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Abstract

SIDE-CHANNEL ANALYSIS OF BLOCK CIPHERS USING CERG-GMU INTERFACE
ON SASEBO-GII

Abirami Prabhakaran

George Mason University, 2011

Thesis Director: Dr. Jens-Peter Kaps

Field Programmable Gate Array(FPGAs) are used as a common platform for almost any

type of design due to an increase in their logic capacity and various features such as DSP

blocks, embedded processors, etc. A cryptographic algorithm implemented on FPGAs leaks

data sensitive information through side channels such as power consumption, time taken for

computations, temperature, etc. Many side-channel cryptanalysis methods exist to attack

the physical implementation of cryptographic algorithms, thus rendering the algorithms

insecure. One branch of side-channel attack is Differential Power Analysis (DPA); where

the attack is based on information gained from the power consumption of the cryptosys-

tem. Recently, the Research Center for Information (RCIS) of AIST and Tohoku University

developed the Side Channel Attack Standard Evaluation Board (SASEBO) as a common

platform for evaluating side channel attacks. There are two FPGAs on a SASEBO board,

a cryptographic FPGA - where the algorithm is implemented and a control FPGA - which

communicates the data between the software (SASEBO Waveform Acquisition) and the

cryptographic FPGA in an efficient manner. Sasebo Waveform Acquisition interacts with

the hardware for processing data and collecting power traces for a DPA attack.



The current interface between the control and cryptographic FPGA on the SASEBO-GII

board is used to implement a block cipher and a hash algorithm. However, as the standard

hardware interface proposed by the Cryptographic Engineering Research Group (CERG) of

George Mason University has a different protocol for block ciphers and hash functions, the

algorithms could not be directly integrated with the SASEBO-GII interface. This thesis

focuses on designing a new interface, with modifications made to the original SASEBO

waveform acquisition software and the hardware on the control FPGA to interact with the

protocol of CERG-GMU. The data communication between the software and hardware with

implementations of lightweight block cipher was tested successfully on the modified 8-bit

interface. Also, results from the DPA attack on AES on both the original SASEBO-GII

interface and the modified interface are discussed.



Chapter 1: Introduction

Existing in an era where most of the sensitive information is controlled via computer net-

works, there is a need to protect this information with many different schemes and protocols.

However, systems in which physical implementations can be accessed still possess the risk

of being attacked. For example, those systems which make use of cryptographic proto-

cols like Automated Teller Machines (ATM’s), Radio Frequency Identification (RFID) tags,

smart cards, sensor nodes,etc., are vulnerable to implementation attacks. If an attacker has

physical access to the targeted device, any sensitive information which is otherwise hidden,

can become available to the attacker. As many of these devices are easily available to the

attackers, there also arises the need for introducing countermeasures in both hardware and

software to prevent the information leakage.

Side-channel attacks are based on “Side Channel Information”. Side Channel infor-

mation is the information that can be retrieved from the physical implementation of the

system. Mentioned below are various Side Channel Cryptanalysis methods [1] which are

used for attacking ciphers on a cryptosystem. This thesis primarily discusses a branch of

side channel attacks, called Differential Power Analysis (DPA). A DPA attack measures the

power consumption of a cryptosystem, exposing information related to the data being pro-

cessed. Furthermore, this power consumption is statistically correlated to power estimates

using power models like Hamming Weight or Hamming Distance, and the exact key being

used for encryption/decryption can be retrieved. Details of power models are discussed in

the following sections.
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1.1 Side-Channel Attacks

A side-channel attack exploits the information leaked from a cryptosystem, in which the

physical implementation of the system carries the sensitive data. In contrast, other forms of

cryptanalysis techniques target the underlying computational problems of the algorithms.

The multitude of ways in which electronic devices leak information are power consump-

tion [2, 3], time taken for computations [4], temperature, or electromagnetic field emana-

tions [5, 6]. The information leaked is always related to the behavior of the cryptosystem,

which makes the side channel attacks a very powerful tool for obtaining the secret informa-

tion.

Leakage
information)

Side Channel
(key dependant

Device
CryptographicPlain Text Cipher Text

Secret Key

Figure 1.1: Cryptosystem

Figure 1.1 shows a cryptographic algorithm implemented on a cryptosystem that leaks

side channel information. For example, if the cryptographic algorithm is a block cipher,

the data flow can be explained as: when a plaintext is sent to the system, it gets encrypted

with the secret key to output a ciphertext. The focal point of this model is the side channel

leakage, where information pertaining to the secret data (key) is present. An attacker

uses this information to perform a DPA attack and retrieve the secret key, rendering the

cryptosystem to be ineffective in processing secret information.

2



1.2 Power Analysis Attacks

Power Analysis technique is a type of side channel attack proposed by Kocher et al. [2]

in 1998. In this type of attack, information pertaining to the data being processed by the

algorithm is revealed by obtaining power traces during encryption/ decryption. The setup

for a power analysis attack typically consists of the target device, a digital oscilloscope and

a computing platform. The target device hosts the cryptosystem, which actively computes

the encryption/decryption scheme. An oscilloscope is connected to the target device via

probes and measures the power consumption of the cryptosystem during processing. These

captured power traces are then sent to a personal computer running algorithms to analyze

the power trace and ultimately reveal the key.

There are two types of attacks which analyze the power traces. They are: Simple Power

Analysis (SPA) and Differential Power Analysis (DPA).

1.2.1 Simple Power Analysis

In a simple power analysis attack, the attacker interprets the power traces by visual inspec-

tion of the power fluctuations and with just the reasoning and knowledge of the algorithm

and/or implementation [7]. The attacker attempts to determine the operations being exe-

cuted and eventually the cryptographic key.

The power trace in Fig 1.2 is from an Advanced Encryption Standard (AES) implemen-

tation. Each figure was plotted for a different plaintext input and for the same key. As

can be seen, there are 11 peaks in each power trace, showing that the AES implementation

has 11 rounds. A 11 round AES implementation has a key length of 128-bits, and this in-

formation is immediately available to the attacker from reasoning. However, simple power

analysis is quite challenging and only feasible with traces which have little or no noise.

3



Figure 1.2: Simple Power Analysis

1.2.2 Differential Power Analysis

In contrast to simple power analysis, DPA [8] attacks works on a large number of power

traces and use statistical methods between the power consumption and the power model.

In specific, a Correlation Power Analysis (CPA) proposed by Brier [9] assumes a linear

relationship between the power consumption and the data being processed by the device

under attack. Hence, the correct key is the one which has the maximum correlation between

the power consumption and the power model. Both DPA and CPA attacks are considered a

powerful type of power analysis, as they do not require a detailed knowledge of the device.

The steps involved in a successful CPA attack are:

1. A register or some function which is an intermediate result of the algorithm and a

function of both the input data and key is chosen as the point of attack.

2. Power consumption measurements are taken while the algorithm is executed, with

focus on the attack point.

3. A hypothetical power model is designed based on the operation of the targeted cipher

or hash algorithm.

4. This power model is then correlated with the power consumption to retrieve the key.

4



Pearson’s Correlation

Pearson’s correlation is the most common measure of correlation, and it reflects the degree

of linear relationship between two variables. A correlation ranging from +1 to -1, it indicates

a perfect positive linear relationship between the variables for +1 and a perfect negative

linear relationship for -1. A correlation of 0 means there is no linear relationship between

the two variables. The correlation coefficient (r) between the the power consumption of the

device P and the hypothetical power model H is given by the Eq. (1.1).

r(P,H) =
n
∑n

i PiHi −
∑n

i Pi
∑n

i Hi√
n
∑n

i P
2
i − (

∑n
i Pi)2

√
n
∑n

i H
2
i − (

∑n
i Hi)2

(1.1)

Pearson’s correlation along with Hamming distance or Hamming weight is used in this

thesis and a CPA is performed.

1.3 Power Models for Cryptographic Devices

Correlation Power Analysis attack utilizes correlation as its primary method to determine

the key. During an encryption/decryption process, an approximation of the power con-

sumption is made. There are several different methods for constructing a power model.

If the device is infeasible to simulate or its architecture is not entirely known, a general

power model like Hamming Weight is used. However, if the power consumption can be

measured by simulating the device in a software environment or if the architecture of the

cryptographic device is known, the Hamming Distance method is used [10].

1.3.1 Hamming Weight Power Model

The most basic power consumption model is the Hamming Weight model, where the power

consumption is considered to be proportional to the number of bits that are set to ‘1’.

Figure 1.3(a) shows a hamming weight calculation example. There is maximum power

consumption when all bits are set to ‘1’ and minimal power consumption for all ‘0’. The

5



Hamming Weight model is used when only the data value at a given time is known, but not

it’s previous or the next state value. While CPA attacks are possible using the Hamming

Weight model, very little information regarding the power consumption of the circuit is

derived.

Binary Value

Hamming Weight

11010101     00011010

5 3

(a) Hamming Weight

Binary Value 0001101011010101     

Hamming Distance 0 0 0 1 1 0 1 0)
=HW(1 1 0 1 0 1 0 1      

=HW(1 1 0 0 1 1 1 1)

= 6

(b) Hamming Distance

Figure 1.3: Power Models

1.3.2 Hamming Distance Power Model

The Hamming Distance model is an extension of the Hamming Weight model. If R0 and

R1 are two consecutive states of a register, then the approximate power consumption is

proportional to the Hamming Distance of the processed data, where Hamming Distance

can be calculated using Eq 1.2. The power consumption is proportional to the number of

0→1 and 1→0 transitions in the circuit. Fig 1.3(b) shows the hamming distance of the state

transition in a register R.

