Efficient Hardware Accelerator for IPSec based on
Partial Reconfiguration on Xilinx FPGAs

Ahmad Salman, Marcin Rogawski and Jens-Peter Kaps
Volgenau School of Engineering
George Mason University
Fairfax, Virginia 22030
email: {asalman, mrogawsk, jkaps}@gmu.edu

Abstract—In this paper we present a practical low-end embed-
ded system solution for Internet Protocol Security (IPSec) imple-
mented on the smallest Xilinx Field Programmable Gate Array
(FPGA) device in the Virtex 4 family. The proposed solution
supports the three main IPSec protocols: Encapsulating Security
Payload (ESP), Authentication Header (AH) and Internet Key
Exchange (IKE). This system uses efficiently hardware-software
co-design and partial reconfiguration techniques. Thanks to
utilization of both methods we were able to save a significant
portion of hardware resources with a relatively small penalty
in terms of performance. In this work we propose a division of
the basic mechanisms of IPSec protocols, namely cryptographic
algorithms and their modes of operation to be implemented
either in software or hardware. Through this, we were able to
combine the high performance offered by a hardware solution
with the flexibility of a software implementation. We show that
a typical IPSec protocol configuration can be combined with
Partial Reconfiguration techniques in order to efficiently utilize
hardware resources.

Index Terms—Partial reconfiguration; IPSec; Xilinx FPGA

I. INTRODUCTION

Internet Protocol Security (IPSec) [1]-[3] provides security
against attacks on data transmitted over the Internet through
security services facilitated by a set of protocols. It was de-
signed to operate at the level of the Internet layer according to
the OSI network model. This makes it completely transparent
to applications and users.

The security services provided by the Internet Protocol
Security (IPSec) include:

o Confidentiality - Prevents unauthorized access to the
transmitted data.

o Data integrity - Ensures data was not altered during
transmission.

o Authentication - Enables the identification of the infor-
mation source.

The IPSec series of protocols makes use of various crypto-
graphic algorithms such as encryption modules, hash functions
and modular arithmetic in order to provide security services.
The Internet Key Exchange (IKEv2) protocol in version two

(©2011 IEEE. Ahmad Salman, Marcin Rogawski and Jens-Peter Kaps.
Efficient Hardware Accelerator for IPSec based on Partial Reconfiguration
on Xilinx FPGAs. In International Conference on Reconfigurable Computing
and FPGAs, ReConFig-2011, pages 242-248. IEEE, Nov, 2011.
http://dx.doi.org/10.1109/ReConFig.2011.33

has to be used to establish secure connections, so called Secu-
rity Associations (SAs). IKEv2 uses cryptographic algorithms:
key exchange algorithm (Diffie-Hellman) and pseudo random
function based on the Advanced Encryption Standard (AES)
in XCBC mode(AES-XCBC-PRF-128). The Encapsulating
Security Payload (ESP) protocol provides mechanisms for
confidentiality and data integrity services. It uses AES cipher
in Cipher-Block-Chaining (CBC) and Counter (CTR) modes of
operation. The Authentication Header (AH) protocol provides
connectionless integrity and data origin authentication. AH
uses Hashed Message Authentication Code (HMAC) with
Secure Hash Algorithm (SHA). To assure protection and
standardization, the minimum set of cryptographic algorithms
that must be supported by an implementation of IPSec for
ESP, AH and IKEv2 protocols as stated in [2] is illustrated in
Table I.

TABLE I
IPSEC SUPPORTED PROTOCOLS AND ALGORITHMS
Protocol | Security Service Pro- | Supported Algorithm
vided
ESP confidentiality through | AES in CBC or CTR mode
encryption and optional
data integrity
AH connectionless HMAC-SHA1-96, AES-
integrity and data | XCBC-MAC-96, HMAC-
origin authentication SHA-256
IKE negotiates connection | Diffie-Hellman scheme in
parameters 1024 or 2048 bits groups
and AES in PRNG mode

Due to the broad use of IPSec, it has been implemented in
hardware and software with various designs and parameters to
suit different platforms and provide better solutions. Among
popular implementations of IPSec in hardware are those that
target FPGA platforms because of the flexibility they offer the
designer, ease of programming and high speeds that cannot
be achieved through software. Due to the fact that FPGAs
are resource limited devices, even efficient implementations
of IPSec with all the services it provides might not fit on
low cost devices or low area devices that are meant for light
weight implementations [4]. A solution to this problem can be
Partial Reconfiguration which allows some IPSec services to

be available in the system and the remaining services can be
recalled when needed by an application.

