skein 36.93 81.20 104.34 47.06 54.73 70.64 92.10
SHA-512 90.84 183.02 207.00 111.04 126.86 158.08 212.81

Table 4.9: Clock frequencies of all SHA-3 candidates (512-bit variants) and SHA-512 ex-
pressed in MHz (post placing and routing)

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
BLAKE 36.59 71.26 106.01 41.57 50.24 73.78 93.41
BMW N/A 6.03 8.45 N/A N/A N/A 7.44
CubeHash 90.84 188.89 215.33 113.43 129.20 164.69 218.05
ECHO 85.17 190.30 200.97 N/A 135.24 166.64 246.00
Fugue 64.25 122.84 138.49 86.61 100.74 142.05 206.27
Groestl 113.68 281.37 325.63 124.10 133.96 187.72 250.38
Hamsi 69.00 158.05 171.38 103.31 117.16 128.68 181.16
JH 130.12 277.32 275.48 173.94 221.93 267.52 358.94
Keccak 94.12 208.86 276.86 161.39 173.07 207.68 269.61
Luffa 93.41 210.88 220.12 143.53 172.98 192.49 268.02
Shabal 29.87 113.62 135.30 69.38 81.70 103.58 126.44
SHAvite-3 75.31 161.97 213.45 86.71 103.73 140.53 215.38
SIMD N/A 28.57 36.37 20.09 23.87 32.36 43.38
Skein 36.93 81.20 104.34 47.06 54.73 70.64 92.10
SHA-512 90.06 168.75 215.84 93.54 113.15 177.34 234.80

Modern FPGA families are created using different fabrication process, layout, and basic
resources, which make comparison across several families in absolute terms difficult, if not
impossible. To mitigate this problem, the normalized results are defined and calculated to
provide a more direct comparison. A normalized result is calculated by dividing an absolute
result for a SHA-3 candidate by the corresponding result for the reference implementation
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of the current standard SHA-2 with the same strength. Normalized results have no units,
and can be reasonably compared across multiple families of FPGAs. An overall normalized
result is a geometric mean of normalized results for all investigated FPGA families.

Tables 4.10, 4.11, and 4.12 summarize normalized results for the 256-bit variants of all
SHA-3 candidates in terms of throughput, area, and throughput to area ratio, respectively.
In terms of throughput, the best performance is accomplished by Keccak, ECHO, Luffa,
BMW, and Groestl. No candidate is slower than SHA-256 in terms of throughput. In terms
of area, none of the candidates is smaller than SHA-256. The ones that come closest are
CubeHash, Hamsi, BLAKE, and Luffa. BMW, SIMD, and ECHO have their areas over 10
times bigger than the area of SHA-256. In terms of the throughput to area ratio, the best
performers are Keccak, Luffa, and CubeHash, which are the only candidates outperforming
SHA-256. The worst results in terms of this measure, belong to ECHO, and SIMD, which
loose to SHA-256 by a factor of at least 3.

Table 4.10: Throughput of all SHA-3 candidates (256-bit variants) normalized to the
throughput of SHA-256

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
Keccak 6.10 6.37 6.63 8.56 7.91 7.23 8.01 7.21
ECHO 4.30 5.41 8.51 N/A 6.25 5.20 5.79 5.78
Luffa 5.16 5.14 4.91 5.58 4.94 5.02 5.21 5.13
BMW 3.00 4.39 3.42 4.50 4.31 5.53 5.02 4.48
Groestl 3.60 3.97 5.32 3.68 3.62 4.24 3.93 4.02
JH 2.58 2.68 2.43 2.84 3.17 3.06 3.10 2.82
CubeHash 2.03 2.10 2.11 2.12 2.13 2.30 2.25 2.15
Fugue 1.77 1.62 1.93 1.95 1.94 2.15 2.36 1.95
BLAKE 1.57 1.45 1.75 1.59 1.62 2.02 1.81 1.68
Hamsi 1.35 1.49 1.62 1.82 1.96 1.66 1.88 1.67
SHAvite-3 1.64 1.46 1.77 1.51 1.58 1.89 2.11 1.70
Skein 1.39 1.46 1.72 1.45 1.48 1.53 1.48 1.50
Shabal 0.89 1.62 1.61 1.63 1.41 1.73 1.55 1.46
SIMD 1.37 1.15 1.43 1.41 1.36 1.69 1.61 1.38