HD(R0, R1) = HW (R0⊕R1) (1.2)

A few basic assumptions are made when this power model is used. It is assumed that

bits which do not change (0→0, 1→1) do not contribute to the power consumption of a

circuit. It is also assumed that a 0→1 and 1→0 transition consumes an equal amount of

power. However, this is not the case with most circuits.

The Hamming Distance model provides a very convenient method for determining the

expected power consumption of a circuit during a certain time frame. In any case where

a change in data can be observed, the Hamming Distance model should be used over the

6



Hamming Weight model.

1.4 Side Channel Attack Standard Evaluation Board Inter-

face

The Side Channel Attack Standard Evaluation Board (SASEBO) was recently developed by

the Research Center for Information (RCIS) of National Institute of Advanced Industrial

Science and Technology (AIST) and Tohoku University as a common platform for evaluating

side channel attacks. These boards were developed with the intent of performing side

channel attacks. SASEBO boards are designed with two FPGAs, a cryptographic FPGA

where the algorithm is implemented and a control FPGA which directs the data flow between

the software and the cryptographic FPGA. Details of this board and why it was chosen are

explained in Chapter 3. In this thesis, SASEBO-GII (one of the six boards from AIST) was

used to implement the block Cipher Advanced Encryption Standard (AES) [11] and perform

CPA attack. The CPA attack wa successful revealing bytes of the key. Also implemented

was the Extended Tiny Encryption Algorithm (xTEA) [12,13] on a Xilinx Spartan-3 board

with a wrapper circuit built around it and a CPA attack on 8-bits of the key was successful.

There are two programs from the SASEBO team that were used throughout this thesis.

The SASEBO Checker software tests the functionality of the algorithm implemented on the

cryptographic FPGA. For a block cipher implementation, the software sends a plaintext

and key to the the cipher, where encryption takes place and the ciphertext is sent as output

to the software. In the case of a hash algorithm, the message to be hashed is sent to

the hash algorithm implementation in the cryptographic FPGA, and the hash output is

obtained. The other software is the SASEBO Waveform Acquisition program, which is a

complete package integrating the functionalities of the SASEBO-GII board, an oscilloscope

and the checker software. It aids in sending and receiving data from the cryptographic

FPGA, taking power traces and collecting data for a DPA attack. Details of both software

packages and changes made to it are explained in the following chapters.
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Currently there are two interfaces that exist between the control and cryptographic

FPGA on the SASEBO-GII board. An 8-bit interface for AES block cipher and a 16-

bit interface for hash algorithms. However these interfaces are infeasible to use with

other protocols. For example, the protocol from the Cryptographic Engineering Research

Group (CERG) of George Mason University for a block cipher or a Secure Hash Algo-

rithm (SHA) could not be integrated directly with the SASEBO-GII interface. The focus of

this thesis was to integrate the CERG-GMU protocol to the Control FPGA on the SASEBO-

GII with necessary changes to the interface. To test the functionality of this interface, a

lightweight block cipher was implemented on the cryptographic FPGA and the round trip

communication of data between the software and hardware was tested. Modifications were

made to the waveform acquisition and the control FPGA to supply the data to the AES

in the correct flow. This implementation was successfully completed, making the interface

generic, where various other ciphers can be tested.

Finally, Correlation Power Analysis was performed on 128-bit AES implementation on

the original SASEBO-GII interface, and also on the lightweight AES implementation on

the new interface. Both attacks were successful with 8-bits of the key revealed, results of

which are discussed in Chapter 6.

1.5 Thesis Organization

Chapter 2 describes the functionality of the SASEBO-GII board, its usage for DPA measure-

ments, and the software setup needed. Chapter 3 discusses both the original SASEBO-GII

interface and the modified CERG-GMU interface in detail. Chapter 4 describes the block ci-

phers xTEA and AES that were implemented on Xilinx Spartan-3 and SASEBO-GII boards

respectively. Chapter 5 discusses the DPA attack methodology for each implementation,

while Chapter 6 shows the results from CPA attack and further discussions. Chapters 7 is

dedicated to conclusions and future work.
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Chapter 2: Side Channel Attack Standard Evaluation Board

(SASEBO)

With advancements in the use of digital devices and development of broadband networks,

cryptographic algorithms are widely used to implement these designs. However, insecure

implementations of the algorithms can expose a cryptosystem to the risk of attacks. Na-

tional Institute of Standards and Technology (NIST) issued the ISO/IEC 19790 and 24759

standards and the FIPS 140-2 [14] standard for validation of cryptographic modules, with

Japan’s Cryptographic Module Validation Program (JCMVP) [15] conforming to these stan-

dards.

However, these two standards do not address side channel attacks, which exploit confi-

dential information due to timing information, power consumption, electromagnetic leaks,

etc., from the cryptographic module. NIST is currently developing FIPS 140-3 as a stan-

dard that addresses such attacks, and the ISO/ IEC standard is also expected to be re-

vised. In support of formulating an international standard for security evaluation against

side-channel attacks, the Research Center for information (RCIS) of AIST and Tohoku Uni-

versity have developed the Side channel Attack Standard Evaluation BOard (SASEBO).

SASEBO boards were designed with focus on performing power analysis attacks.

Six types of boards exists, namely, “SASEBO”, “SASEBO-G”, “SASEBO-GII”,

“SASEBO-B”, “SASEBO-R” and “SASEBO-W”. While SASEBO, SASEBO-G, SASEBO-

GII and SASEBO-W are Xilinx FPGA boards, SASEBO-B is a board comprising of AL-

TERA FPGAs, and SASEBO-R is the ASIC version with a cryptographic LSI mounted on

the socket. Table 2.1 lists the functional characteristics of the SASEBO boards.

1. SASEBO: The first version of SASEBO was developed in 2007 and contained two

Xilinx Virtex-II Pro (xc2vp30 and xc2vp7) devices. Since the FPGAs were comprised

9



of 32-bit powerPC processor cores, software based cryptographic experiments were

performed with this board. The xc2vp30 FPGA communicates with the host com-

puter through an RS-232 driver. To capture the power traces, shunt resistors are

placed between the VCORE/GND lines and the FPGAs. These boards did not have

the decoupling capacitor to monitor the small fluctuations in power traces at the cryp-

tographic FPGA. There are separate power regulators for each of the FPGAs [16].

(a) SASEBO (b) SASEBO-G

Figure 2.1: SASEBO and SASEBO-G

2. SASEBO-G: This revised version of SASEBO has a USB interface in addition to the

serial interface. This boosts the data transfer rate. Additionally, two 8M-bit SRAMs

are attached to the control (xc2vp30) FPGA to allow changes and experimentation

with the software. Also the number of monitoring points has been increased in this

board [17].

3. SASEBO-GII: SASEBO-GII is a commercial product version distributed by Tokyo

Electron Device LTD. The board has Virtex-5 and Spartan-3A FPGA devices, and its

USB interface can be used to supply power and to configure the FPGAs. SASEBO-

GII was used as the platform for experimentation throughout this thesis. Further

details of this board will be discussed in Section 3.2 [18].

10



S
A

S
E

B
O

S
A

S
E

B
O

-G
S

A
S

E
B

O
-G

II
S

A
S

E
B

O
-B

S
A

S
E

B
O

-R
S

A
S

E
B

O
-W

S
iz

e
2
50

x
2
0
0m

m
2
,

23
0x

18
0m

m
2
,

14
0x

12
0m

m
2
,

23
0x

18
0m

m
2
,

2
30

x
18

0m
m

2
,

15
0x

2
00

m
m

2
,

8
la

ye
rs

8
la

ye
rs

8
la

ye
rs

8
la

ye
rs

8
la

ye
rs

4
la

ye
rs

C
ry

p
to

g
ra

p
h

ic
X

C
2
V

P
7
-

X
C

2V
P

7-
X

C
5V

L
X

30
/5

0-
E

P
2S

15
F

-
L

S
I
(1

30
-n

m
X

C
6S

L
X

15
0-

D
ev

ic
e

5
F

G
4
56

C
5F

G
45

6C
1F

F
G

32
4

48
4C

5N
p

ro
ce

ss
)

F
G

G
48

4

C
o
n
tr

ol
X

C
2V

P
3
0
-

X
C

2V
P

30
-

X
C

3S
50

A
N

-
E

P
2S

30
F

-
X

C
2
V

P
30

-
–

D
ev

ic
e

5
F

G
6
76

C
5F

G
67

6C
4F

T
25

6
67

2C
5N

5
F

G
67

6C

L
o
ca

l
B

u
s

b
/w

32
-b

it
16

-b
it

38
-b

it
16

-b
it

16
-b

it
–

th
e

F
P

G
A

s

P
ow

er
D

ir
ec

t
5
.0

v
D

ir
ec

t
5.

0v
U

S
B

p
ow

er
&

D
ir

ec
t

5.
0v

D
ir

ec
t

5
.0

v
U

S
B

p
ow

er
&

S
u

p
p

ly
D

ir
ec

t
5.

0v
D

ir
ec

t
5.

0
v

O
n

b
oa

rd
fo

r
ea

ch
fo

r
ea

ch
fo

r
C

on
tr

ol
fo

r
ea

ch
fo

r
C

o
n
tr

ol
fo

r
C

ry
p

to
-

C
lo

ck
F

P
G

A
F

P
G

A
F

P
G

A
F

P
G

A
F

P
G

A
gr

a
p

h
ic

F
P

G
A

C
o
m

m
u

n
ic

a
ti

o
n

R
S

-2
3
2

p
or

t
R

S
-2

32
&

U
S

B
p

or
t

R
S

-2
32

&
R

S
-2

3
2

&
U

S
B

p
o
rt

w
it

h
P

C
U

S
B

p
or

t
U

S
B

p
or

t
U

S
B

p
or

t

T
ab

le
2.