Partial Reconfiguration [5] is a configuration method for
FPGAs that allows certain portions of the device to be re-
configured during run-time without affecting other portions in
the system or their functionality. In this paper we will inves-
tigate the effect of implementing IPSec services using Partial
Reconfiguration in terms of speed, area and reconfiguration
time. For that, we built an embedded system controlled through
an embedded processor to provide self reconfiguration of the
system through a software application. We implemented the
embedded system using the Microblaze soft-core processor
targeting a low area Virtex-4 device to perform thorough
testing on the proposed design and analyze the results.

The rest of this paper is organized as follows: In Sect. II we
discuss previous work, Sect. III is devoted to the description
of our proposed system, and Sect. IV describes the experiment
methodology we followed to evaluate the system. Sect. V
discusses and analyze the results and we draw conclusions
in Sect. VL.

II. PREVIOUS WORK

One important software implementation of IPSec was devel-
oped within the KAME project [6]. Racoon software (which
is part of the KAME project) is a tool for handling Internet
Key Exchange (IKE) in IPSec and almost all of its source
code has been merged into FreeBSD and NetBSD. Hardware
implementations of IPSec basic components were investigated
in several publications. In [7] a hardware co-processor was
proposed based on AES and HMAC-SHAI1 cores. This solu-
tion was implemented on XCV1000E Xilinx Virtex device. An
implementation on Xilinx Virtex-II Pro FPGA was presented
in [8]. The key management and negotiation functions were
moved into software. The encryption and data integrity support
was based on AES, HMAC-MD5 and HMAC-SHA1. Those
algorithms were implemented on a single device and all
hardware cores achieved over 1 Gb/s throughput.

A typical node connected to the Internet has to process
multiple different streams of data. The efficient handling, of
those streams of data, was investigated in [9] which proposed
pipeline techniques on HMAC-SHAI.

A very complex system such as an [PSec embedded solution
requires finding the correct balance between flexibility and per-
formance in a design. Principles of the hardware/software co-
design techniques are described in [10]. A proposed embedded
solution for only the IPSec AH protocol can be found in [11].
There are also hardware accelerators of the IPSec protocol
suite available as commercial products: [12], [13] and [14].

A Partial Reconfiguration [5] technique is relatively new in
the area of SRAM based Altera devices [15] and it is only
supported in the newest 28nm Stratix V. In the case of Xilinx
devices [16] this method has been known for almost a decade,
but due to the complex nature it has never been very popular
in both commercial and academic applications.

To the best of authors knowledge, the first utilization of
partial reconfiguration on Xilinx FPGA devices for IPSec was

proposed in [17].

III. SYSTEM DESCRIPTION
A. Overview

Our proposed IPSec embedded system’s structure is sum-
marized in Table II. We implemented three cryptographic
transformations in hardware where at any given point in
time, only one is available for its utilization. In order to
use a different algorithm than the one currently available,
partial reconfiguration operation is performed. This process
is controlled by a modified Round Robin with time sharing
scheduling algorithm [18] implemented on the embedded
processor. Packets are sent from and received by the system
through input and output queues. The input queues send
packets to be processed by the corresponding cryptographic
algorithm and the output queue is devoted for storing the
output results as shown in Fig. 1.

The Round Robin scheduling algorithm is used for switch-
ing the control between queues when packets are ready to be
processed. In this system, we use a configurable time slot value
which specifies for how much time packets from one queue
are being processed before switching to another queue. Even if
the current queue still contains data the processor switches to
a different queue to make sure that no specific type of packets
monopolize the co-processor. We will show in Sect V that the
time slot parameter can be considered as a trade-off between
total throughput of the proposed system and latency of packet
transition through the IPSec co-processor.

ESP Queue
Hardware

IPSEC
coprocessor

Embedded
ystem
Processor

—

AH Queue Output Queue

IKEV2 Queue

e

Scheduling|
Algorithm

Software

Fig. 1. Synchronization Circuit Between Hardware and Software

For example, if the scheduler assigned a time slot for the
packets that require AES operation (ESP packets), the CPU
makes sure that the AES module is currently running on the
co-processor otherwise it performers partial reconfiguration to
make it available for the assigned packets. If the time slot
expires and there are new packets in the SHA-2 (AH Packets)
related queue then another partial reconfiguration operation
is required to load the SHA-2 module to the co-processor.
After this operation is completed, the packets from SHA-
2 related queue can be transmitted to IPSec co-processor.
The transmission between the embedded processor and co-
processor requires hardware-software synchronization which
is described in the synchronization circuit subsection.