In Fig. 4.1, we present a two dimensional diagram, with the Overall Normalized Area on
the X-axis and the Overall Normalized Throughput on the Y-axis. The algorithms seem to
fall into several major groups. Group with the high normalized throughput (>5), medium
normalized area (<4), and the high normalized throughput to area ratio (>1.5), include
Keccak and Luffa. Groestl, BMW, and ECHO, have all high normalized throughput (>4),
but their normalized area varies significantly from about 6 in case of Groestl, through 12
for BMW, up to over 25 in case of ECHO. SIMD is both relatively slow (less then 1.4 times
faster than SHA-256) and big (more than 24 times bigger than SHA-256). The last group
includes 8 candidates covering the range of the normalized throughputs from 0.8 to 2.8,
and the normalized areas from 2.1 to 4.1.

Tables 4.13, 4.14, and 4.15 summarize normalized results for the 512-bit variants of all
SHA-3 candidates in terms of throughput, area, and throughput to area ratio, respectively.
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Table 4.11: Area (utilization of programmable logic blocks) of all SHA-3 candidates (256-
bit variants) normalized to the area of SHA-256

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
CubeHash 1.76 1.75 1.63 1.87 1.86 2.00 2.00 1.84
Hamsi 2.17 2.16 2.18 1.92 1.94 2.40 2.41 2.16
BLAKE 4.91 4.87 4.32 2.20 2.32 1.86 1.85 2.92
Luffa 3.28 3.29 2.67 2.74 2.77 3.40 3.43 3.07
Shabal 3.75 3.84 2.92 3.67 3.68 3.90 3.74 3.63
JH 4.43 4.42 2.56 4.15 4.10 3.17 3.23 3.66
Keccak 3.97 3.99 2.84 3.77 3.62 4.20 4.63 3.82
SHAvite-3 4.91 4.91 2.61 5.68 5.64 2.57 2.59 3.89
Skein 4.01 3.95 3.38 3.98 4.12 4.64 4.67 4.09
Fugue 4.26 4.44 2.21 5.85 5.87 3.70 3.73 4.11
Groestl 15.96 16.01 4.35 4.60 4.50 3.21 3.22 5.86
BMW 12.07 13.45 10.16 12.00 12.02 12.99 13.12 12.24
SIMD 20.97 19.99 21.45 18.53 18.57 23.03 23.24 20.39
ECHO 30.87 28.48 12.58 0.00 39.77 22.29 22.52 24.58

Table 4.12: Throughput to Area Ratio of all SHA-3 candidates normalized to the through-
put to area ratio of SHA-256

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
Keccak 1.54 1.60 2.34 2.27 2.18 1.72 1.73 1.89
Luffa 1.57 1.56 1.84 2.04 1.78 1.48 1.52 1.67
CubeHash 1.16 1.20 1.29 1.13 1.14 1.15 1.13 1.17
Hamsi 0.62 0.69 0.74 0.94 1.01 0.69 0.78 0.77
JH 0.58 0.61 0.95 0.68 0.77 0.97 0.96 0.77
Groestl 0.23 0.25 1.22 0.80 0.81 1.32 1.22 0.69
BLAKE 0.32 0.30 0.41 0.72 0.70 1.09 0.98 0.57
Fugue 0.42 0.36 0.88 0.33 0.33 0.58 0.63 0.47
SHAvite-3 0.33 0.30 0.68 0.27 0.28 0.74 0.81 0.44
Shabal 0.24 0.42 0.55 0.44 0.38 0.44 0.41 0.40
BMW 0.25 0.33 0.34 0.38 0.36 0.43 0.38 0.37
Skein 0.35 0.37 0.51 0.36 0.36 0.43 0.38 0.37
ECHO 0.14 0.19 0.68 N/A 0.16 0.23 0.26 0.23
SIMD 0.07 0.06 0.07 0.08 0.07 0.07 0.07 0.07
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Table 4.13: Throughput of all SHA-3 candidates (512-bit variants) normalized to the
throughput of SHA-512

