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ABSTRACT

Authenticated ciphers offer the promise of improved security for
resource-constrained devices. Recent cryptographic contests and
standardization efforts are evaluating authenticated ciphers for per-
formance and security, including resistance to Differential Power
Analysis (DPA). In this research, we study the CLOC-AES authen-
ticated cipher in terms of vulnerability to DPA and cost of imple-
mentation of countermeasures against DPA. Using the FOBOS test
architecture, we first show that an FPGA implementation of CLOC
is vulnerable to DPA through Test Vector Leakage Assessment
methodology (i.e., t-tests). After applying DPA countermeasures,
we show that protected CLOC implementations pass t-tests, except
for discrete leakage corresponding to a data-dependent branch con-
dition in the CLOC specification. Using an enhanced tool called
FOBOS Profiler, we analyze the source of t-test failure down to the
exact clock cycle and device state, to confirm the source of leak-
age. We introduce a new protected non-linear transformation into
the datapath, remove all data-dependent decision criteria from the
device controller, and verify that the updated protected implementa-
tions pass t-tests. We show that the cost of including the protected
non-linear transformation leads to 3.8 factor growth in area, 48%
reduction in throughput, and 86% reduction in throughput-to-area
ratio, compared to the unprotected implementation. Our analysis
shows the high cost of DPA-protected non-linear transformations
in authenticated ciphers above the cryptographic primitive layer.
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1 INTRODUCTION

Resource-constrained applications in the Internet of Things, e.g.,
automotive, home security, smart grid, and medical applications,
require cryptographic security to protect sensitive data. Since au-
thenticated ciphers combine the cryptographic services of confiden-
tiality, integrity, and authentication into one algorithmic construct,
they offer potential resource savings and improvements in security,
compared to the use of separate cryptographic algorithms (e.g.,
block ciphers and hashes) required to provide these services.

Current cryptographic algorithms, which have either been sub-
jected to extensive public scrutiny or standardized in Federal Infor-
mation Processing Standards (FIPS), are generally secure against
cryptanalysis or brute force attacks. However, they are implemented
in physically imperfect hardware and software, and can leak sen-
sitive information. Using so-called side-channel attacks (SCA), an
adversary can monitor physical phenomena associated with data
emanating from the device during operation, such as a power sig-
nature or electromagnetic radiation, and often deduce the contents
of sensitive variables.

Differential Power Analysis (DPA), a powerful SCA pioneered in
[14] and expanded in [15], enables an attacker to monitor known
inputs and outputs of a cryptographic algorithm, collect power
signatures of the device in operation (e.g., traces), and attempt to
correlate differential power to the contents of a sensitive variable
(such as a secret key) according to a hypothetical power model.

Recent cryptographic competitions and standardization efforts,
such as the Competition for Authenticated Encryption: Security,
Applicability, and Robustness (CAESAR), and the upcoming NIST
lightweight cryptography standardization effort, seek to evaluate
authenticated ciphers according to several criteria, including resis-
tance to SCA, and ease of inclusion of countermeasures against SCA
[1, 3, 19]. In support of this effort, we analyze a recent CAESAR-
candidate authenticated cipher, CLOC-AES, to determine its cost of
protection against DPA. Using register transfer level (RTL) method-
ology, we first implement the cipher in the Spartan-6 FPGA, and
demonstrate susceptibility to information leakage using Test Vector
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Leakage Assessment (TVLA) methodology, or t-test [9]. Evalua-
tions are performed using the Flexible Open-source workBench
fOr Side-channel analysis (FOBOS) test architecture [5]. We then
protect the cipher against DPA using Threshold Implementation
(TI) countermeasures [17], and verify improved resistance to DPA
using a FOBOS t-test.

After our first attempt to protect the cipher, we note that several
areas of discrete leakage remain. We address the difficult task of
locating discrete leakage through the introduction of a new tool,
FOBOS Profiler, which correlates time-domain power samples to
exact clock cycle and device state, in order to determine the source
of leakage. Using FOBOS Profiler and other diagnostic techniques,
we are able to confirm the source of leakage as a data-dependent
branch condition inherent to the CLOC specification, and correct
this source of leakage through protection of a modified non-linear
transformation in the authenticated cipher layer of the algorithm.