We can observe that the system latency consists of the
latency of data preparation for computation and latency of the

computation process itself. The latency of the data preparation
includes the time needed to perform partial reconfiguration.
The latency of computation consists of latency of input
transmission to the hardware core, latency of cryptographic
transformation and finally the time for sending and storing the
result. It is clear that in order to utilize the co-processor more
efficiently, the time for computations should be maximized
compared to the time needed for data preparation. On the
other hand, if both latencies are too high, the responsiveness
of system will degrade. Finally, in order to maximize the
efficiency of computation time, the interface latency needs to
be minimal.

TABLE I
HARDWARE-SOFTWARE CO-DESIGN IMPLEMENTATION DETAILS OF
PROPOSED IPSEC SYSTEM

Implementation
In Hardware In Software Application
AES CBC, CTR modes ESP
MAC-XCBC-96 AH
XCBC-PRF-128 IKEv2
SHA-256 HMAC AH
MODEXP Montgomery domain IKEv2
transformations
- Round Robin PR trigger

scheduling algorithm

B. Partial Reconfiguration

Partial Reconfiguration (PR) [5] is the process of configur-
ing a portion of a FPGA while the other part is still running [5].
The PR method is independent of its implementation method,
meaning that although the idea of creating a partially recon-
figurable design is the same between different companies and
PLD manufacturers like Xilinx and Altera, each has their own
tools and implementation methods.

A typical PR system is composed of static regions known
as Base Region (BR) and a dynamic region known as Partial
Reconfigurable Region (PRR). The BR holds the portion of
the design that does not get affected by partial reconfiguration
while the PRR holds the portion of the design that gets
swapped during partial reconfiguration process which is known
as Reconfigurable Modules (RM). A PRR is composed of at
least a single RM and usually multiple ones as shown in Fig. 2.

In our design, the BR includes an embedded processor that
controls the PR process and some supporting peripherals while
the PRR includes hardware accelerators for IPSec protocols.
Initially the system is configured with the BR and the PRR is
loaded with one of the RMs or left blank with no RM loaded.
The remaining RMs are stored on an external memory and are
swapped with other RMs by the scheduler.

During PR, the embedded processor communicates with the
Internal Configuration Access Port (ICAP) which loads the
partial bitstream that holds the information of the requested
RM from the external memory and replaces the currently
running RM or the blank space in the PRR with it during
run-time as shown in Fig. 2.

FPGA

Embedded
Processor
(MB)

IPsec
Coprocessor

(PRR)

W
/

14 14

SHA256
(RM)

ICAP

Software

AES
(RM)

MODEXP
(RM)

External
Memory

Fig. 2. A Partial Reconfigurable Region and Associated Reconfigurable
Modules
PLB PLB
Microblaze
PLB2OPB
. BRAM
OPB
OPB2DCR
Bridge ‘7 GoRet ICAP S/y\SC‘eEm UART
BM
Enable
o]
PRR
Fig. 3. Embedded System Processor and Peripherals
C. Hardware

Our design targets the ML403 board with a Virtex-4 de-
vice described in [19]. Although the target device includes
a PowerPC embedded processor, the soft-core Microblaze
processor was used as the embedded processor in the design
to insure compatibility with other devices that do not include
a PowerPC. Figure 3 shows our embedded system block dia-
gram. The internal data bus for the Microblaze processor is
32-bit wide. It is connected to the BRAM-block peripheral
through the Processor Local Bus (PLB) BRAM Interface
Controller (BRAM_IF_Ctrl) which is interfaced to the PLB
Bus. The BRAM-block peripheral gives the processor access
to the BRAM components which constitute the memory of the
system.

The peripherals in the system are interfaced with each
other and the Microblaze through the On-chip Peripheral
Bus (OPB). Peripherals in the system include a Universal
Asynchronous Receiver/Transmitter (UART) for debugging
and output display, a System ACE to interface a FAT32
Compact Flash (CF) memory card used as the non-volatile
memory that holds the partial bitstreams of the RMs and

the Hardware Internal Configuration Access Port (HWICAP)
which is the hardware peripheral that enables the Microblaze
to access and modify the configuration memory while the
circuit is operational through the ICAP. There is a custom
peripheral which represents the PRR in the system which is
the target for the RMs. This custom peripheral is interfaced to
the system through the Device Control Register (DCR) bus.
There are also two bus bridges used, the plb2Opb bridge and
opb2dcr bridge, to allow the communication between different
buses in the system and the peripherals interfaced to them.