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
Groestl 3.53 4.66 4.21 3.71 3.31 2.96 2.98 3.58
Luffa 2.63 3.16 2.58 3.88 3.87 2.75 2.89 3.07
BMW N/A 2.90 3.17 N/A N/A N/A 2.57 2.87
ECHO 2.39 2.85 2.36 0.00 3.03 2.38 2.65 2.60
Keccak 1.98 2.35 2.44 3.28 2.90 2.22 2.18 2.45
JH 1.63 1.85 1.44 2.09 2.21 1.70 1.72 1.79
SIMD N/A 1.52 1.52 1.93 1.90 1.64 1.66 1.69
CubeHash 1.28 1.40 1.29 1.53 1.45 1.18 1.18 1.32
SHAvite-3 1.19 1.36 1.41 1.32 1.30 1.13 1.30 1.28
BLAKE 1.13 1.18 1.37 1.24 1.24 1.16 1.11 1.21
Skein 0.87 1.03 1.03 1.07 1.03 0.85 0.84 0.96
Shabal 0.54 1.09 1.02 1.20 1.17 0.95 0.87 0.95
Hamsi 0.65 0.79 0.67 0.93 0.87 0.61 0.65 0.73
Fugue 0.45 0.46 0.41 0.59 0.56 0.51 0.56 0.50

Table 4.14: Area (utilization of programmable logic blocks) of all SHA-3 candidates (512-
bit variants) normalized to the area of SHA-512

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
CubeHash 1.28 1.24 1.18 1.16 1.17 1.18 1.19 1.20
Fugue 2.22 2.16 1.43 2.54 2.52 1.72 1.71 2.00
Keccak 2.25 2.17 1.91 1.81 1.81 2.19 2.21 2.04
Shabal 2.28 2.25 2.12 2.10 2.11 2.29 2.32 2.21
JH 2.81 2.74 1.80 2.41 2.37 1.97 1.99 2.27
Skein 2.51 1.32 2.35 2.28 2.36 2.79 2.82 2.29
BLAKE 5.86 5.44 5.07 2.52 2.44 2.12 2.11 3.02
Hamsi 3.19 3.10 3.41 2.61 2.61 3.50 3.50 3.11
Luffa 3.92 3.82 3.35 3.60 3.63 4.28 4.25 3.82
SHAvite-3 5.85 6.09 3.02 7.01 7.01 3.36 3.46 4.83
Groestl 10.68 10.28 4.88 5.08 5.16 3.71 3.88 5.73
BMW N/A 13.50 16.10 N/A N/A N/A 15.57 15.01
ECHO 19.56 18.43 9.22 N/A 23.89 12.26 12.40 15.15
SIMD N/A 28.29 26.34 22.09 22.13 29.15 29.43 26.05
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Figure 4.1: Relative performance of all Round 2 SHA-3 Candidates (256-bit variants) in
terms of the overall normalized throughput and the overall normalized area (with SHA-256
used as a reference point).)

Table 4.15: Throughput to Area Ratio of all SHA-3 candidates normalized to the through-
put to area ratio of SHA-512

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
Keccak 0.88 1.09 1.27 1.81 1.60 1.02 0.99 1.20
CubeHash 1.00 1.13 1.09 1.33 1.24 1.00 0.99 1.10
Luffa 0.67 0.83 0.77 1.08 1.07 0.64 0.68 0.80
JH 0.58 0.68 0.80 0.87 0.93 0.86 0.86 0.79
Groestl 0.33 0.45 0.86 0.73 0.64 0.80 0.77 0.62
Shabal 0.24 0.48 0.48 0.57 0.55 0.41 0.38 0.43
BLAKE 0.19 0.22 0.27 0.49 0.51 0.55 0.53 0.40
Skein 0.35 0.43 0.44 0.47 0.44 0.30 0.30 0.38
SHAvite-3 0.20 0.22 0.46 0.19 0.19 0.34 0.38 0.27
Fugue 0.20 0.21 0.28 0.23 0.22 0.30 0.32 0.25
Hamsi 0.20 0.25 0.20 0.36 0.34 0.17 0.19 0.24
BMW N/A 0.21 0.20 N/A N/A N/A 0.16 0.19
ECHO 0.12 0.15 0.26 0.00 0.13 0.19 0.21 0.17
SIMD N/A 0.05 0.06 0.09 0.09 0.06 0.06 0.06