1:
F

u
n

ct
io

n
al

C
om

p
ar

is
on

b
et

w
ee

n
S

A
S

E
B

O
’s

11



(a) SASEBO-GII (b) SASEBO-W

Figure 2.2: SASEBO-GII and SASEBO-W

4. SASEBO-W : Released on April 1,2011, SASEBO-W is the latest board developed for

smart cards, as they are the major target in today’s cryptographic hardware market.

The boards provides read/write functions to support evaluation tests for these smart

cards. Another notable feature of the SASEBO-W board is the latest Xilinx Spartan-6

LX150 FPGA. Documentation for this board is available in [19].

(a) SASEBO-B (b) SASEBO-R

Figure 2.3: SASEBO-B and SASEBO-R

5. SASEBO-B: The SASEBO-B version board incorporates two ALTERA FPGAs which

features Stratix EP2S15 and EP2S30 for the cryptographic and control circuits respec-

tively [20].
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6. SASEBO-R: The SASEBO-R board has a cryptographic LSI mounted on the socket.

This LSI is fabricated by TSMC 130-nm standard cell technology. Hence it supports

all ISO/IEC standard block ciphers and RSA circuits. An xc2vp30 Xilinx Virtex-II

Pro FPGA is used as the control circuit [21].

2.1 SASEBO-GII

The SASEBO-GII board contains a Xilinx Spartan-3A and a Xilinx Virtex-5 LX30/50

FPGA. A Virtex-5 FPGA was chosen because it had 4-7 times larger logic capacity than

the SASEBO-G Virtex-II boards. The FFG324 package of Virtex-5 was chosen because it

does not have internal decoupling capacitance, and the small size of the board also reduces

parasitic capacitances for clear side-channel signal acquisition. Figure 2.4 shows a block

diagram of SASEBO-GII.

(Control Circuit)

xc3s50a−ftg256

Spartan − 3A

      Xilinx

Oscillator SMA
(External Clk)

SMA
(External Clk)

Virtex −5 

      Xilinx

xc5vlx30−ftg256

(Cryptographic Circuit)

38−bit bus

Vcore Power Monitoring Point

(Internal Clk)

SPI−ROM

JTAG

SPI−ROM

JTAG

Select Map

SPI configuration

  FT2232D
     (USB)

User JTAG

Clock

Configuration

12

DIP SW

Header IO

LED

Config SW

USB connection

SRAM
(2M−bit)

Header IO

DIP SW

LED

Config SW

1 1 1

1 1

8

8

8

8

24 24

62

4 4

4 4

4

4

8

Figure 2.4: SASEBO-GII Block Diagram

The other reason why a SASEBO-GII board was chosen over the rest of the FPGA based

boards (SASEBO/SASEBO-G/SASEBO-B) is because the power consumption of SASEBO-

GII is about 1/6 that of SASEBO-G, owing to its advanced processor with lower power-

supply voltage. The Virtex-5 FPGA also has a dedicated power regulator, and the power

13



lines are electrically separated from the Spartan-3A, thus minimizing the undesirable noise.

This improves the signal quality of the power trace for side-channel attacks.

SASEBO-GII not only gained extended logic area, but also allowed for various means

to access the reconfiguration function of the FPGA. The other two notable changes from

SASEBO/SASEBO-G is the shape of the shunt-resistor for power measurement and both

restricting and separating the clock source. Also the power source, configuration, and data

communication within a single USB is unified for both the FPGAs in SASEBO-GII.

2.1.1 Methods of operation of SASEBO-GII

There are various ways of configuring the control and the cryptographic FPGAs. They are:

SPI-ROM, Select Map and JTAG. In order to support the FPGA Configuration via USB,

the FT2232D chip from FTDI Inc. acts as the USB control IC. As this is equipped with

additional JTAG functions, and the JTAG cable provides the configuration.

Figure 2.5(a) and Fig 2.5(b) shows the static reconfiguration paths where the user PC

reprograms the SPI-ROM of Spartan-3A and Virtex-5 respectively, via USB.

      Xilinx

Spartan − 3A

SPI−ROM

JTAG

  FT2232D
     (USB)

PC
SPI−ROM

JTAG

      Xilinx

Virtex −5 

SPI configuration

Select Map

(a) Spartan-3A

JTAG

  FT2232D
     (USB)

PC

JTAG

Select Map

SPI−ROM SPI−ROM

SPI configuration

Spartan − 3A

      Xilinx       Xilinx

Virtex −5 

(b) Virtex-5

Figure 2.5: Static Reconfiguration

In addition, the SPI-ROM connected to the control FPGA has sufficient capacity for

configuring the cryptographic FPGA. Figure 2.6 shows the configuration of the Virtex-5

directly from the user PC through an 8-bit-wide SelectMap.
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JTAG

  FT2232D
     (USB)

PC

JTAG

Spartan − 3A

      Xilinx       Xilinx

Virtex −5 

SPI−ROMSPI−ROM

SPI configuration

Select Map

Figure 2.6: Programming Virtex-5 using Select Map configuration

For a dynamic partial reconfiguration of the Virtex-5, the corresponding logic part

contained in the FPGA can be configured through the 38-bit bus without suspending the

external I/O.

The above mentioned methods are used based on the applications that make use of

reconfiguration mechanisms of the FPGAs. If experiments based on dynamic or static

entire or partial configurations are to be performed, the control FPGA, controls the SPI-

ROM and Slave-SelectMap configuration mechanisms for the Cryptographic FPGA, Virtex-

5. The JTAG configuration method is followed through this thesis. It will be discussed in

the Configuration of SASEBO-GII board.

2.1.2 Board Configuration

• Power Circuit: There are two ways by which power can be supplied to the SASEBO-

GII board. Power can be supplied through the USB connector to both FPGAs or

external power can be given to each FPGA. Figure 2.7 shows the power circuit block

diagram of the SASEBO-GII. To power the board via USB, SW1 and SW2 is set

to INT. If external power is to be supplied both switches are set to EXT. SW2 is

supplied with 5.0V DC from CN2. SW1 provides the cryptographic FPGA with 1.0V

through CN1. The USB power must be OFF when SW1 or SW2 is switched ON/OFF.

LED1 turns ON to indicate that the 5.0V DC is supplied through either USB (CN6)

or external source (CN2). Table 2.2 represents the power connector settings on SW1

and SW2.
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MAX8556ETE LT1585CM−3.3#PBF TPS7265DCQ MAX8556ETE

Regulator U7 Regulator U2 Regulator U3 Regulator U1

Control FPGA(Spartan−3A)  U10 Cryptographic FPGA(Virtex−5)  U5 

EXT Pin1: 1V
Pin2: GND

CN1

INT

Pin2: GND
Pin1: 5V
CN2 CN6

USB

1.2V 3.3V 2.5V 1.0V

SW1

SW2

EXT

Figure 2.7: Power Circuit of SASEBO-GII

Selection SW2 SW1

Switch INT EXT INT EXT

Power USB CN2: 5V Regulator CN1: 1V

Source (CN6): 5V U1: 1V

Descri- USB Power External Power Regulator Power External Power

ption for both FPGA for Control

FPGA

for Crypto FPGA for Crypto FPGA

Table 2.2: Power Settings for SASEBO-GII board

• Configuration: The cryptographic FPGA (U5) and the control FPGA (U10) each

have a JTAG connector CN3 and CN7 for programming, and the SPI-ROM U4 and

U11,respectively. Figure 2.8(a) and Fig 2.8(b) shows the JTAG configuration path of

Spartan-3A and Virtex-5 respectively using a USB-JTAG programming cable. The

dip switch (SW3) is used to set the mode selection for the JTAG configuration. Ta-

ble 2.3 shows the configuration for SW3 used in this thesis. For each FPGA, when

configuration from SPI-ROM is successfully done, the LED2 or LED11 lit. Pressing

Config-Reset Switches (SW4 or SW6) initiates reconfiguration of the corresponding

FPGA from the SPI-ROM.
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JTAG

  FT2232D
     (USB)

PC

JTAG

Spartan − 3A

      Xilinx       Xilinx

Virtex −5 

SPI−ROMSPI−ROM

SPI configuration

Select Map

(a) Spartan-3A

  FT2232D
     (USB)

PC

Spartan − 3A

      Xilinx       Xilinx

Virtex −5 

SPI configuration

Select Map

SPI−ROM

JTAG

SPI−ROM

JTAG

(b) Virtex-5

Figure 2.8: Programming with JTAG

Switch State

# 1 OFF

# 2 ON

# 3 ON

# 4 OFF

Table 2.3: Mode Settings

for SW3

SW7

Value
bit 1 bit 2 bit 3

Operating Frequency

0 ON ON ON 24MHz

1 OFF ON ON 12MHz

2 ON OFF ON 8MHz

3 OFF OFF ON 6MHz

4 ON ON OFF 4MHz

5 OFF ON OFF 3MHz

6 ON OFF OFF 2MHz

7 OFF OFF OFF 1MHz

Table 2.4: Mode Settings for SW7

• Jumper Settings: There are three jumpers JP1, JP2, JP3 that need to be set to open

or short state depending on connection needed. Table 2.5 shows the purpose of each

jumper and their possible states.
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Purpose Jumper State Description

Short USB connected to GND

USB JP3
Open No connection to USB

Short Bypasses the core-power-side shunt resistor R1

for the cryptographic FPGA

Power

Trace

JP1
Open Enables the core-power-side shunt resistor R1

for the cryptographic FPGA

Short Bypasses the core-power-side shunt resistor R2

for the control FPGA

JP2
Open Enables the core-power-side shunt resistor R2

for the control FPGA

Table 2.5: Jumper Settings for SASEBO-GII board

U11R9 C16C10 R11

SMA connectors
for external
clock sourceJ8 J5

set via SW7

Oscillator X1
(24MHz)

Control FPGA(Spartan−3A) Cryptographic FPGA(Virtex−5)

Figure 2.9: System clock setting on SASEBO-GII

• Clock System: SASEBO-GII has an on-board 24-MHz oscillator X1 that connects with

the control FPGA. A clock signal is provided to the cryptographic FPGA through the

control FPGA. Figure 2.9 shows the clock source connection of SASEBO-GII. The

clock frequency is controlled by a DCM (Digital Clock Manager) on the Spartan-3A

device. The clock frequency can be set between 1MHz-24MHz by selecting bits 1-3

on SW7. Table 2.4 shows the possible frequencies that can be set. If any other clock
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frequency is desired, the source code of the control FPGA could be re-written or an

external clock source could be supplied for each of the FPGAs via SMA connector J5

or J8.