Bus Macros (BMs) are used to provide a means of locking
the routing between RMs and the BR, making the RMs pin
compatible with the base design. With the exception of global
clock signals, all other signals including reset signals must
pass through BMs. During PR process, the Microblaze disables
BMs using a Bus Macro Enable/Disable signal as shown in
Fig. 3 to prevent data from being sent to or received from the
target PRR until the PR process is completed then BMs are
enabled again.

The PRR in the system is composed of three RMs, Ad-
vanced Encryption Standard (AES), Secure Hash Algorithm
(SHA)-256 and a modular exponentiation module (MODEXP)
representing the hardware accelerators for the IPSec ESP, AH
and IKEv2 protocols respectively.

The AES hardware core is based on a 128-bit datapath
and the latency is 11, 13 and 15 clock cycles for 128, 192
and 256-bit main key length, respectively. This architecture is
described in [20]. The SHA-256 hardware implementation is
based on the architecture with the best throughput/area ratio
proposed in [21]. The modular arithmetic is based on the high
216 radix multiplication Algorithm 3 proposed in [22] and
on the exponentiation algorithm proposed in [23]. In order to
save area, we decided to restrict the number of processing
elements to one, which can be described by the parameters:
word size = 16 bits, number of scanned bit = 16. Thanks
to this assumption our basic processing element could be
efficiently implemented on just 3 DSP blocks. We decided
to exploit special shift register mode (SRL-16) to organize
storage system for arithmetic arguments and intermediate
results. Our very restricted area budget did not allow us to
use directly FPGA optimized architectures proposed in [24]
or [25]. All three cores support a simple FIFO based interface
described in [26] where the input and output data width is 32
bit wide.

D. Software

The software portion of the system includes the software
drivers for the hardware peripherals in the system, some
basic C libraries as well as Initialization functions for the
HWICAP and the ICAP API. In addition to that, all modes of
operations (e.g. CBC and XCBC) and data preparation (e.g.
HMAC calculations) are being done in software to give the
system flexibility as these operations can be used with different
cryptographic algorithms by applying minimal software-only
changes to the system.

E. Synchronization Circuit

As the speed of hardware is significantly higher than
software, any hardware/software co-design should include a
synchronization method between the hardware and software
to assure correctness of communication and prevent data loss.
We created a hardware/software synchronization circuit with a
FIFO interface shown in Fig. 4. Sending and receiving data is
controlled by control signals from the embedded processor.
When data is being sent from software to the hardware
core, the processor sets the read_ack signal to high enabling
hardware to read data in 32 bit at a time according to the core
settings. After the core performs calculations, data is sent from
hardware to software in the same manner with the processor
setting the write_ack signal to high to let the software know
that the output is ready.

src_ready dst_ready J wo_acke+] in out j

-l FF src_read dst_write - FF
Tst rst
SHA/AES/MODEXP
1
! 1 1 1

data_in rst data_out

T

32 BUS2IP_rst 32

BUS2IP_clk

wr_ack < in out

Software Input Register Software Output Register

I S— \ 32—

Fig. 4. Synchronization Circuit Between Hardware and Software

IV. METHODOLOGY
A. Overview

Before implementing the proposed design in a PR system,
we first implemented it in a non-PR system. The main reason
for the non-PR implementation was to make sure that the
AES, SHA-256 and MODEXP cores perform as expected and
producing the correct results at run-time. We also wanted to
test the synchronization circuit and to find out the amount
of area consumed by each core implemented separately to
compare it to that of the PR design.

The bottleneck in the design is the PR process, i.e.the
process of replacing one module with another. PR is a time
consuming process which increases the system latency hence
decreasing performance. This could make the design imprac-
tical. Therefore, we used the scheduling algorithm described
in the Sect. III to increase the throughput.