Interestingly, only two candidates, Keccak and CubeHash outperform SHA-512 in terms
of the throughput to area ratio. Only three more candidates, Luffa, JH and Groestl, have
the overall normalized ratio higher than 0.5. In terms of throughput, only five candidates,
Groestl, Luffa, BMW, ECHO, and Keccak, outperform SHA-512 by a factor larger than
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Figure 4.2: Relative performance of all Round 2 SHA-3 Candidates (512-bit variants) in
terms of the overall normalized throughput and the overall normalized area (with SHA-512
used as a reference point).)

two. The additional five candidates have a normalized throughput in the range from 1
to 2. Four candidates, Skein, Shabal, Hamsi, and Fugue, are slower than SHA-512, with
Fugue, slower by a factor of two. In terms of area, all SHA-3 candidates, in their 512-bit
variants, are larger than SHA-512. The spread of results is much larger than in the case
of throughput, with the smallest SHA-3 candidate, CubeHash, almost the same size as
SHA-512, and the largest SIMD, lagging behind by a factor of 26. The group following
CubeHash in terms of area, including Fugue, Keccak, Shabal, JH and Skein, covers the
range between 2.0 and 2.3, and includes only one candidate, Keccak, which excels also in
terms of speed.

In Fig. 4.2, we presents a two dimensional diagram, with the Overall Normalized Area
on the X-axis and the Overall Normalized Throughput on the Y-axis. Only two algorithms,
Keccak and CubeHash, outperform SHA-512 in terms of the throughput to area ratio. Out
of them Keccak is almost twice as fast, but CubeHash is almost twice as small. SIMD is
approximately 20 times worse than Keccak in terms of the throughput to area ratio, and
ECHO and BMW are more than 6 times worse. The implementations of these algorithms
are not likely to scale to the same performance region as implementations of majority of
other candidates, even if significantly trading speed for reduced area.

A throughput based on the performance for long messages does not reliably describe
the behavior of the developed hash modules for short messages. For some applications, an
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Figure 4.3: Execution time vs. message size for short messages up to 1,000 bits. 256-bit
variants of all SHA-3 Candidates and SHA-256 in Virtex 5.

algorithm that can perform particularly well for short messages may be favored over an
algorithm that is exceptionally good for long messages, but terribly slow for short ones.
In Figure 4.3 we present the execution time as a function of the message length, varying
between 0 and 1000 bits, for 256-bit variants of all SHA-3 candidates and SHA-256. Similar
graphs for 512-bit variants of all algorithms are presented in Figure 4.3. Message sizes used
in these diagrams represent sizes before padding. Padding is assumed to be done outside
of a hash core (e.g., in software), and its time is not included in the execution time.

For the 256-bit variants of all algorithms, the only ones performing worse than SHA-256
are SIMD, Shabal, and CubeHash. The best performers are Luffa, Keccak, Groestl, and
ECHO. For the 512-bit variants, the worst performing algorithms are the same as for the
SHA-256 case, with the addition of Fugue. The best performers are the same as in the
SHA-256 case, with the addition of JH and Skein.

In Figure 4.5, we summarize all our results for both 256 and 512 variants of all algo-
rithms. Each variant of each algorithm is characterized using four performance measures:
the throughput to area ratio, throughput, area, and the execution time for short messages.
The performance is graded on the 3-point scale and denoted using the following color
code: green – best, yellow – medium, red–worst. The best performing algorithms are those
that have the largest number of green boxes (high scores), and no red box (low scores)
associated with them. Additionally, taking into account that our designs are intended as
high-speed designs, and not low-cost designs, the throughput to area ratio and throughput
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Figure 4.4: Execution time vs. message size for short messages up to 1,000 bits. 512-bit
variants of all SHA-3 Candidates and SHA-512 in Virtex 5.