Our contributions in this research are twofold. First, we demon-
strate an efficient method for fine-grain leakage analysis of crypto-
graphic platforms, available to the public as an open-source tool
without requiring expensive equipment. Second, we identify an
issue not previously addressed in literature — the quantification
of the DPA protection costs for significant non-linear transforma-
tions in authenticated ciphers which are above the cryptographic
primitive (e.g., AES).

2 BACKGROUND
2.1 Authenticated Ciphers

Authenticated ciphers ensure confidentiality, integrity, and authen-
tication by combining a cipher with a keyed-hash function. Inputs
consist of Message, such as Plaintext or Ciphertext, Associated Data
(AD), which is not encrypted but used for Tag generation, a pub-
lic message number (Npub) such a nonce (i.e., number used once),
and a secret Key. The outputs of authenticated encryptions include
Ciphertext and Tag, which is a function of all input values. During
authenticated decryption, the user must supply Ciphertext, as well
as the original Npub, AD, Key, and Tag. The cipher computes Tag’
based on input values in a step called tag verification. If Tag = Tag’,
then the decrypted Plaintext is released.

2.2 CLOC-AES

\%
bdo«ﬂ;
bdilf“ m '

N
N

Ek

|g1 || g2| | N ShiftReg | Param
bdi 1 v

Figure 1: CLOC top-level datapath, where E; denotes an AES
core. All buses are 128 bits unless noted.
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CLOC, or Compact Low-Overhead Counter Feedback Mode
(CFB), is a block cipher mode of operation for authenticated en-
cryption described in [13]. The CLOC top-level datapath of our
implementation is shown in Fig. 1.

CLOC can use the AES (Advanced Encryption Standard) or
TWINE block ciphers as underlying cryptographic primitives; we
use AES in this research. AES, which is the U.S. federal standard
and a de-facto worldwide standard for symmetric block ciphers as
defined in [18], uses a 128-bit key, encrypts (or decrypts) 128-bit
blocks of plaintext (or ciphertext), and consists of 10 rounds. AES
consists of four transformations which update the state: SubBytes,
ShiftRows, MixColumns, and AddRoundKey.

Our AES implementation is based on [2, 7, 16], and is designed
for efficient protection against DPA using threshold implemen-
tation (TI) countermeasures. This implementation uses an 8-bit
internal datapath, and computes one 128-bit block of ciphertext
in 205 clock cycles using a 5-stage pipelined round function. The
methods used to implement TI countermeasures are described sub-
sequently. Additionally, this AES implementation performs only
encryption (not decryption), since decryption is not required by
the CLOC specification.

According to [13], two AES encryptions must be performed in
each round of CLOC - one for encryption or decryption, and one for
tag generation. We use the implementation of CLOC-AES, available
at [8], where two AES cores are used in parallel, in order to reduce
latency of each round of CLOC to the equivalent latency of one
AES encryption. However, we substitute the AES cores in [8] with
the 8-bit pipelined version described above.

Although the AES cores use 8-bit internal bus widths, the dat-
apath for the CLOC authenticated cipher layer remains 128 bits.
CLOC receives input data in 128-bit words through the bdi port,
and processes each 128-bit block in 206 clock cycles. f1, f2, g1, g2
and h are the authenticated cipher-layer functions used in CLOC,
shown in Fig. 1, Key, Npub and Tag sizes are 128, 96 and 64 bits,
respectively, which are the parameters recommended in [13].

Our CLOC-AES implementation is fully compliant with the CAE-
SAR Hardware Applications Programming Interface (API) for Au-
thenticated Ciphers (documented at [11]), and uses I/O and for-
matting utilities of the CAESAR Hardware Development Package,
available at [6] and described in [12].