To test the design, we emulated IPSec traffic through a
sequence as input to the system. The sequence starts with
an IKEv2 packet for handshaking, algorithm selection and
sharing of keys. The reset of the sequence is composed
of string of bits representing the data portion in the ESP
and AH packets. Packets are identified and assigned to the
queues corresponding to their type. The scheduler always starts
from the IKEv2 queue when a new SA is established. For

this reason, the MODEXP module should be loaded to the
PRR during the initial FPGA configuration. Following SA
establishment, the scheduler assigns packets to the Microblaze
to be processed by the hardware.

B. IKEv2 vs AH and IKEv2 vs ESP

In a typical IPSec Security Policy Database (SPD) tunnel
configuration, a connection parameter renegotiation is estab-
lished no more than once per hour. Even though there are
some applications that require more exotic configurations. AH
and ESP protocol handling will take more than 99% of any
practical IPSec co-processor. Due to that fact, the IKEv2
is rarely used compared to AH/ESP. The MODEXP, which
is a basic module for this protocol, can be swapped with
AH/ESP accelerators when needed. The AH and ESP hardware
accelerators are also being used interchangeably on the chip
using PR but due to the fact that they are both used excessively,
techniques like using input queues or on board memory as
well as packets scheduling algorithms as we described in the
previous section should be used to allow for high throughput.

C. AH vs ESP

In the case of ESP and AH protocols the situation with
efficient Partial Reconfiguration is more complicated. First
of all, the number of tasks related to AH vs ESP is more
balanced than in case of IKEv2. This means that in order
to decrease the influence of relatively expensive, in terms
of latency, partial reconfiguration operation, we have to use
scheduling of tasks. We selected Round Robin with time
sharing scheduling algorithm, because it is a very simple
and well known scheduling algorithm. One very important
property of this algorithm is its security against the starvation
problem [18].

V. RESULTS DISCUSSION

The design was synthesized and implemented using Xil-
inx Design Suite 9.1 as it supports PR design implementa-
tions as well as non-PR designs. The target device is the
XC4VFX12 Virtex-4 FPGA on the ML403 board. We choose
the XC4VFX12 FPGA because it is a low cost high speed
device and has enough area to implement the proposed de-
sign. The SHA-256 and AES cores were verified individually
using test vectors provided by FIPS standards [27] and [28]
respectively. The MODEXP arithmetic core was verified using
test vectors generated by the OpenSSL protocol suite [29].

The implementation results are summarized in Table III. The
first two columns summarize the resources of the static and
dynamic portions of the system. The other three columns are
implementation results for each of the three cores (AES, SHA-
256 and MODEXP) implemented independently in non-PR
designs. When comparing the dynamic portion of the design
to the non-PR implementations, it can be noticed that the
PR design uses 2148 slices compared to 3285 slices used by
the three non-PR designs combined together. This is an area
improvement of more than 34%. These area savings are open
to further improvements if more RMs are available for the

same PRR. Which means that other cryptographic algorithms
supported by IPSec can be added without requiring additional
logic resources.

Not only is the PR design more resource efficient, it also
makes implementing an embedded processor with the IPSec
co-processor feasible on the target platform. When Implement-
ing all three cores as parallel independent IP cores in a single
non-PR processor system, The Microblaze adds an overhead to
the area of each core. This area increase in addition to routing
issues makes the target device fails to accommodate a fully
parallel implementation of the design.

A. Latency vs Throughput

As a system’s performance is measured by area and through-
put together. We wanted to test how the overhead time caused
by the PR process degrades performance. The most common
scenario is when the system processes IKEv2 and ESP packets.
Initially the system has to perform PR to load Modxp RM
to process IKEv2, perform PR again to load AES RM and
process ESP packets until the time slot for ESP expires
as shown in Fig.5a. Then this scenario repeats. During PR
and IKEv2 processing, ESP packets are being received and
buffered in the ESP queue. The amount of bits buffered is also
shown in Fig. 5a. This buffer size defines the size of the queue
for each protocol depending on the time slot assigned as well
as the network traffic. Once the AES RM is loaded, processing
of ESP packets starts. ESP has to process the packets faster
than the arrival rate such that the ESP queue is empty when the
ESP time slot expires. Hence, the ESP throughput is depending
on the ratio of ESP time slot versus the time required for PR
and IKEv2 processing as shown in Fig. 5b.