2.2 Setting up the SASEBO-GII for power measurements

SASEBO-GII can be setup along with an oscilloscope in order to measure the power con-

sumption of the circuits. The following software and equipments should be available before

running the test program:

1. A USB cable to supply power to the board and to act as an interface between the

board and the host PC.

2. Either a Xilinx Platform Cable USB, or Platform Cable USB II, or Parallel Cable IV.

This cable is used to program the flash ROMs connected to the FPGAs.

3. Software

• Microsoft .Net Framework 3.5

• To use USB communication, the driver software D2XX provided by FTDI is

needed.

http://www.ftdichip.com/Drivers/D2XX.htm

• National Instruments NI-VISA 4.6.2 should be installed.

• Software for testing AES/DES module on SASEBO-GII: SASEBO AES Checker,

SASEBO DES Checker, SASEBO SHA Checker.

http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

• Xilinx ISE WebPACK or Foundation, whichever works.

http://www.xilinx.com/ise/logic_design_prod/webpack.htm

19

http://www.ftdichip.com/Drivers/D2XX.htm
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
http://www.xilinx.com/ise/logic_design_prod/webpack.htm


2.2.1 FPGA configuration

The USB cable provides a connection between SASEBO-GII and the host PC. In the

SASEBO-GII board, the primary settings to be noted is to have JP1 open, place a jumper

on JP2 and set the DIP switch SW3 to the settings mentioned in Table 2.3.

In order to program the FPGAs, bit files and mcs files are needed. The bit files help

generate the mcs files, which in turn program the flash ROMs. The Config-Reset switches

are then used to program the FPGA. This section gives a detailed step-by-step approach of

SASEBO-GII FPGA configuration.

Figure 2.10: PROM File Formatter

• Once the project has been synthesized and implemented in Xilinx ISE, the pro-

grammable “bit file” can be generated. Once the bit file is generated, the device

can be configured using Impact. To reprogram the flash ROM (ST45DB16D, U11)

for the control FPGA (Spartan-3A) the configuration cable is connected to CN7. To

reprogram the flash ROM (ST45DB16D, U4) for the cryptographic FPGA (Virtex-5

LX30) the configuration cable is connected to CN4.

20



• In Xilinx iMPACT, select PROM File Formatter. Here we can select the storage

target, namely a Xilinx Flash/PROM, add a storage device and set the name for the

mcs file to be generated as indicated in Fig 2.10. Now we can add the generated bit

file to the Spartan-3A or Virtex-5 FPGA based on which FPGA we are programming.

Once the bit file is added, clicking on Generate File in iMPACT Processes will generate

the mcs file. Refer to Fig 2.11 for details.

Figure 2.11: PROM File Formatter for generating the mcs file

• Once the generate file in PROM file formatter has succeeded, the corresponding folder

contains the mcs file to program the Flash ROM. Select ‘Boundary Scan’ in iMPACT.

An “initialize chain” would help detect the Xilinx FPGA chip and the associated

Flash ROM. The programming of FPGA can be by-passed, as indicated in Fig 2.12.

The JTAG programming method followed here first programs the ROM with the mcs

and then the FPGA is configured through the Config-Reset switch.
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Figure 2.12: Boundary Scan

• Right click on the device and select ‘Add SPI Flash’. Then, choose the mcs file just

generated and select the SPI Flash type as ‘ST45DB161D’ (this is the type of flash

ROM available on the SASEBO-GII board). Now right click on the added ‘Flash’ and

select ‘Program’. Figure 2.13 shows this.
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Figure 2.13: Programming the SPI Flash

• Once the programming for the Control FPGA is succeeded, the same procedure can

be followed to program the flash ROM for the Cryptographic FPGA.

• The Flash ROMs store data in them until they are reprogrammed. To enable down-

loading the bit stream from SPI Flash to the FPGA the ‘CONFIG-RESET’ buttons,

SW6 and SW4, must be pressed.

• After a power cycle, the LEDs D1, D2, and D11 turn on. If D1 does not light,

it indicates a problem with the power supply. If D2 and D11 are off, it implies a

power supply problem, SASEBO setting problem, or failure in reprogramming the

flash ROM.

2.2.2 Encryption test

The SASEBO Checker software for AES/DES is available from AIST. This is a code written

in C# to do the Encryption test. Figure 2.14 shows AES running on the cryptographic

FPGA. Once the Key and the number of traces is provided, the test takes place and the
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cipher text is generated for each of the plain text. This is the primary verification process

to see that for any key and plain text combination, the AES/DES encrypts it to the correct

cipher text.

Figure 2.14: SASEBO TESTER for AES

2.3 SASEBO Waveform Acquisition

SASEBO Waveform Acquisition is a program written by the AIST group to capture the

power consumption waveforms of an AES circuit on the SASEBO-GII board. Further

modifications to this code was made to get the trigger signal plotted for a DPA attack.

2.3.1 Installation and Preparation of Sasebo Waveform Acquisition

The required software apart from those installed for the Checker is:

SASEBO Acquisition installer, Setup.msi can be downloaded from the DPA contest page

http://staff.aist.go.jp/akashi.satoh/SASEBO/en/DPAcontest/index.html

When the installation is completed, the folder of Sasebo Waveform Acquisition contains

the C# source codes and their Visual Studio project that currently only works with their
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AES implementation. However, this C# source codes were edited to meet our needs.

2.3.2 Capture waveform data

The following steps are to be followed to capture the power and trigger data for a DPA

attack.

Figure 2.15: Measurement Setup for SASEBO-GII

• Connect SASEBO-GII and DSO6054A to the PC using USB cables.

• Configure the required operating frequency using the Table 2.4 for SW7.

1. If using two probes from the oscilloscope to SASEBO-GII

Channel 1: Measure power across TP2 (GND to TP5)

Channel 2: Measure trigger across 1st pin of J6 (GND to the brace on the corner)

2. For using one SMA-BNC cable and one probe

Channel 1: Measure power across J2 as shown in Fig 2.15

Channel 2: Measure trigger across 1st pin of J6 (GND to TP3)
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• For channel 1, the vertical scale is set to 10 mV/div, and the offset to 1.04 V/div. The

trigger signal is taken from pin 1 of J6 with the probe connected to channel 2. The

ground wire of the probe is connected to TP3. For channel 2, the vertical scale is set

to 1.0 V/div and the offset to 0 V. The triggering mode is set to negative edge.

• Power up DSO6054A and SASEBO-GII.

• Launch SASEBO Waveform Acquisition program. The program does not recognize the

DSO6054A immediately because the C# script was not written for it. “Oscilloscope

is not ready” error message will be displayed as shown in Fig 2.16(a). Similarly if

the SASEBO-GII board is not turned on, we get another error message. Once the

code is written for the oscilloscope DSO6054A and is recognized by the program,

“USB0:XXXX” is displayed on the “Oscilloscope” box.

(a) Oscilloscope Setup (b) Scope Properties

Figure 2.16: Waveform Acquisition Settings

• Configuration of the oscilloscope. Click the “Scope Properties” button for configu-

ration of the oscilloscope and set parameters as per the requirements in Fig 2.16(b).

Optimal values vary depending on the type of the probes, and thus adjustments would

be required according to user environment.

• There are two ways to generate plaintext input; use a random number generation func-

tion or specify the plaintext in a text file. When the radio button of Settings→Input
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Plaintext File is marked, the plaintext is read from the specified text file. If the

number of rows in the file is smaller than the number of traces indicated by #Traces

an End Of File(EOF) is detected in waveform acquisition, and the read pointer of

the plaintext is returned to the first row of the file. For example, if the file has only

one row of the 128-bit plaintext data, the same text is repeatedly encrypted for the

#Traces specified. If “Input Plain Text File” is not specified, random numbers are

generated for the plaintext inputs.

• The Single button on the waveform acquisition could be used to get a single power

and trigger waveform, and it can be used to check whether the full waveform fits in the

window. If not the values of the scope property can be adjusted to fit the waveform

in the window. Figure 5.4 shows a example waveform taken from the AES design.

• If multiple encryptions are to be calculated, the number of traces to be captured is

specified in the “#Traces” box, and the “Start” button is clicked. Here again, the

plaintext file can be randomly generated or chosen from a text file. Multiple traces

generate a set of ciphertext and power and trigger waveforms for the corresponding

plaintext, and the waveform data is stored in a folder with timestamps “YYYY, MM,

DD, hh, mm and ss”.
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Chapter 3: SASEBO-GII Interfaces

Figure 3.1 shows the basic overview of the SASEBO-GII interface. Data is sent from the PC

via USB to the control FPGA which in turn sends the data to the cryptographic FPGA.

