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Abstract—Implementations of mathematically secure cryp-
tographic algorithms leak information through side channels
during run time. Differential Power Analysis (DPA) attacks
exploit power leakage to obtain the secret information.
Dynamic and Differential Logic (DDL), one of the popular
countermeasures against DPA attacks, tries to achieve con-
stant power consumption thereby decorrelating the leakage
with the data being processed. Separated Dynamic and
Differential Logic (SDDL), a variant of DDL, achieves this
goal by duplicating the original design into Direct and Com-
plementary parts which exhibit constant switching activity
per clock cycle and have balanced net delays. Traditionally,
on Field Programmable Gate Arrays (FPGAs) both parts are
placed side-by-side to ensure symmetrical routing. However,
due to process variations both parts will have slightly
different delays. This limits the effectiveness of SDDL.

In this paper we introduce a design flow to achieve
interleaved placement of SDDL designs on Xilinx Spartan-
3E FPGAs while preserving symmetric routing. We explore
several placement configurations with respect to routing and
security. The results of our experiments show that a well-
balanced placement of SDDL can double the effectiveness of
the SDDL countermeasures on FPGAs.

Keywords-SDDL for FPGAs; Differential Power Analysis;
Interleaved Placement

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are fast
becoming a popular choice for a wide variety of appli-
cations ranging from digital cameras to aerospace and
defense systems. Because of the outstanding feature of
combining the programmability of processors with the
performance of custom hardware, FPGAs have become
an essential part of critical systems. Recent architectural
advances of FPGAs are making them an alternative choice
for low power applications where Application Specific
Integrated Circuits (ASICs) are primarily used. Another
hallmark of FPGAs is the ability to implement parallelized
architectures efficiently, and they also posses excellent
resistance against invasive attacks since the underlying
platform is regular and does not reveal information on the
actual design content [1],[2]. Because of these features,
FPGAs have become attractive hardware platforms for
cryptographic implementations.
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Unfortunately the hardware implementations of cryp-
tographic algorithms leak information in the form of so
called side channels (i.e. power consumption, tempera-
ture, electromagnetic radiation, etc). Since Kocher et al.
introduced Differential Power Analysis (DPA) [3], which
makes use of the power consumption side channel, many
countermeasures against it were proposed. These counter-
measures can be broadly classified into two categories:
Masking and Hiding. This paper concentrates on Hiding
countermeasures.

Dynamic and Differential Logic (DDL) [4], a type of
Hiding countermeasure, obfuscates the data being pro-
cessed by maintaining constant power consumption for
every clock cycle. DDL achieves this by dividing the
design into two parts, so called Direct and Complementary
parts which exhibit following properties

o For each gate in the original design, either a gate
in the Direct part or its corresponding gate in the
Complementary part should switch in each clock
cycle. This is ensured by “precharging” the outputs of
every gate in both parts to logic 0’ and subsequently
“evaluating” the correct output of the gate.

o Both parts of the DDL design should have symmet-
rical logic and routing capacitances.

The methodologies to implement DDL can be classi-
fied into two types, 1) All positive logic used by Wave
Dynamic Differential Logic (WDDL) and 2) positive and
negative logic used by Separated Dynamic Differential
Logic (SDDL). SDDL for FPGAs, a variant of the SDDL
style, was introduced in [5]. It is specifically designed
as a countermeasure against DPA for lightweight or low
area implementations on FPGAs. SDDL for FPGAs is still
vulnerable to DPA attacks due to glitches and the effect
of early precharge and evaluation [6]. Process variations
inside the chip also affect the traditional implementation
of SDDL on FPGAs where the Direct and Complementary
parts are placed in different regions.

A recent study by Maiti et al. [7] shows that ring
oscillators using identical resources have a large variation
in frequency due to process variations when placed apart.
The authors also note that placing such ring oscillators as
close as possible will reduce these variations in frequency.
Maiti’s results suggest that in addition to the two properties
of DDL designs mentioned above, it is also important
that signals in the Direct part do not propagate with



a different speed then the corresponding signals in the
Complementary part. The main contribution of this paper
is a design methodology for implementing SDDL for
FPGAs with interleaved placement which considers the
factor of process variations. In order to achieve this goal
we explore different placement configuration for the Direct
and Complementary parts of the design. We also evaluate
our design methodology against DPA by implementing
interleaved SDDL for FPGAs on the Advanced Encryption
Standard (AES) block cipher.