2.3 Previous Research

There have been extensive investigations of DPA countermeasures
for block ciphers, including AES (for example, [2, 16]), but relatively
few reports of extension of countermeasures for authenticated ci-
phers. Some discussion of DPA countermeasures for authenticated
ciphers, including Ascon and Keyak, is provided in [10, 20]. How-
ever, these reports essentially deal with protection of one or more
features of the cryptographic primitives of these ciphers (e.g., non-
linear substitution layers), and are not concerned with counter-
measures above the primitive layer. Additionally, the authors in
[7] conduct a comparative study of costs of protecting multiple
CAESAR-candidate authenticated ciphers against DPA. However,
the effect of large non-linear transformations at the authenticated
cipher layer on the final protection costs of CAESAR-candidate
ciphers is not discussed in any of the above sources.
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3 METHODOLOGY

3.1 Threshold Implementations

To protect CLOC-AES against DPA, we choose an algorithmic coun-
termeasure called Threshold Implementations (TI) [17]. In TI, sen-
sitive data is separated into shares, on which computations are
performed independently. TI provide DPA security in the pres-
ence of glitches, provided that they satisfy the properties of non-
completeness (i.e., each share must lack at least one piece of sen-
sitive data), correctness (i.e., the final recombination of the result
must be correct), and uniformity (i.e., an output distribution should
match the input distribution).

Achieving TI which are both non-complete and uniform is often
challenging. We apply a typical method for ensuring uniformity,
which is to refresh TI shares after non-linear transformations using
additional randomness. Refresh randomness is supplied by a Pseudo
Random Number Generator (PRNG) embedded in the protected
implementation of the cipher.

We use a hybrid 2-share / 3-share approach, where all of the linear
transformations in each cipher are protected using two shares, and
expand to three shares only for non-linear transformations [2]. We
compress our three shares to two shares following each non-linear
operation. This increases our randomness requirements, as we are
required to provide for both "resharing” and mask "refreshing,’ but
reduces total resource usage, since less total logic is required.

3.2 Protection of CLOC-AES against DPA

The AES cryptographic primitive is protected using methods de-
scribed in [2, 7, 16]. We use the Tower Fields method to more effi-
ciently compute subfields of GF(2%) [4]. Since even one TI-protected
S-Box is costly, we construct only one 3-share TI-protected 8-bit
inverter; all other transformations, which are linear, use only two
shares. The 2- / 3-share hybrid construction requires 16 bits of fresh
randomness for resharing from two to three shares, and 24 fresh
remasking bits, for a total of 40 random bits per clock cycle.

The authenticated cipher layer is easier to protect than the cryp-
tographic primitive. In general, both the public and secret data ar-
riving through the external interface are separated into two shares.
However, several low-cost 3-share TI are necessary to protect non-
linear functions such as one-zero padding (ozp).

3.3 Test Vector Leakage Assessment (TVLA)

One method of assessing DPA vulnerability is the Test Vector Leak-
age Assessment (TVLA) methodology, using Welch’s t-test [9]. The
t-test indicates whether two populations Qg and Q; are distinguish-
able. However, it cannot be used to recover a secret key, or deter-
mine the relative difficulty of a DPA attack. A confidence factor

t is calculated as (pg — pl)/,[(sg/no) + (sf/nl), where po and pq
are means of Qg and Q1, so and s; are standard deviations, and ng
and n; are the numbers of samples. If the absolute value of ¢ is
above a certain threshold (e.g., |t| > 4.5), we can say that the two
populations are distinguishable with high confidence [21].

In this research we employ a non-specific t-test, where we select
a fixed plaintext D, and then randomly select D or random data,
and feed it to the device under test (DUT). The collected traces
are partitioned into two sets Qp and Q1, corresponding to fixed
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or random data. A t-test is then performed on the two sets. If the
traces are distinguishable, this indicates that the device is leaking
(some sort of) information, and is possibly vulnerable to DPA.

3.4 FOBOS

Power analysis on cipher implementations in this research is per-
formed using the Flexible Open-source workBench fOr Side-channel
analysis (FOBOS), which includes a single "acquisition to analysis"
open-source toolkit, and can use a variety of low-cost FPGA boards
[5]. As shown in Fig. 2, FOBOS is composed of two FPGA boards.
The control board controls the flow of test vectors to and from
the host PC and device under test (DUT) board, and synchronizes
trigger actions with the oscilloscope. The DUT board, in which
the user instantiates a victim cipher, contains a wrapper which
stores four different types of data — public data, secret data, ran-
dom data, and data output - for use by an authenticated cipher, in
accordance with protocol defined in [11]. In particular, the random
data input (RDI) interface is used for protected ciphers, in order to
perform initial share separation of public and secret data. FOBOS
test vectors, including initial random data supplied to the cipher,
are pre-generated in software based on valid authenticated cipher
test vectors created by utilities in [6].