Once the data is processed, it is sent back to the PC through the control FPGA. The data

transmission to/from the PC is handled efficiently by the software SASEBO Checker or

SASEBO Waveform Acquisition. As discussed in the introduction, this chapter defines the

various changes needed to design a new interface.

CRYPTOGRAPHIC FPGA

lbus_we

lbus_ful

lbus_aful

lbus_rd [7:0]

lbus_re

lbus_emp

lbus_aemp

lbus_clk

lbus_rstn

lbus_rdy

CONTROL FPGA

D[7:0]

RD#

WR

RXF#

TXE#

usb_d [7:0]

usb_rdn

usb_wr

usb_rxfn

usb_txen

lbus_wd [7:0]

lbus_we

lbus_ful

lbus_aful

lbus_rd [7:0]

lbus_re

lbus_emp

lbus_aemp

lbus_clk

lbus_rstn

lbus_rdy

USB INTERFACE

lbus_wd [7:0]

Figure 3.1: Basic SASEBO-GII Interface

3.1 SASEBO’s original 8-bit Interface

This section discusses the original interface between the software and the FPGAs present in

the SASEBO-GII board. A better understanding of this interface is required to make any

changes to the design, as the data transmission is handled by more than one FPGA and

a software. Each and every module in the control and cryptographic FPGA is explained
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briefly in this section, and in the next section, the modifications to all the necessary modules

are explained in detail to build the new interface.

Figure 3.2 shows the original interface designed by AIST for a block cipher to be imple-

mented on the SASEBO-GII board. For a better explanation, each of the FPGA is broken

down into modules that handle certain functionalities.

1. On the control FPGA side, an FT2232D chip from FTDI inc. is used, which on one side

sends or receives data via USB to the software and on the other side, communicates

the data with an asynchronous FIFO. Asynchronous FIFOs are used in the control

FPGA because of their advantage of using two different clock domains for writing

and reading. This is an integral part of the circuit because a series of data values is

communicated from the USB at one clock frequency to the FPGAs at another clock

frequency. Bus connectors complete the design of the control FPGA. As the name

suggests, they are used to basically communicate the data to/from the control FPGA

to the cryptographic FPGA. Also on the control FPGA, there is a Digital Clock

Manager circuit, that generates an internal clock signal for the cryptographic FPGA.

Using this DCM, the clock for the cryptographic FPGA could be slowed down to a

multiple of the original clock frequency.

2. The cryptographic FPGA receives the clock and reset signals from the control FPGA

apart from the data from the bus connector. The modules which form the crypto-

graphic FPGA are a synchronous FIFO, a controller for the local bus interface, the

local bus interface and the block cipher implementation. A synchronous FIFO is used

to synchronize the write and read data using the same clock. The local bus inter-

face has a memory where the data is stored, and once all the data to be processed

is received, it sends it to the block cipher for encryption/ decryption. As the en-

crypted/decrypted data from the block cipher is sent back to the local bus, it again

stores the complete data, and sends it back out to the interface. Addressing method

is used to send and receive the data in the local bus interface. These addresses are

fixed for this interface, and the addressing along with the data is sent and received
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through the software.
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Figure 3.2: SASEBO Interface for AES
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FT2232D: The FT2232D is a single chip that supports USB to dual channel serial/

parallel ports with a variety of configurations [22]. This chip acts as the communication

interface between the software “SASEBO Checker or SASEBO waveform acquisition” and

the SASEBO-GII board. The FT2232D has two IO channels (A and B) each of which can

be individually configured as a UART interface, or as a FIFO interface. In addition these

channels can be configured in a number of special IO modes.

RD# inactive for Data hold 

RD#

RXF#

D[7:0] Data

RD# inactive to RXF#

RD# active pulse width RD# precharge time

RXF# inactive

RD# active for active data

(a) Read Cycle

TXE# inactive

D[7:0]

WR

TXE#

Data

WR active pulse width WR precharge time

WR inactive to TXE#

Data setup time
Data Hold while WR inactive

(b) Write Cycle

Figure 3.3: USB to FIFO timing diagram

The FT2232D chip in the original block cipher implementation was used in the FIFO
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interface, and the same interface was maintained throughout this thesis. Figure 3.3(a) and

Fig 3.3(b) shows the FIFO mode timing diagram. When either Channel A or Channel B is

in FIFO mode, the IO signal lines are configured as shown in Table 3.1.

Pin in Signal Type Description

D0-D7 I/O FIFO 8-bit data bus

RXF# Output 1: No data is read from the FIFO.

0: Data is available in the FIFO.

It is read by strobing RD# low then high again

C
h

an
n

el
A

C
h

an
n

el
B RD# Input 0: Current FIFO Data Byte on is stored in

D0..D7

TXE# Output 1: No data is written to the FIFO.

0: Data is written into the FIFO by strobing

WR high then low

WR Input 1: The data is written from the data bus to the

transmit buffer

Table 3.1: USB FIFO Interface - FT2232D

AsyncFIFO: The asynchronous FIFO is designed using a dual port RAM, read pointer

logic and write pointer logic and synchronizer. Figure 3.4 shows the block diagram of async

fifo used in this design. The dual port RAM has two ports - one for reading and one for

writing. Read port has its associated memory addressing logic called as ‘read pointer’ (r ptr)

logic and write port has a ‘write pointer’ (w ptr) logic. As these two ports are independent

of each other, asynchronous FIFO uses two different clocks. Four bit gray counters is used

to generate address for read and write ports. When FIFO is reset both read and write

pointers point to first memory location of the FIFO. As and when data is read from FIFO,

read pointer gets incremented and points to next memory location. Similarly when write

operation takes place write pointer increments and points to the next memory location.
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Figure 3.4: ASYNC FIFO design

The FIFO status flags used in this design are: full(ful), empty(emp), almost full(aful),

almost empty(aemp). ‘Full flag’ and ‘empty flag’ are generated depending on the comparison

result of FIFO pointers. A ful signal is triggered, when w ptr reaches the memory location

of r ptr, and an emp signal is triggered when the r ptr reaches the memory location of

w ptr. The ‘almost full’ and ‘almost empty’ flags are set based on the pointer differences;

ptr diff=w ptr-r ptr, if w ptr >r ptr

For example, if w ptr=8 and r ptr=3, then ptr diff=8-3=5. If w ptr=7 and r ptr=12,

then ptr diff = (16-12) + 7=11. The difference is always calculated if there is a change in

the address. Thus ptr diff dynamically reflects the status of the FIFO. The advantage of

this design is that we can use any read and write clock frequencies, within the maximum

operating frequency. This design was based on [23].

Bus Connector: Bus Connector is a register that is used to interface the Control and the

Cryptographic FPGA. The basic idea behind a bus connector is to write/read data to/from

the cryptographic FPGA on a positive clock when the register is enabled.

AES: The modules in the cryptographic FPGA can best be explained with a basic knowl-

edge of the block cipher implementation and how the software sends data for processing.

AES-128 is implemented on the cryptographic FPGA, where the key and plaintext from the

software is sent to the AES, gets encrypted and the ciphertext is sent back to the software.
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Further details on the AES implementation is given in Chapter 4.

Local Bus Interface: With an 8-bit interface existing between the software and the

control FPGA, and also between the control and cryptographic FPGA, the software sends

the data based on an addressing method that is defined by the local bus(lbus if) interface.

The lbus if has a memory that stores the data based on the addressing values. Once the

128-bit data is collected in the lbus if, it is sent to the AES. It is predefined that for

address(lbus a) between 0x100-0x10E, the software sends the key, and for lbus a between

0x140-0x14E plaintext is sent. Once the encryption is processed, the 128-bit ciphertext is

stored in the lbus if memory, which is then read out with lbus a pointing to 0x180-0x18E.

One key point to be noted here is the interface from the controller for local bus(ctrl lbus)

changed from 8-bit to 16-bit, to accommodate the data being transferred as two 8-bits for

one memory address.

Sasebo Checker and Waveform Acquisition: Checker software is used to ensure that

data processing is done in an efficient manner. Waveform Acquisition is a software similar

in functionality to the Checker, but has a few added features. Both codes are written

in C# and has a Graphical User Interface (GUI). For a block cipher implementation on

the SASEBO-GII board, key and plaintext can be randomly generated using the Checker

and sent to the board for processing. This software also pre-computes the block cipher

encryption or decryption and generates a ciphertext for the same key and plaintext values.

That way it is used as a verification tool to ensure that the ciphertext computed from the

block cipher implementation on the SASEBO-GII board is the same as that generated using

the software. The waveform acquisition, on the other hand, integrates with an oscilloscope

to capture the wave traces as the encryption/decryption takes place on the hardware.

The way both these software communicates with the hardware is via the FTDI chip

FT2232D. When data has to be written to the board, the write routine of FT2232D is used,

and when data has to be read from the board, the read routine is used. Data written to

the board is basically the address where the data need to be stored in the lbus if and the

data itself. For reading the data from the board, the addressing for the lbus if is sent, and
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the data in the corresponding address locations is read.

Results from this implementation are discussed in the next few chapters.