II. PLACEMENT CONFIGURATION

The effect of place and route on security of WDDL
designs on FPGAs was studied in [8]. The authors note
that constrained placement does not have any effect on
the unbalance between the Direct and Complementary
parts of the design however, routing does effect it. This is
due to fact that WDDL which is placed in interleaved
patterns requires cross connections between Direct and
Complementary parts to implement negative logic. Hence
symmetrical routing is not possible in WDDL style on
FPGAs [9]. Different interleaved placement strategies for
WDDL designs were explored in [10]. Unlike WDDL,
SDDL for FPGAs allows negative logic, hence there is
no requirement of any cross connections between Direct
and Complementary parts. Thus it is possible to have
symmetrical routing between Direct and Complementary
parts of SDDL designs on FPGAs.

It is common design practice to separate the two parts
of an SDDL design and place them side-by-side as in [5],
[9]. Such placement strategy ensures that the two parts
would have sufficient resources to obtain symmetrical
delays. The relative location of similar components and
nets in such placement configurations is rather far and
thus have different delays due to process variations. This
increases the susceptibility of SDDL designs against DPA.
Additionally such placement configurations lead to the
possibility of isolating and attacking the Direct part of
the design using Electromagnetic Analysis (EMA) [11].

A. Placement Options

The Spartan-3E FPGA fabric consists of Block RAMs,
Multipliers and Configurable Logic Blocks (CLBs). The
CLBs are arranged in a regular 2D array of rows and
columns throughout the FPGA. All CLBs are connected
with each other via switch matrices and special intercon-
nects. The availability of these connections has a signifi-
cant effect on delay, area and routability of a design im-
plemented on an FPGA. Fig. 1 shows the interconnections
between a specific CLB and its neighboring counterparts.
Each square in Fig. 1 is equivalent to one CLB. The
number of connections from the specific CLB (indicated
by filled square) to any particular CLB is given by the
number present inside the square. Absence of a number
indicates that there are no direct connections between the
specific CLB to this square.

In order to interleave the Direct and Complementary
parts, we explored four different placement configurations
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Figure 1. Number of Connections between a CLB and its surrounding
counterparts

shown in Fig. 2. Each square in Fig. 2 is equivalent to one
CLB. Table I shows the minimum number of connections
between CLBs and their closest neighbor in the same part
(i.e. either Direct or Complementary) of the SDDL design.
Connections can be either in north-south (N-S), east-west
(E-W) or diagonal (X) directions.

Table 1
MINIMUM NUMBER OF AVAILABLE CONNECTIONS BETWEEN CLBS
OF THE SAME PART

Direction Distance | % fewer to
Patterns N-S | EEW | X A— A No Pattern
[1x1] 71 32 8 1 CLB 59.2
[2 x 2] 64 94 8 2 CLBs 39.0
[Hx 1] 71 104 0 1 CLB 35.7
[1xV] 160 32 0 1 CLB 29.4

[1 x 1] Configuration is a patterned like a Chess board
in which each square is equivalent to one CLB. For each
CLB in the Direct part (A) its complementary CLB (A) is
located in an adjacent CLB shown in Fig. 2a. The number
of connections between two adjacent CLBs in each di-
rection is least compared to the other configurations. The
distance between the Direct and Complementary CLBs is
1 CLB.

[2 x 2] Configuration is also patterned like a Chess
board. However, in this configuration each square is equiv-
alent to four CLBs. For each CLB in the Direct part (A)
its complementary CLB (A) is located in an adjacent CLB
shown in Fig. 2b. The distance between the Direct and
Complementary CLBs is 2 CLBs and is the highest among
the rest of the configurations.

[1 x H] Configuration, uses only even numbered CLB
rows to implement the Direct part of the SDDL design.
The Complementary part of the design is implemented in
odd numbered CLB rows. Compared to [1 x 1] and [2 x 2]
configurations, [1 x H] configuration has a higher number



a) Pattern [1 x 1] b) Pattern [2 x 2]

Figure 2.

of connections between two neighboring CLBs. For each
CLB in the Direct part (A) its Complementary CLB (A) is
located in an adjacent CLB shown in Fig. 2c. The distance
between the Direct and Complementary CLBs is 1 CLB.