Our FOBOS installation uses an Agilent Technologies DSO6054A
Oscilloscope, with 4 GSa/s sampling rate, and captures current
fluctuations sensed by a Tektronix CT1 current probe in series
with the 1.2V power supply of the DUT board, which is a Digilent
Nexys-3 with Spartan-6 FPGA in this research.

FOBOS analysis software is written in Python, and enables fea-
tures such as TVLA, or fine-grain leakage analysis, as described
below.

Personal Computer 1 1
. Frequency Generator
T T Oscilloscope

| | _Power Supply

Public | Secret | Random| | 32990601 | | | oppuupug| | A A | ——— _—— _
data | data | data Device Under Test

| | Spartan-6
pdi AEAD

Test Vectors
sdi do FIFO
orlero |
rdi

Results

52000601
FEFEFDEC
E£0004300
D601948D
8EOF0000

Controller

I dout

Figure 2: FOBOS Hardware Architecture.

In this research we extend the capabilities of FOBOS with fine-
grain leakage analysis in FOBOS Profiler, which is a set of scripts
that map power samples, collected in traces by the oscilloscope,
to specific clock cycles and device state in the victim algorithm.
This allows the user to correlate leakage, observed in a t-test, to
the exact offending data or condition in the victim cipher.

The control board can be configured to trigger the oscilloscope
immediately upon start of a cryptographic operation, or delayed for
an arbitrary number of clock cycles. Likewise, the trigger persists
for a user-specified number of clock cycles, or until the end of the
operation, according to a configuration file.

The trigger provides the reference point for mapping clock cycle
number to sample number in the trace. Users can generate a file that
maps internal device state to clock cycles. This "state file" can be
generated using a simulator tool, such as Xilinx iSim or Modelsim.
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The profiler script uses the state file and power traces to display or
tabulate clock transitions and the state at any clock cycle.

4 RESULTS

4.1 Assessing leakage of implementations

All t-tests in this research are conducted by FOBOS using 2,000
traces at an externally generated frequency of 500 KHz. We first con-
duct a t-test on an unprotected implementation of CLOC-AES. The
results, shown at left in Fig. 3, indicate a t-test failure, as expected
for unprotected implementations.

| -30

2000 4000 6000 8000 10000 12000 14000 16000

02000 4000 6000 8000 10000 12000 14000
Sample No. Sample No.

Figure 3: Results of t-test of Unprotected CLOC-AES (left)
and Unconditionally Protected CLOC-AES (right)

Spike 1 Spike 2 Spike 3

Unconstrained AD msb(A[1]) =0 msb(A[1]) =1

Figure 4: Results of t-test for protected CLOC-AES, includ-
ing unconstrained Associated Data (AD) (left), constrained
to msb(A[1]) = 0 (center), and constrained to msb(A[1]) = 1 on
right. T-tests at center and right are passing t-tests for the
Conditionally Protected CLOC-AES.

An examination of the CLOC specification reveals a data-dependent
decision condition. As shown in Alg. 1, a tweak h is performed on
Sy (defined in [13]) based on the most-significant-bit (msb) of the
padded first word of associated data A[1]. Whether the algorithm is
implemented in hardware or software, some decision mechanism
must choose whether or not to replace Si[1] with A(Sg[1]). In the
case of the CLOC-AES hardware implementation, this decision is
made in a Finite-State Machine (FSM) controller, and communicated
to a multiplexer in the cipher datapath.

Algorithm 1 Portion of CLOC HASH algorithm with data-
dependent branch, where terminology is defined in [13]
1: if msbi(ozp(A[1])) = 1 then

2: Sgl1] « h(Sy[1])
3: end if
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We hypothesize that the t-test will detect the data-dependent de-
cision condition, regardless of our TI-protected implementation. To
test our hypothesis, we conduct a t-test on our protected implemen-
tation of CLOC-AES with an unconstrained fixed-versus random
test vector. The t-test generally passes, except for unambiguous
discrete points of leakage, or "spikes,' shown at left in Fig. 4.