3.2 Modified 8-bit Interface
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dst_write
1
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dst_ready
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Figure 3.5: CERG-GMU protocol

This section describes the changes made to the original SASEBO-GII interface to match the

CERG-GMU protocol. The protocol from the Cryptographic Engineering Research Group

(CERG) of George Mason University for a block cipher or a Secure Hash Algorithm (SHA)

could best be described in Fig 3.5. The block cipher is assumed to send and receive data

via a FIFO interface in the given protocol. As the signals from the control FPGA were

generated by the async fifo and was sent via bus connector to the local bus interface, it

was easy to integrate the CERG-GMU protocol directly with the control FPGA with a

few changes to the control FPGA and the software mentioned below. Table 3.2 shows the

functionality of the input and output ports of the protocol.
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Control Signals

clock in Input clock from the control FPGA.

reset in Global reset signal - Active High.

Input Signals

Datain in 8-bit input data

src ready in When src ready is active high, it indicates that the data is being

sent from the control FPGA to the protocol.

src read out When src read is active high, the block cipher is ready to receive

the input.

Output Signals

Dataout out 8-bit output data

dst ready in When dst ready is active high, it indicates that the control FPGA

is ready to receive data from the protocol.

dst write out When dst write is active high, encrypted/decrypted data is sent
out to the control FPGA.

Table 3.2: Functionality of CERG-GMU protocol signals

3.2.1 Modifications to the design

The existing 8-bit interface of SASEBO-GII was modified to implement a lightweight block

cipher on the cryptographic FPGA and test the round trip communication between the

software and hardware. Figure 3.6 shows the modified interface where the control FPGA

directly connects to the CERG-GMU protocol. The signals between the control FPGA and

the protocol had to be modified as mentioned below to match the specifications:
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Figure 3.6: Modified Interface

1. The reset from the Control FPGA is active low, and the signal is inverted in the

Cryptographic FPGA to be sent as an active high reset to the lightweight AES im-

plementation.

2. The src ready signal is mapped to lbus we signal on the control FPGA. src ready

being an input active high signal, triggers once an active high signal is received from

lbus we. As lbus we is an active high signal by itself, these signals are directly mapped

to each other.

3. The src read signal is mapped to lbus ful signal on the control FPGA. The lbus ful

is interpreted as follows: if lbus ful = ‘1’, then the FIFO on the other end is assumed

to be full and data is not sent and if lbus ful = ‘0’, FIFO is assumed to be empty,

and data is sent. However, mapping lbus ful to src read, there is a conflict in the

polarities of these two signals, and hence the src read was inverted before sending it

to the control FPGA.

4. dst ready is mapped to lbus re signal on the control FPGA. As the lbus re is an active

low signal by default, this signal was inverted and mapped to the cryptographic FPGA.
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5. dst write signal is mapped to lbus emp signal on the control FPGA. Again, the

lbus emp can be interpreted as follows: if lbus emp = ‘1’, the FIFO on the other

end is not empty and data is ready to be sent, and if lbus emp = ‘0’, FIFO on the

other end is assumed to be empty, and no data is present. With dst write as active

high, it means that the cryptographic FPGA is not empty, and there is data to be

sent. Hence this signal is directly mapped with each other without any change.
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Figure 3.7: SASEBO-GII interface between Control FPGA and CERG-GMU protocol

With these modifications made, the interface between the control FPGA and the CERG-

GMU was fixed. However, as indicated in Fig 3.7 for the complete interface to work and

be tested, the following modifications were made to the software. These modifications were
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tested only on the 8-bit implementation of lightweight AES. This interface supports only

the lightweight implementation of 8-bit AES and will most likely apply to all (or at least

majority) of lightweight block cipher implementations with the same interface.

3.2.2 Modifications to the software

For both the SASEBO Checker and the SASEBO Waveform Acquisition software, the pro-

gramming components and class hierarchies were modified. All modifications mentioned

below are with respect to the Waveform Acquisition software, changes of which can be

directly implemented on the SASEBO Checker software. The software was programmed

using C# and .NET 3.5.

The basic structure of the SASEBO acquisition can be seen as an MVC (Model, View,

Control) model, with each function implemented using the same flow design. MVC can

be imagined as a design pattern, where the flow of data is understandable and can be

redesigned at any point of time. Figure 3.8 shows the entities of Model, View and Control

realized as C# classes:

Control

corresponds to the view 
of the MVC model

A user interface which 

View

a waveform model
or  

An oscilloscope model 

Model

and the view 
manages both the model 
a task control function 

Controller/Tracer where

Figure 3.8: MVC design

The user interface corresponds to the View of the MVC model. This is where the user

interacts with the MVC for sending data to the board.
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The controller and Tracer corresponds to the Control of MVC model, where the function

manages the experimental environment, repeats the trial a specified number of times and

quits the application when completed or the user cancels it. The controller model of MVC

instructs the SASEBO-GII board (actual device) to execute AES encryption at appropriate

timing, waits on the board until the AES encryption is completed, and then retrieves the

result SASEBO-GII generates.

Oscilloscope Model and Waveform Model - These are models of MVC, which sets up an

oscilloscope for measuring power consumption waveforms when SASEBO-GII is working.

Oscilloscope class: Oscilloscope is an abstract class, where the IOscilloscope interface

is implemented. Every oscilloscope class inherits the main Oscilloscope class. If a new

oscilloscope with visa drivers must be implemented, the Oscilloscope::None class is a good

starting point. Though it is a class that has no measurement logic, it implements all methods

to work as an oscilloscope. Table 3.3 shows the methods that are to be implemented for

each oscilloscope installed:

IOscilloscope Method Description

void init() init() will be called once by Tracer to configure the oscillo-
scope when the experiment starts.

void activate() Tracer calls activate() to set the trigger of the oscilloscope
and get data when experiment starts.

void acquire() This is used to setup the oscilloscope’s internal memory,

before capturing the sequence of waveforms. After the setup,

oscilloscope waits on the next trigger.

float[] correct () collect() will be called by Tracer to retrieve the waveform
signals from the oscilloscope’s internal memory.

void close () The VISA connection between PC and oscilloscope is closed

by the Tracer.

Table 3.3: Oscilloscope Class

Tracer class: Tracer is a class that controls the flow of execution. The process model

40



and changes made to the Tracer class are discussed here. Figure 3.9 shows the steps followed

during each process of execution from start to completion.

(c)

TRACER SASEBO OSCILLOSCOPE

start

iteration

completion

click the 

start/single

button

init

activate

execute

acquire 

collect

dispose

close 

init

# of iterations 

depends on the 

# of traces

if cancel was clicked

or the execution 

was completed

(a)

(b)

Figure 3.9: Process flow during execution

As the first step, Tracer object proceeds with the steps shown in (a): It initializes

SASEBO and the oscilloscope, and the oscilloscope waits for a trigger from the SASEBO.

During the execution stage (signal capturing) the Tracer instructs the oscilloscope to acquire

a waveform, while the SASEBO is performing encryption. Once the encryption is successful,

tracer retrieves the waveform from the oscilloscope. These steps are shown in (b). After

receiving the results, tracer validates the encryption result with the software implementa-

tion’s result. A match would mean a successful encryption. (c) shows the steps involved on

completion of the execution. Tracer closes the communication with the oscilloscope and it

calls the SASEBO Dispose method to release the resources for further executions.

Control class: A Control class holds the configuration of the models, and the tracer.

This class basically passes configurations to Tracer object for execution. Table 3.4 shows

the specifications of configurations for the control class.
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Property Description

int NumOfTraces[get, set] The number of times an experiment should be

performed

byte[] Key [get, set] Secret Key used for the experiment

Mode SASEBO operation mode (Encryption or de-
cryption)

Oscilloscope.Oscilloscope [get, set] Oscilloscope used for the experiment

ISASEBO Sasebo [get, set] SASEBO board used for the experiment

SASEBOCore Core [get, set] The Cipher which is implemented on the

SASEBO board

CipherTool.IBlockCipher Cipher Verification using the software implementation

of the block cipher.

Table 3.4: Control Class

SASEBO class: The actual SASEBO-GII board is represented by

SASEBO GII AES rev1 class in the program. The FTDI or RS232 is setup as a

communicable interface with the SASEBO-GII board via SASEBOBaseModule class, as

shown in Fig 3.10. If the communication mechanism between the PC and SASEBO has to

be modified, an additional class can be created that replicates the structure of the FTDI

or RS232. These modifications can be made in the SASEBO GII AES rev1’s constructor.
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Figure 3.10: Class Hierarchy of various models

Since this new interface did not follow the addressing method that was used to im-

plement the AES from the SASEBO team, changes were made to the local bus C# code

and the SASEBO GII AES rev1 code to follow the input data style. An 8-bit command

0x00 was sent from the SASEBO GII AES rev1 code before the 128-bit key was sent and

the command 0x07 was sent before the data was sent. A write and read command to

the SASEBO Localbus C# code was made when data had to be written or read from the

SASEBO-GII board. The SASEBO Localbus code initially sent the address and the corre-

sponding data in that address to the write protocol to be sent as input to the FPGA. And

it sent the address corresponding to the ciphertext to the write protocol, and data was read

from the board using the read protocol. However, since the CERG-GMU protocol did not

follow the addressing method, the codes for SASEBO GII AES rev1 and SASEBO Localbus

was re-written with only the input data being sent at the appropriate time using a write

protocol, and the usb txe# as the control signal for to read the ciphertext using the read

protocol. In other words, the usb txe# and usb rxe# are used as control signals, as opposed

to the addressing method to send inputs to the hardware and receive output. Initial reset

is also sent in via the usb rxe#.