are treated as two primary performance measures, while area and the execution time for
short messages are considered as secondary criteria. Under these assumptions, the two best
performing candidates are Keccak and Luffa, scoring high in 7 out of 8 categories. These
two algorithms are followed by Groestl, which excels in 4 categories, namely throughput,
and the execution time for short messages in both function variants. SIMD is the worst
performing algorithm so far, with the low scores in 6 out of 8 categories. Additionally,
ECHO and BMW perform quite poorly in terms of area. Out of the remaining candidates,
the ones with the highest potential are CubeHash, excelling in terms of area and through-
put to area ratio for both variants of the algorithm, JH, performing particularly well in its
512-bit variant, and BLAKE, which does not receive low scores in any of the 8 categories.
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Figure 4.5: Summary of major features of all SHA-3 candidates in terms of performance
in FPGAs. Color code: green - best, yellow - medium, red - worst. The performance is
characterized using four metrics: throughput to area ratio, throughput, area, and execution
time for short messages.



Chapter 5

Results from Other Groups

5.1 Best Results from Other Groups

Table 5.1 presents the best published results in terms of the throughput to area ratio
for 256-bit variants of the SHA-3 Round 2 Candidates, and contrasts them with the best
results reported in this paper. The implementation platform is Xilinx Virtex 5 family.
This platform has been selected because majority of papers from other groups target this
particular family. The corresponding throughput vs. area graph is also shown in Figure 5.1.

In general, due to our selection of the interface/protocol, the controller associated with
all our designs cost us between 80 and 150 slices. This overhead mainly originates from
the counter required to store the message length, communication modules residing between
FSMs 1, 2 and 3, and some additional control logic. As a result, small designs such as
CubeHash may be at a disadvantage in terms of the throughput to area ratio compared to
the designs from other groups, following different interfaces. However, with the exception
of Shabal, most of our designs perform comparatively close (within 25% if not better) to
the best designs reported in the literature to date. Selected algorithms for which our results
are worse are discussed below:

• BLAKE: The design by Aumasson et al. [21] is much smaller than our design. This
may be due to our inefficient implementation of the Permute unit (Figure 3.6). Ad-
ditionally, the removal of the temporary message block register and its corresponding
multiplexer should be able to further reduce our resource utilization.

• CubeHash: An interface overhead puts our design at a disadvantage with some other
designs following different interfaces

• Groestl: Similarly to CubeHash, an interface overhead causes our throughput to area
ratio to drop. Also, we may yet overlook a possible way to reduce resource utilization.

100
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Figure 5.1: Best published results vs. GMU results for all Round 2 SHA-3 Candidates
(256-bit variants) in terms of throughput to area ratio in Xilinx Virtex 5

• Shabal: Detrey et al. [40] utilizes a shift register mode (SRL16) of Xilinx Multipur-
pose Look-Up Tables. This optimization applies only to Xilinx FPGAs, and has not
been yet introduced in our design.

Table 5.1: Comparison of the best designs from other groups in terms of the Throughput
to Area Ratio with designs presented in this paper. All designs concern 256-bit variants of
the SHA-3 candidates.

Other Groups This Paper
Area Thr Thr/Area Source Area Thr Thr/Area

(CLB slices) (Mbit/s) (CLB slices) (Mbit/s)
BLAKE 1217 2438 2.00 Aumasson et al. [21] 1851 2610.6 1.41
CubeHash 590 2960 5.02 Kobayashi et al. [12] 730 3189.8 4.37
ECHO 9333 14860 1.59 Lu et al. [41] 5445 13360.5 2.45
Groestl 1722 10276 5.97 Gauvaram et al. [26] 1884 8676.5 4.61
Hamsi 718 1680 2.34 Kobayashi et al. [12] 946 2646.2 2.80
Keccak 1412 6900 4.89 Bertoni et al. [29] 1229 10806.5 8.79
Luffa 1048 6343 6.05 Kobayashi et al. [12] 1154 8008.0 6.94
Shabal 153 2051 13.41 Detrey et al. [40] 1266 2624.0 2.07



102 E. Homsirikamol, M. Rogawski, and K. Gaj

5.2 Best Results

The best results (including our results and results from other groups) in terms of the
throughput to area ratio for 256-bit variants of all SHA-3 Round 2 candidates in Xilinx
Virtex 5 are summarized in Table 5.2. A corresponding throughput vs. area diagram is
shown in Figure 5.2.