Next, we generate two sets of alternative test vectors, where
msb(A[1]) is constrained to be either 0 or 1, and repeat the t-tests.
The results in the center and at the right of Fig. 4 show fully passing
t-tests for both test vectors, which supports our hypothesis that
the t-test is able to detect this data-dependent decision. Since the
t-test on the conditional test vectors passes as shown in Fig. 4, we
call this CLOC-AES implementation "conditionally protected".

It is worth mentioning at this point that a failure of a t-test does
not prove vulnerability to DPA, nor does a passing t-test prove
immunity to DPA [22]. In fact, it would be difficult to develop a
power model to recover the secret key based on information leakage
in the CLOC-AES hash function, since associated data is presumed
to be publicly available and not encrypted. However, if one chooses
to use TVLA as a standard for demonstrating increased resistance
to DPA, then the only acceptable passing standard is to eliminate
all sources of leakage.

4.2 Determining source of leakage

We next apply the FOBOS Profiler techniques as discussed above to
pin-point the source of leakage. We first modify the VHDL source
codes of CLOC-AES to record the controller states at each clock
cycle. Specifically, we note the following instance of code in the
controller in Alg. 2, and add distinguishers for "branch taken" (i.e.,
State @x0C) and "branch not taken" (i.e., State 0x@D). We then sim-
ulate the design using Xilinx iSim, which records state activity,
and the exact number of clock cycles (3,397), which consists of one
authenticated decryption and three authenticated encryptions.

Graphical results generated by the profiler, reflecting analysis of
spikes 1, 2, and 3 in Fig. 4, are shown in Fig. 5. Spike 1, shown at left
in Fig. 5, occurs adjacent to clock cycle 236, State 0x0C, which is a
"branch taken" reflecting msb(A[1]) = 1. Spike 2, shown at center in
Fig. 5, occurs at clock cycle 1087, State 0x@D, which is "branch not
taken" reflecting msb(A[1]) = 0. Finally, Spike 3, shown at right in
Fig. 5, occurs at clock cycle 1928, State 9x0C, which is "branch taken"
reflecting msb(A[1]) = 1. Slight misalignments between samples
at which the spike occurs and the actual occurrence of the branch
are possibly due to FOBOS inter-trace sample misalignments (Note:
Sample numbers depicted in Fig. 5 reflect a decimation rate of 10
in a compressed version of these traces). A misalignment of one or
two clock cycles notwithstanding, the graphical evidence in Fig. 5
confirms the hypothesis of leakage caused by the data-dependent
branch condition shown in Alg. 1.

4.3 Fixing the leakage

To achieve an unconditionally passing t-test, we must eliminate
the data-dependent branch. This necessitates designing an h tweak
which always executes, regardless of msb(A[1]). Therefore, our goal
is to define a function g(x, y) : g(Sg[1], msb(A[1])), which fulfills
conditions in Alg. 1 for all x and y, but where g(x, y) does not have
a data-dependent branch.
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Figure 5: Correlation of discrete leakage spikes (i.e., two tall thin red lines) to clock cycle and device state using FOBOS Profiler

Algorithm 2 CLOC-AES Controller Algorithm, where msb, is
msb1(ozp(A[1])), sely, is a multiplexer selector, and state_debug
records device state in simulation

1: if (msb_a =’1’) then

2 sel_h <="17%

3 state_debug <= x"0c";
4. else

5: sel_h <=0

6 state_debug <= x"0d";
7: end if

Although the h tweak itself is a linear function, a branch decision,
often described by a two-to-one multiplexer in register transfer
level (RTL) design, in fact is a non-linear function. Therefore, we
must create a hybrid 2-/3-share TI-protected non-linear transfor-
mation g(Sgr[1]4, Sgr[1]p, msb(A[1])q, msb(A[1])p), where shares a
and b are the 2-share TI-protected shares used in the conditionally
protected implementation of CLOC-AES.

To get rid of the data-dependent branch in Alg. 1, we redefine the
implicit multiplexer in Alg. 1 based on Boolean expressions using
not, and, and or primitives, as (Sg[1] A A[1]) V (A(Sg[1]) A m).
Inside the non-linear transformation itself, two shares must be ex-
panded to three shares to meet the TI non-completeness property.
This occurs inside specially-constructed 3-share TI-protected and
and or modules. The resulting non-linear function with no multi-
plexer is shown in the right side of Fig. 6, compared to the original
linear function with multiplexer, in the left of Fig. 6. Note that one
bit selectors are extended to 128 bits, and that an odd number of
selectors (e.g., msb(A[1]),,) are inverted when implementing the
negation of a TI-protected Boolean expression. Additionally, the
correct unmasked value of two-share output of the TI-protected or
module can be recovered at any time using result, @ resulty,.