Initialization of the SASEBO GII AES rev1 is done using the init method. The syntax
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used for the implementation is shown in

void ISASEBO.init(SASEBOCore core, Mode mode, Key key)

where the core is the cipher implemented, mode is encryption/decryption and key is the

secret key. Once the initialization is done, SASEBO GII AES rev1 object does encryption

as shown in

byte[] ISASEBO.execute(byte[] input)

A call for the ISASEBO.execute is going to wait for the AES to encrypt the data and

send it back to the software. In the previous case, the encryption process immediately

started once both the plaintext and key was received and the ciphertext was sent out 8-bits

at a time, starting the next clock cycle. However for the lightweight AES implementation,

there is a wait time that the software has to encounter between sending the data and

processing it in the hardware implemented using

int Wait [get, set]

This wait time of 290 clock cycles is implemented using a local timer, that keeps the

FTDI chip from timing out, and also avoid any exceptions that are created. Once the

software receives the ciphertext, a Dispose method is used to release the SASEBO objects.

It basically closes the USB connection and releases the port.

The round trip communication was verified successfully with the above modifications

on the new interface.
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Chapter 4: Block Ciphers

4.1 Extended Tiny Encryption Algorithm(xTEA)

The Tiny Encryption Algorithm (TEA) was developed by David Wheeler and Roger Need-

ham [12]. Their main goal was to have a cipher that was short, simple and did not have large

tables or pre-computations. Because TEA uses simple addition, XOR and shift operations

and has a small size of code, it was chosen as an ideal candidate for sensor nodes which

have limited memory and computational power [24–26]. This simple design of TEA makes

it suitable for hardware implementations [13, 27, 28], though it was developed for software

implementations. TEA has undergone scrutiny from the cryptanalysis community. Results

from cryptanalysis on a reduced round of TEA can be found in [29]. The weaknesses found

in the TEA cipher led to the new version XTEA (short for eXtended TEA) [30]. This new

version, also called tean, was faster than TEA since the main round had two fewer addition

operations. However, the 32-round version of TEA is still considered to be secure.

4.1.1 Architecture of xTEA and its implementation

xTEA is a block cipher that encrypts/decrypts data in blocks of 64 bits using a 128-bit

key. There are typically 32 rounds of operation, where each input block is split into two

halves y and z. These two halves are then applied to a routine similar to Feistel network.

While most Feistel networks use XOR for applying the mixed function result to one half of

the data, xTEA uses integer addition modulo 232 for encryption. The output variables z,

y, and sum are 32-bits. The formulae that computes the new values for y and z are split

into a permutation function that is XORed with a subkey generation function as indicated

by Eq.4.1, 4.3 and 4.2.
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y+ = ((z << 4⊕ z >> 5) + z)⊕ (sum+ k[sum&3]) (4.1)

sum+ = δ (4.2)

z+ = ((y << 4⊕ y >> 5) + y)⊕ (sum+ k[sum >> 11&3]) (4.3)

Note that << stands for logical left shift, >> for logical right shift and ⊕ for bitwise

XOR.

+ / − 

f

XOR

+ / − 

Keygen

f

XOR

Keygen

delta

Halfround 1

Halfround 2

subkey

subkey

32 32 12832

keysumy/zz/y

+ / − 

Figure 4.1: xTEA Block Diagram

Figure 4.1 shows the block diagram of xTEA, where the permutation function is in-

dicated as f and the subkey generation function as Keygen . The function k[sum] in
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Keygen selects one of the four 32-bit block of the original key depending on either bits 1

and 0, or bits 12 and 11 of the variable sum. Every round of TEA computes a new value for

y and z. The computation of one value is viewed as “half-round” since the same function is

used for both. Sum is either incremented/decremented by δ during encryption/ decryption,

thus computing a new value for sum between the first and second round. The ASIC and

FPGA implementation of this architecture can be found in [13].

4.2 Advanced Encryption Standard

The Advanced Encryption Standard (AES) was selected as an encryption standard by NIST

in 2001. The cipher, first published in 1998, was originally developed by Vincent Rijmen

and Joan Daemen. AES is a collection of three separate block ciphers: AES-128, AES-

192, AES-256, ordered in terms of the key size used for encryption or decryption. AES

is currently used in applications where security is a concern. These properties make AES

another good candidate for work with power analysis side-channel attacks.

Unlike Data Encrytion Standard (DES) which is based on Feistel network, AES works

on the design principle of Substitution permutation network. AES has a fixed block size

of 128 bits and a key size of 128, 192, or 256 bits, giving it the names mentioned above.

For example, an AES-128 cipher computes a 128-bit ciphertext from a 128-bit block of

plaintext and a 128-bit key by executing eleven AES rounds. Figure 4.2 shows the basic

flow of AES - its 11 rounds of computation. Within each round, AES consists of four main

stages; AddRoundKey, SubBytes, ShiftRows and MixColumns. Round Keys are derived

from the cipher key using the Rijndael key schedule.
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Figure 4.2: AES rounds of operation

• AddRoundKey is a step where the input is bitwise xored with the round key.

• ShiftRows is a transpositional step where the bytes in a row are shifted along the row

by a specific number of places.

• SubBytes is a non-linear operation where each input byte is replaced by another byte

based on the look-up table defined in the AES specification. This look-up table is

commonly known as substitution box (S-Box).

• MixColumns is a mixing operation where the four bytes in a column are combined by

modulo multiplication with a fixed polynomial.

The 11 rounds of AES are performed in the following manner : With the Round keys

derived from the cipher key using Rijndael’s key schedule, this Key schedule logic is used
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to input round keys for every round. The first round involves just the AddRoundKey

operation. Round 2-Round 10 involves all the four operations on the input. In the final

round of AES, there is no MixColumns operation. For a complete description of AES, refer

to [11].

4.2.1 SASEBO-GII AES Implementation

The AES-128 from the SASEBO team is a straightforward efficient implementation, with

one round per clock cycle and the clock running at 24MHz. The features of the AES from

SASEBO team are summarized in Table 4.1 along with other implementations. Under the

SASEBO AES implementation, it is to be noted that the total implementation are is for

the cryptographic FPGA which contains all the modules (SyncFIFO, Ctrl LBUS, LBUS IF,

AES) and the AES column is the area of just the AES implementation. Fig 4.3 shows the

encryption flow of AES. This AES is implemented in the ECB (Electronic Code Book)

mode, but other modes such as CBC (Cipher Block Chaining) can be easily supported by

using additional data buffers and a control circuit. For this implementation, there is an

initial XOR between the key and data followed by 10 rounds.
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Figure 4.3: AES Encryption

4.2.2 GMU Compact AES Implementation

This is a lightweight architecture of AES implemented by a research member of the CERG

group from George Mason University. The basic top level interface of this architecture was

described in the Interfaces chapter in Fig 3.5. The input key and data size is 128-bits. An

8-bit command in Fig 4.4 decides the processing mode and input data. When the last 3 bits

in the command is “000”, the key is sent in, and for “001” the plaintext is sent in, with

continuing data blocks. If only one data block should be sent, the command “011” is used.
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Figure 4.4: 8-bit command for the input

Figure 4.5 shows the datapath of the compactaes implementation. Both the key and

plaintext are input via the datain bus, based on the command which precedes the data. It

is to be noted that the data and key are sent byte-shifted to the AES. Key is stored in a

Dynamic Random Access Memory (DRAM). In the first round, data gets xored with the

key and is stored in DRAM. The remaining rounds of AES follows next with the SBOX

and MixColumn operations. The input data gets shifted before going through the SBOX

operation.
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Figure 4.5: Datapath of Compact AES Implementation
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Board SASEBO-GII Xilinx-Spartan 3E

FPGA Control Cryptographic

Implementation SASEBO AES Compact AES xTEA

Language Verilog-HDL VHDL VHDL

Data Block Size 128 bits 8 bits 64 bits

Key Size 128 bits

Round Key Pre-calculation and On-the-fly

Implementation Total AES

Area(slices) 165 1270 796 104 304

Minimum Period 11.415ns 12.905ns 8.231ns 6.346ns 17.629ns

Table 4.1: Implementation Overview
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Chapter 5: Attack Methodology

5.1 Measurement Setup

1. The Differential Power Analysis attack on xTEA was done using a Xilinx Spartan 3E

starter kit with a XC3S500E-FG320-4C FPGA. On the Starter Kit, the capacitors

around the core voltage net and the FPGA are removed to obtain unfiltered power

signals. Power consumption on the board is measured using a Tektronics CT-1 current

probe, and an input clock frequency between 100KHz- 500KHz is applied. An external

DC power supply is used to power the FPGA core. An Agilent DSO6054A oscilloscope

is used to capture the power traces. This has a bandwidth of 500MHz and can record

samples up to 4GSa/sec.

2. Except for the xTEA attack, the rest of the experiments were performed using the

SASEBO-GII board. Power measurements were taken across a 1Ω shunt resistor on

the VCORE line using a SMA-BNC cable. The traces were captured using the same

oscilloscope and the input clock frequency was varied between 500KHz-24MHz.

5.2 DPA Attack Methodology

DPA attacks were performed on all designs discussed in this thesis. Fig5.1 shows the flow

of attack, while the steps involved in the attack is summarized below:

1. Equation for attack: For a DPA attack, the attacker needs to know the point of attack

and the number of bits to be attacked. The point of attack is usually a register or

memory element. The attack equations are derived from the previous and next values

at the point of attack. The number of bits decides the mathematical computations
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involved and the complexity of an attack. Though the correlation gets better as the

bit size increases, the computation complexity becomes infeasible. Choosing 8 bits

as the attack bit size would yield 28 different possible combinations for the unknown

key(00 to FF) which would be nominal.

2. Power model: The hamming distance is calculated using the attack equations derived

for each cipher, for all possible values of the key, and a power model is calculated for

that design. The hamming distance code is written in C.