Buffering time Processing time

Time
\ | | |
| PR KEV2] PR |

ESP time slot
(a) Buffer level depending on operation
800 180

Maximum Throughput
700 160

140

120

100

80

Throughput[Mb/s]
[qw]azis sayng

60

S
8

40,
~#—Throughput

100 g Buffer

o Hif 0
0010203040506070809 1 111.213141516171819 2 2122
ESP Time Till PR[s]

(b) AES hardware core performance depending on size of time slot

Fig. 5. AES hardware core performance dependency on ESP time slot for
the 32-bit internal interface width

It can be shown that in order to reduce the effect of PR
on the total time (time needed from packet received by the

TABLE III
RESOURCES SUMMARY FOR IMPLEMENTATIONS ON XC4VFX12 VIRTEX-4 FPGA

Device Utilization PR Design Non-PR
Summary Implementation
Static Dynamic AES core SHA-256 core MODEXP core
Resource Logic Used | Utilization | Used | Utilization | Used | Utilization | Used | Utilization | Used | Utilization

Number of Slices 1588 29% 2148 39% 1862 34% 924 16% 499 9%
Number of Slice Flip Flops 1566 14% 1008 9% 807 7% 1008 9% 421 4%
Number of 4 input LUTs 2059 18% 3600 32% 3600 32% 1620 14% 861 9%
Number of DSP48 0 0% 3 9% 0 0% 0 0% 3 9%
Number of FIFO16/RAMB16s 33 91% 0 0% 1 2% 0 0% 0 0%

system to sent back after being processed), the amount of
time assigned for computations (encryption/hashing) should
be increased. For example, if the PRR is loaded with the AES
core module, then the scheduling algorithm should direct the
Microblaze to fetch tasks from the ESP queue as long as it
is not empty or the other queues are not full. The less PR is
triggered, the higher the throughput.

Fig. 6 is a 3D representation of the system’s total throughput
calculated from the time slots assigned for AH and ESP
protocols. The graph shows that the maximum throughput is
achieved when more ESP packets are processed within a time
slot as the AES core has the highest throughput among all three
cores. As more time is assigned to AH packets processing, the
overall throughput decreases. If the work is evenly divided
among both protocols, then the system will achieve a total
throughput higher than the maximum throughput of the SHA-
256 core but lower than that of the AES core.

Throughput [Mb\s]

139, . 07

9 07 05 AW
ESPTime Slot[s] 05 o3 0123 P

Fig. 6. 3D representation of the overall system performance dependency on
processing time assigned to ESP and AH protocols

These results indicates that it is practical to use our design
for higher traffic networks where the flow of packets to the
input queues allows the scheduler to assign tasks that will
minimize PR which will increase the throughput.

VI. CONCLUSION

We implemented a PR design to perform IPSec protocol
operations in hardware. The design is divided into a static

region representing a Microblaze embedded processor with
some supporting peripherals and the dynamic region rep-
resenting an IPSec co-processor to perform AH, ESP and
IKEv2 calculations using hardware accelerators. The results
indicate that the PR design shows significant improvements
in terms of area savings compared to non-PR designs. These
savings in area can be further improved if more cryptographic
algorithms supported by IPSec are implemented as RMs in
the co-processor. A scheduling algorithm was used to handle
task assignments to minimize the effect of additional latency
caused by the PR process. Another advantage of this solution
can be observed when comparing utilization time of IKEv2
functions against ESP and AH functions. Implementing a
hardware accelerator for IKEv2 as a RM not only saves area
with almost no time penalty, but it also protects the module
from attacks especially if it was preloaded with keys. In the
case of ESP and AH hardware accelerators, the traffic flow
should be high to minimize PR and increase throughput.

VII. FUTURE WORK

We would like to investigate our system on a Virtex-6
platform and compare its results to this work to see what the
impact of the new bitstream authentication is on the overall
performance of the Virtex-6. We would also like to investigate
how implementing the AES core as part of the static region
and only implementing the SHA-256 and MODXP cores as
RMs affects the throughput/area of the system. This analysis
is interesting because our AES core is comparatively large and
AES is used by ESP, AH, and IKEv2.

REFERENCES

[1] RFC-4301, “http://www.ietf.org/rfc/rfc4301.txt,” 2005.

[2] RFC-4308, “http://www.ietf.org/rfc/rfc4308.txt,” 2005.

[3] RFC-4309, “http://www.ietf.org/rfc/rfc4309.txt,” 2005.

[4] J.-P. Kaps, “Cryptography for ultra-low power devices,” Ph.D. Dis-
sertation, ECE Department, Worcester Polytechnic Institute, Worcester,
Massachusetts, USA, May 2006.