[V x 1] Configuration, uses only even numbered
CLB columns to implement the Direct part of the SDDL
design and the Complementary part is implemented in odd
numbered CLB columns. Compared to the other patterns,
[V x 1] configuration has highest number of connections
between two neighboring CLBs. For each CLB in the
direct path (A) its complementary CLB (A) is located in
an adjacent CLB shown in Fig. 2c. The distance between
the Direct and Complementary CLBs is 1 CLB.

III. WORKFLOW

We use Xilinx ISE 12.3 and ActivePerl v5.12 to im-
plement interleaved SDDL designs on Xilinx FPGA. Our
work flow shown in Fig. 3 is implemented in three phases.
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Figure 3. Work Flow

In the first phase, the VHDL description of the crypto-
graphic algorithm with precharged registers is synthesized
and mapped to the Xilinx Spartan-3E FPGA. We use a 4-
bit Flip-Flop-Precharge hard-macro [12] to precharge the
registers used in the design as the precharge circuit must
be placed in the same CLB. We block the appropriate
CLB positions depending upon the pattern used by using
a program called PlaceBlock and use ISE to place the
design in the available CLB positions. We then block the
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Patterns for placing original (A) and complementary (A) paths

routing resources of the blocked CLBs using a program
called RouteBlock.

In the second phase logic precharge circuits imple-
mented using the technique described in [9], [5] are
inserted into the placed circuit description file obtained
from phase 1. Only re-entrant routing is done to obtain a
precharged placed and routed design.

In the third phase I/O connections are removed, and
the design is copied and duplicated into the appropriate
CLB locations and the logic equations are complemented
to obtain the complementary design. We duplicate and
relocate the original design using the techniques described
in [5]. Only re-entrant routing is done to connect the I/O
to the Direct and Complementary parts of the design.

We created a verification program called Net delay
checker which uses the Reportgen tool provided by the
Xilinx ISE to compare the delays of each and every net
present in the Direct part of the design to that of Com-
plementary part. We make use of this script to perform
a final sanity check before generating a bit file of the
Placement Constrained SDDL design. If the Net Delay
Checker program fails, it identifies and reports the failed
nets. These failed nets are manually corrected and flow is
repeated from the second phase until a valid Placement
Constrained SDDL design is obtained.

A. Placement Blocking Algorithm

In order to implement the patterned SDDL implementa-
tion discussed in Sect II, the PAR tool should be restricted
to use only the desired CLBs to implement the original
design. The PlaceBlock program is used to generate the
information containing the locations of the blocked CLBs
depending upon the pattern configuration. The PlaceBlock
program requires the pattern configuration and the target
area in which we want to implement patterned placement
as inputs. It generates an UCF file which contains the
CLB prohibit locations depending upon the pattern. The
PlaceBlock program uses the algorithm described in Fig. 4.

B. Routing Blocker

It is particularly hard to constrain the PAR tool from
using routing resources of a blocked CLB. We require
these resources when we have to place the complementary
part of the design in these CLBs. Hence, we place a
self contained dummy hard-macro in all the blocked CLB
positions to prevent the PAR tool from utilizing any of the



Require: Initial CLB-(X,Y) Positions
Require: Final CLB-(X,Y) Positions
Require: [CLB_X_Config x CLB_Y_Config] for e.g.[1 x
1]
1. j=0;
2: while CLB_Y _Initial < CLB_Y_Final do
3: i=0;

4 if j%2 = 0 then

5: CLB_X_Var = CLB_X_Initial;

6: else

7 CLB_X_ Var = CLB_X_Initial + (2%
CLB_X_Config);

8: end if

9:  CLB_Y_Var = CLB_Y_Initial;

10:  while CLB_X_Initial < CLB_X_Final do

11: Xip = CLB_X_Var + (2%« CLB_X_Config);

12: Xop = CLB_X_Var + (4% CLB_X_Config)-1;

13: Yip = CLB_Y_Var;

14: Yop = CLB_Y_Var + (2%« CLB_Y_Config)-1;

15: if 1%2 = 0 then

16: BLOCK CLB from (X1p, Y1p) to (Xap, Yap)

17: end if

18: 1++;

19: CLB_X_Var + Xjp, CLB_Y_Var + Yp;

20:  end while

21:  CLB_Y_Initial = CLB_Y _Initial + CLB_Y_Config;
22 j++

23: end while

Figure 4. Placement Blocking Algorithm

blocked CLB resources. The dummy hard-macro is built
using Relationally Placed Macros (RPMs) and Directed
Routing (DIRT) Constraints. RPMs lock the driver and
load pins of the CLB, whereas DIRT constraints utilize the
routing resources of the blocked CLB. The RouteBlock
script uses the UCF file generated by the PlaceBlock
program to locate the positions of the blocked CLBs and
generates an XDL file which contains the description of
the dummy hard-macros.