3. Measure Power: With the HDL code synthesized and implemented on the FPGA, the

measurement setup above helps measure the instantaneous power consumption when

algorithm is being executed on the FPGA.

4. Correlation Plots: Pearson’s correlation method is used to correlate the actual

recorded power trace from step 3 and the calculated power model from step 2. The

code for correlation is written in Matlab. The correlation plots show the correlation

of each assumed key value with the actual power trace. The correct key is the one for

which maximum correlation is obtained.

5. MTD graphs: Measurements To Disclosure(MTD) is defined as the minimum number

of measurements that is required to recover the correct key, and the number after

which the correlation of a particular key value dominates all other key values.
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Figure 5.1: DPA Attack Flow

5.3 Attack Design of xTEA

Fig5.2 shows the wrapper circuit along with the xTEA cipher for performing the DPA

attack. The wrapper circuit consists of a 2x1 multiplexer, a command generator and a

trigger counter. In order to locate the point of attack on the power trace, we generate a

reference trigger signal at appropriate clock cycles. Either the data from Linear Feedback

Shift Register (LFSR) or the Key is selected as input to the xTEA cipher using a 2x1

multiplexer. The LFSR generates random plaintexts which are either 64-bit or 128-bit

depending on the block size needed. The seed value differentiates between the sets of

plaintexts generated. For this attack, 2000 plaintexts are generated using a particular seed.
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5.4 Attack Design of AES on SASEBO-GII

This AES is implemented in the ECB mode, and the encryption circuit of the AES is

shown in Fig 4.3. The trigger signal is set just before the data processing for the 11 rounds

start. Sets of plaintexts to be encrypted is sent in to the cryptographic FPGA through

the software SASEBO Checker. Once the encryption is completed, a set of ciphertexts

for the corresponding plaintexts is collected. These ciphertexts serves for the verification

purpose. This process is repeated for 10,000 traces/encryptions for the same ‘secret key’.

Once multiple sets of plaintexts are generated, we run the Sasebo Waveform Acquisition

software with the scope properties on the oscilloscope set as mentioned in Table 5.1.

XOffset XRange Y1Offset Y1Range Y2Offset Y2Range

2.8E-06 1us 1.04 10mV 0.0 1V

Table 5.1: Scope Properties for SASEBO AES
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Fig5.4 shows the average power trace from 1 encryption operation, measured using a 1Ω

resistor at the VCC side. The 11 dips correspond to the 11 clock cycles it takes to perform

the AES operation. We perform a last round attack on the AES, since a first round attack

is not feasible for this design. In the final round of AES, the 32-bit Mix Column function is

skipped, and the sixteen of 8-bit data blocks at the S-box output are processed separately.

5.5 Attack Design of Compact AES on SASEBO-GII

Fig 4.5 showed the datapath of this design. The trigger signal is set once all the data is

received and the AES starts processing the data. This design takes 290 clock cycles to do

the processing and another 80 cycles to get the 128-bit ciphertext output. The procedure

of sending data to the AES remains the same as above, however changes were made to

the software as specified in the interface chapter to get the ciphertext out at the specified

time. For the same ‘secret key’, the process is repeated for 10,000 traces/encryptions. Once

multiple sets of plaintexts are generated, we run the Sasebo Waveform Acquisition software
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with the scope properties on the oscilloscope set as mentioned in Table 5.2.

XOffset XRange Y1Offset Y1Range Y2Offset Y2Range

1.12E-05 3us 1.07 10mV 0.0 1V

Table 5.2: Scope Properties for Compact AES

For this implementation, the 128-bit key was sent in initially with an 8-bit command

“0x00” and then the data was sent with the 8-bit command “0x07”. Initially, the key is

stored in the DRAM in a byte-shifted order. In the first round, when the data comes in

a byte shifted order it gets xored with the key and sent through the SBOX, which is then

stored in the A0 register. The formulation of the attack equation is derived in the next

chapter.
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Chapter 6: DPA Attack Implementation and Results

6.1 DPA Attack on xTEA

Differential Power Analysis attack on xTEA is performed immediately after the first half

round, once the result of the half round is stored in Z. Of the 32 bits generated as a result

of the permutation function f(z) = ((z << 4 ⊕ z >> 5) + z), CT represents the 8 MSB

bits of f(z) considered for the attack. For each key guess, the estimated power is calculated

with Eq 6.1, where PT represents the 8 MSB bits of the input plaintext.

Pguess = HD(CT ⊕Kguess, PT ) (6.1)

This estimated power is then correlated with the measured power. The highest corre-

lation over all key guesses will return the correct key. The correlation plot for 1000 power

traces is given in Fig6.1. The MTD graph is shown in Fig6.2.

Figure 6.1: Correlation plot for xTEA
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Figure 6.2: MTD graph for xTEA

6.2 DPA Attack on AES on SASEBO-GII

For a successful DPA attack, the 128-bit ciphertext from the last round is split into byte

long blocks. The basic idea is, for each byte of the plaintext that is run through the AES

encryption method 256 times, a different ciphertext byte is produced, one for each possible

key. The result is an array of 256 potential values for the final round output. For each

potential byte value, we take the Hamming distance between it and the known ciphertext

byte that corresponds to the same location in the data register as shown in Eq. 6.2 (these

are shifted as a result of the ShiftRows step in the AES algorithm). We are left with an

array of 256 Hamming distances, which approximately model the power consumption of the

circuit for each possible key value.

Pguess = HD(Cout, SBOX
−1(Cout ⊕Kguess)) (6.2)

The final step is to correlate these Hamming distance values to the actual AES power

traces to determine which key is actually correct. An example of the resulting correlation

for a single byte is shown in Fig6.3. The graph shows that there is a peak in the correlation

at key guess 41, which tells us that the 8-bit key used for that byte was 0x28. As Matlab
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displays the key in Decimal, and has array indexes starting at 1, the correct key is the

hexadecimal equivalent of the index value minus one (41-1). The MTD graph is shown in

Fig6.4.

Figure 6.3: Correlation plot for AES on SASEBO-GII

Figure 6.4: MTD graph for AES on SASEBO-GII
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6.3 DPA Attack on Compact AES on SASEBO-GII

DPA attack on the compact AES implementation is done as a first round attack. As this is a

light weight implementation, it is area optimized making the controller and datapath a little

complicated to understand. Hence a first round attack was chosen. The input plaintext

is sent through the SBOX after the xor operation with a key, and is stored in A0 register.

With a key guess file for 28 combinations, the result is an array of 256 potential values for

the A0 output. As this is the first round attack, and we don’t know the previous value of

the A0 register, we use Hamming Weight for attack. Eq. 6.3 shows the power model that is

generated as an array of 256 hamming weights, for each key value.

Pguess = HW (Cout), whereCout = SBOX(Pin ⊕Kguess) (6.3)

The correlation plots and MTD’s for multiple bytes of the key are shown in the figures

below.

• Figure 6.5 shows the peak correlation at key guess 126, which tells us that the Byte-0

key is 0x7D. The MTD graph is shown in Fig 6.6.
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Figure 6.5: Correlation plot for Compact AES - Key Byte 0

Figure 6.6: MTD graph for Compact AES - Key Byte 0
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• Figure 6.7 shows the peak correlation at key guess 100, which tells us that the Byte-5

key is 0x63. The MTD graph is shown in Fig 6.8.

Figure 6.7: Correlation plot for Compact AES - Key Byte 5

Figure 6.8: MTD graph for Compact AES - Key Byte 5
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• Figure 6.9 shows the peak correlation at key guess 220, which tells us that the Byte-10

key is 0xDB. The MTD graph is shown in Fig 6.10.

Figure 6.9: Correlation plot for Compact AES - Key Byte 10
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Figure 6.10: MTD graph for Compact AES - Key Byte 10

The exact correlation values and the MTD’s are shown in Table 6.1.

Cipher Key Byte Correct Key Maximum Correlation MTD

SASEBO AES 0 0x28 0.03853 >4096

Compact AES 0 0x7D 0.04 >5888

Compact AES 5 0x63 0.04 >4608

Compact AES 10 0xDB 0.045 >1792

Table 6.1: Maximum Correlation and MTD’s
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

In this thesis, the new interface was successfully implemented and tested. With an AES

implementation, the round trip communication of data from the software to hardware was

debugged using a Logic Analyzer and tested to be correct. This enables us to implement

any block cipher that has the same interface to be integrated directly with a few needed

changes. We were also able to recover the AES-128 cryptosystem keys by mounting a CPA

attack. For the SASEBO-AES implementation 8-bits of last round subkey was successfully

recovered with 10000 traces. For Compact AES implementation, we were able to recover

a few bytes of the subkey from the first round with an average of 14000 traces. From

the success of our attack on the power traces, it is clearthat these types of side-channel

attacks are very powerful when it comes to breaking a cryptosystem. What makes a DPA

attack so powerful is that it can make plaintext or ciphertext only attacks, which greatly

increase the versatility when attacking a target device. DPA-based attacks also perform

much faster than other techniques such as exhaustive search. However, this type of side-

channel attack requires access to the physical hardware in order to obtain the traces required

for its execution.

7.2 Future Work

The software used was modified to currenlty only work with this interface for this specific

Compact AES implementation. However, that is not the case in the real world. Hence this

code could be made generic to assess the functionalities of various other implementations.

We only discussed the 8-bit interface thus far. However to implement a hash function this
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interface should be extended to 16-bits with a different protocol. Once the 16-bit interface

for the CERG-GMU protocol is designed, we could implement various hash functions and

run a CPA attack.

68



Bibliography
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