[5]1 Early Acess Partial Reconfiguration, User Guide, Ug208 (v1.1) ed.,
Xilinx, Inc., Mar 2006.

[6] K. Project, “http://www.kame.net/project-overview.html,” 2006.

[71 M. McLoone and J. McCanny, “A single-chip IPSEC cryptographic
processor,” in Signal Processing Systems, 2002. (SIPS ’'02). IEEE
Workshop on, Oct 2002, pp. 133-138.

[8] J. Lu and J. Lockwood, “Ipsec implementation on xilinx virtex-ii pro
fpga and its application,” in Reconfigurable Architecture Workshop,
RAW, 2005.

[9]

(10]

(11]

[12]
[13]

[14]
[15]
[16]

(17]

[18]
[19]
[20]

[21]

A. P. Kakarountas, H. Michail, A. Milidonis, C. E. Goutis, and
G. Theodoridis, “High-speed fpga implementation of secure hash algo-
rithm for ipsec and vpn applications,” The Journal of Supercomputing,
vol. 37, no. 21, pp. 179-195, Aug 2006.

P. R. Schaumont, A Practical Introduction to Hardware/Software Code-
sign. Springer, 2010.

H. Michail, G. Athanasiou, A. Gregoriades, C. L. Panagiotou, and
S. Goutis, “High throughput hardware/software co-design approach for
sha-256 hashing cryptographic module in ipsec/ipv6,” Global Journal
of Computer Science and Technology, vol. 10, no. 4, pp. 54-59, June
2010.

Fortinet, “http://www.fortinet.com/products/fortigate/,” 2011.

An Introduction to the Helion IPsec ESP Engine, v. 1.0.0 ed., Helion
Technology Limited, 2006.

Sun Crypto Accelerator 4000 Board, v. 1.1 ed., Sun Microsystems, Inc.,
2004.

Increasing Design Functionality with Partial and Dynamic Reconfigu-
ration in 28-nm FPGAs, v. 1.0 ed., Altera Corporation, 2010.

Partial Reconfiguration, User Guide, Ug702 (v12.1) ed., Xilinx, Inc.,
May 2010.

A. A. Salman, “IPSec implementation in embedded systems for partial
reconfigurable platforms,” Masters Thesis, ECE Department, George
Mason University, Fairfax, Virginia, USA, May 2011.

A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
Wiley, 2008.

MLA401/MLA402/MLA403 Evaluation Platform, User Guide,
(v2.5) ed., Xilinx, Inc., May 2006.

K. Gaj and P. Chodowiec, Cryptographic Engineering. Springer, 2009,
ch. FPGA and ASIC Implementations of AES, pp. 235-294.

R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, “Improving sha-2
hardware implementations,” in Cryptographic Hardware and Embedded
Systems - CHES 2006, Oct 2006, pp. 298-310.

Ug080

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” in Proceedings of the 12th Symposium on Computer
Arithmetic, Jul 1995, pp. 193-199.

M. Joye and S.-M. Yen, “The montgomery powering ladder,” in Cryp-
tographic Hardware and Embedded Systems CHES 2002,, ser. Lecture
Notes in Computer Science, B. Kaliski, Cetin K.. Kog, and C. Paar,
Eds., vol. 2523. Springer-Verlag, 2002, pp. 291-302.

D. Suzuki, “How to maximize the potential of fpga resources for
modular exponentiation,” in Workshop on Cryptographic Hardware and
Embedded Systems—CHES 2007. Berlin: Springer-Verlag, 2007.

E. Oksﬁzoglu and E. Savas, “Parametric, secure and compact implemen-
tation of RSA on FPGA,” in Reconfigurable Computing and FPGAs,
2008. ReConFig '08. International Conference on, Dec. 2008, pp. 391—
396.

Hardware Interface of a Secure Hash Algorithm (SHA), v. 1.4 ed.,
Cryptographic Engineering Research Group, George Mason University,
Jan 2010.

Secure Hash Standard (SHS), National Institute of Standards and
Technology (NIST), Oct. 2008, http://csrc.nist.gov/publications/fips/
fips180-3/fips180-3\ _final.pdf.

Advanced Encryption Standard (AES), National Institute of Standards
and Technology (NIST), FIPS Publication 197, Nov 2001, http://csrc.
nist.gov/publications/fips/fips197/fips- 197.pdf.

Openssl, “http://www.openssl.org/docs/apps/openssl.html,” 2009.