IV. TEST DESIGNS

We implemented all our test designs on the
Xc3s500efg320-4 FPGA available on Digilent Spartan-3E
starter kit. The instantaneous power consumption of
the FPGA during encryption was measured using a
Tektronics CT-2 current probe and an Agilient 6054A,
500MHz oscilloscope with a sampling frequency of 4G
Samples/second. An external power supply was used
to power the FPGA core, and the FPGA was clocked
at frequency of 200KHz—400KHz. It is an important
point to note that one encryption is counted as one
measurement irrespective of the number of samples the
oscilloscope measures. We use the term Single-Ended
(SE) design to denote an unprotected design throughout

this paper. Measurement to Disclosure (MTD) is a
security metric used to determine the resistance of the
designs against power analysis attacks. MTDs are the
number of encryptions required to correctly predict the
secret key. These MTDs are dependent on factors like the
secret key used, target platforms and the order in which
the input plaintext is fed to a cryptographic algorithm.
Hence we use a more robust metric called security gain
(SG) [10] or gain over SE to assess the effect of different
interleaved placement configurations against DPA attacks.
SG is the ratio of MTDs of protected to MTDs of
unprotected designs.

A. Small Test Circuit

The Test Design circuit shown in Fig. 5 consists of an
AES S-Box implemented using combinational logic whose
input is connected to an 8-bit LFSR and output is XORed
with an 8-bit Key. The result is stored in register FF1. The
dashed box indicates the part of the test circuit on which
SDDL is implemented. The register FF2 is implemented
in Input/Output Blocks (IOB) simply to drive the output
ports.
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Figure 5. Block Diagram of Test Circuit

B. Attack on Small Test Circuit and Results

We attack the design at the output of the LFSR indi-
cated by the arrow A,. We use Pearson’s correlation to
compute the statistical dependence of the instantaneous
power consumption with the hypothetical power model
i.e the hamming distances [13]. In order to attack the
SDDL implementations of the test design we attack the
precharged outputs of the LFSR i.e. the precharged inputs
to the AES S-Box (Logic). The Hamming Distance (HD)
equation for the attack on SE implementations is shown
in (1) and for SDDL implementations in (2).

Pest. = HD(lfST(i_l), SBOX?l(kguess D Ql)) (1)
PeSt' = HD(OIOO’ SBOX?l(kguess @ Q’L)) (2)

The post place-and-route implementation results of the
SE and SDDL implementations are shown Table II. The
test circuit design consumes 49 slices because the AES S-
Box is implemented using combinational logic, however
this leads to slow designs. The SDDL designs consume
2.3 times more area compared to SE designs because of
the extra slices required to precharge the register outputs.

The MTDs of SE and SDDL designs given in Table II
indicate the minimum number i.e. the lower bound of
MTDs required to obtain the correct key. The Design (5.)



Table 1T
IMPLEMENTATION RESULTS OF BASIC TEST DESIGN

4 input | Minimum | Minimum Gain
Design Slices | FFs/Latches LUTs Delay MTD | over SE
1. Test Circuit with Pattern [1 X 1] 49 71 27 | 14.534 ns 1500 1
2. Test Circuit with Pattern [2 X 2] 49 71 27 | 14.412 ns 1500 1
3. Test Circuit with Pattern [1 X V] 49 71 27 | 14.317 ns 1500 1
4. Test Circuit with Pattern [H X 1] 49 71 27 14.666 ns 1500 1
5. SDDL of Design (1.) without interleaving 114 142 86 | 28.486 ns 23,000 15
6. SDDL of Design (1.) with interleaving 114 142 86 | 29.068 ns 50,000 33
7. SDDL of Design (2.) with interleaving 114 142 86 | 28.824 ns 50,000 33
8. SDDL of Design (3.) with interleaving 114 142 86 | 28.634 ns 50,000 33
9. SDDL of Design (4.) with interleaving 114 142 86 | 29.332 ns 50,000 33
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Figure 6. Block Diagram of AES Module