There is no significant change in an overall ranking of SHA-3 Round 2 candidates in
terms of the throughput to area ratio compared to the ranking based exclusively on our
own results, with the exception of Shabal, which demonstrates the best throughput to
area ratio for Virtex 5. Additionally, Shabal will most likely retains its lead in comparison
of 512-bit variants as there is practically no functional change between 256 and 512-bit
variants of this algorithm.

Table 5.2: Best results in terms of the Throughput to Area Ratio for 256-bit variants of
all SHA-3 Round 2 candidates in Xilinx Virtex 5.

Area Thr Thr/Area Source
(CLB slices) (Mbit/s)

BLAKE 1217 2438.0 2.00 Aumasson et al. [21]
BMW 4400 5576.7 1.27 GMU
CubeHash 590 2960.0 5.02 Kobayashi et al. [12]
ECHO 5445 13360.5 2.45 GMU
Fugue 956 3151.2 3.30 GMU
Groestl 1722 10276.0 5.97 Gauvaram et al. [26]
Hamsi 946 2646.2 2.797 GMU
JH 1275 4013.5 3.15 GMU
Keccak 1229 10806.5 8.793 GMU
Luffa 1154 8008.0 6.939 GMU
Shabal 153 2051.0 13.41 Detrey et al. [40]
SHAvite-3 1130 2886.9 2.55 GMU
SIMD 9288 2325.9 0.25 GMU
Skein 1463 2811.7 1.92 GMU
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Figure 5.2: Best results for all Round 2 SHA-3 Candidates (256-bit variants) in terms of
throughput vs. area in Virtex 5



Chapter 6

Conclusions and Future Work

Our evaluation methodology, applied to 14 Round 2 SHA-3 candidates, has demonstrated
large differences among competing candidates.

For the 256-bit variants of the SHA-3 candidates, the ratio of the best result to the worst
result was equal to about 9 in terms of the throughput (Keccak vs. Skein), over 13 times in
terms of area (CubeHash vs. ECHO), and about 27 in terms of our primary optimization
target, the throughput to area ratio (Keccak vs. SIMD). Only three candidates, Keccak,
Luffa, and CubeHash, have demonstrated the throughput to area ratio better than the
current standard SHA-256. Out of these three algorithms, Keccak and Luffa have also
demonstrated very high throughputs, while CubeHash outperformed other candidates in
terms of minimum area. All candidates except Skein outperform SHA-256 in terms of the
throughput, but at the same time none of them matches SHA-256 in terms of the area.

For the 512-bit variants, the ratio of the best result to the worst result was equal
to about 6 in terms of the throughput (Luffa vs. Fugue), about 23 in terms of area
(CubeHash vs. SIMD), and about 20 in terms of our primary optimization target, the
throughput to area ratio (Keccak vs. SIMD). Only two candidates, Keccak and CubeHash,
have demonstrated the throughput to area ratio better than the current standard SHA-
512. Out of these two algorithms, Keccak has also demonstrated very high throughputs,
while CubeHash outperformed other candidates in terms of minimum area. Almost all
candidates, except Fugue, Hamsi, Shabal, and Skein, outperform SHA-512 in terms of the
throughput, but at the same time none of them, except CubeHash, matches SHA-512 in
terms of the area.

Future work will include the evaluation of the remaining variants of SHA-3 candidates
(such as variants with 224 and 384 bit outputs, and an all-in-one architecture). The uni-
form padding units will be added to each SHA core, and their cost estimated. In terms
of FPGA families, our study will be extended to the most recent families of FPGAs from
two major vendors, namely Spartan 6 and Virtex 6 from Xilinx, and Cyclone IV, Stratix
IV, and Arria II from Altera. We will also investigate the influence of synthesis tools from
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different vendors (e.g., Synplify Pro from Synopsys). The evaluation may be also extended
to the cases of hardware architectures optimized for the minimum area (cost), maximum
throughput (speed), or minimum power consumption. Each algorithm will be also evalu-
ated in terms of its suitability for implementation using dedicated FPGA resources, such
embedded memories, dedicated multipliers, and DSP units. Our methodology can be also
applied to the implementations of MACs based on the SHA-3 candidates (in particular,
HMAC), with added countermeasures against side channel attacks. Finally, an extension
of our methodology to the standard-cell ASIC technology will be investigated.
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