is a non interleaved SDDL implementation of our test
circuit using pattern [1 x 1]. The distance between the
Direct and Complementary parts of the design was 16
CLBs. Designs (6. to 9.) require more MTDs compared to
Design (5.). This conforms our hypothesis that even when
the logic and routing of the Direct and Complementary
parts are similar, there is a difference in delays due to
process variation. It is to be noted that all interleaved
designs require a similar number of MTDs irrespective of
the pattern configuration. Thus, a user can choose any of
the placement patterns show in this paper depending on the
design’s requirement i.e. availability of routing resources,
critical path etc.

C. AES

The Advanced Encryption Standard (AES) [14] is one
of the most widely used block ciphers. In this paper
we use the AES implementation from [15] which uses
a key length of 128 bits. AES applies the same round
function ten times to its state during encryption. The
round function consists of four different transformations
SubBytes, ShiftRows, MixColumns and AddRoundKey each
changing the state by applying linear, non linear and key
dependent transformations.

The data path of the AES implementation is shown
in Fig. 6. It is characterized by a pipelined architecture
which enables the re-use of registers and minimize the
number of internal memory accesses which in turn reduces
the number of clock cycles. Five registers Ry, Ri, Ra,
Rs, R4 are used of which Ry is used exclusively for
RotWord operation. R; is used for key computation and
state computation in MixColumns operation, Ro, Rs, R4
are used for state computation. The boxes labeled as Key
store and Data store are 128 bit registers used for Round
keys and State Memory respectively.

D. Attack on AES and Results

The point of attack A,, for the AES designs is indicated
in Fig.6. Consider the data flow from registers Ry to Rs.
On reset the data in these registers is 0x00. In the first
clock cycle, the output of R3 changes from 0x00 to 0x63
i.e. SBOX(R3) and the data in Ry changes to Input data
XORed with the key from R;. In the subsequent clock
cycle the data in R3 changes from 0x63 to SBOX(R5).
This sequence of change in the data of R3 i.e. 0200 —
0263 — SBOX (Key @ Input data) occurs every time
the AES module is reset. Hence, we can apply the HD
model to estimate the power consumption of the register
Rs3. The power model for the SE cases is given by (3) and
for SDDL designs, given by (4).

P, = HD (0263, (SBOX((Keyguess B Input));) (3)
P.st. = HD (0200, (SBOX((K €Yguess © Input));) (4)

Table III shows the post place-and-route results of the
SE and SDDL implementations. Both AES SDDL designs
consume an area 2.92 times larger than the AES SE design.
The MTDs from Table III confirm our results from the test
circuit namely, that interleaved SDDL is more secure than
SDDL without any placement constraints. Also Design
(12.) requires 2.3 and 27.5 times more MTDs compared
to Design (11.) and Design (10.) respectively.

V. CONCLUSION

One of the vulnerabilities of SDDL for FPGAs is the
imbalance of nets in Direct and Complementary paths
due to process variation. We explored different placement
configurations for SDDL designs to reduce the difference



Table IIT
SUMMARY OF IMPLEMENTATION RESULTS FROM AES-128 DESIGNS

4 input | Minimum | Minimum Gain
Design Slices | FFs LUTs Delay MTD | over SE
10. AES SE with Pattern [1 x 1] 371 | 347 466 | 15.629 ns 2000 1
11. AES SDDL of Design (10.) without interleaving 1086 | 651 932 | 30.570 ns 24,000 12
12. AES SDDL of Design (10.) with interleaving 1086 | 651 932 | 31.258 ns 55,000 275

in net delays and propose a new design flow for imple-
menting interleaved SDDL on FPGAs. We implemented
the AES block cipher using our design flow and observed
that the interleaved SDDL design requires 2.3 times more
MTDs than the SDDL design without any placement
constraints and 27.2 times more MTDs than AES SE
design. For future work, we plan to reduce the effect
of early precharge-evaluation and glitches on SDDL for
FPGAs and also explore the interleaved placement options
on newer technology FPGAs such as Spartan 6.
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