The above change is made to the conditionally protected imple-
mentation of CLOC-AES. Additionally, the code in Alg. 2 is removed
from the controller. The resulting implementation is retested using
FOBOS, using test vectors where msb(A[1]) is unconstrained. As
shown at right in Fig. 3, this "unconditionally protected" implemen-
tation passes the t-test.

4.4 Evaluating costs of protection

The three versions of CLOC-AES, including unprotected (UnPr),
conditionally protected (Pr(Cnd)), and unconditionally protected
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(Pr(UnCnd)), are implemented in the Spartan-6 (xc6xIs16csg324-3)
FPGA using Xilinx 14.7 ISE. Post place-and-route results, depicted
as look up tables (LUTs), combinational logic block (CLB) slices,
registers, maximum frequency (MHz), throughput (TP)(Mbps), and
throughput-to-area (TP/A) ratio (Mbps/LUT), are shown in Table
1. In particular, TP is defined as the output of the number of bits
of ciphertext per unit time, assuming a long message consisting of
many blocks of plaintext. The results show that the cost of going
from unprotected to conditionally protected is a 3.0X increase in
number of LUTs, a 42% reduction in TP, and an 81% reduction
in TP/A ratio. This essentially represents the cost of a protected
cryptographic primitive (i.e., AES), and a two-share TI-protected
linear layer at the authenticated cipher layer.

The costs of achieving the unconditionally protected CLOC-
AES implementation are a 3.8X increase in LUTs, 48% reduction
in TP, and 86% reduction in TP/A compared to the unprotected
implementation; and a 1.25X increase in LUTs, 9% reduction in TP,
and 27% reduction in TP/A ratio compared to the conditionally
protected implementation. Specifically, there is a 1428 LUT increase
from conditional to unconditional protection; in other words, going
from the t-tests of Fig. 4 to the t-test at right in Fig. 3.

Some of the additional cost of the unconditionally protected
implementation is due to increased randomness required to meet
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Table 1: Comparison of CLOC-AES implementations

UnPr Pr Ratio Pr Ratio Ratio
(Cnd) vs. | (UnCnd) | vs vs.

UnPr UnPr | Pr(Cnd)
LUT 1915 5831 | 3.045 7259 | 3.791 1.245
Regs 2013 5063 | 2.515 5456 | 2.710 1.078
Slices 705 2112 | 2.996 2277 | 3.230 1.078
Freq 153.51 88.86 | 0.579 80.38 | 0.524 0.905
TP 95.385 | 55.214 | 0.579 49.945 | 0.524 0.905
TP/A 0.050 0.009 | 0.190 0.007 | 0.138 0.727

the TI uniformity property. On each call to the protected h trans-
formation, we provide 262 additional random bits — 256 bits for
resharing from two to three shares in 128-bit TI-protected and and
or modules, and 6 bits for resharing of msb(A[1])q, msb(A[1])p, and
msb(A[1])p. Since h is called at most once per authenticated encryp-
tion or decryption (i.e., hundreds of clock cycles), we accumulate
this randomness in registers fed by the PRNG, and expend it all on
a single clock cycle on the call to h.

This represents the additional cost of a large non-linear trans-
formation at the authenticated cipher layer, which has not been
previously reported in literature. Since current and future crypto-
graphic competitions and standardization efforts evaluate potential
authenticated cipher candidates on their costs of protection against
SCA including DPA, we recommend that developers of crypto-
graphic algorithms consider the significant costs of attempting to
protect large non-linear transformations using algorithmic coun-
termeasures, such as threshold implementations.

5 CONCLUSIONS

In this research, we demonstrated protection of an FPGA imple-
mentation of the CLOC-AES authenticated cipher against Differ-
ential Power Analysis using Threhsold Implementation (TI) coun-
termeasures. We used Test Vector Leakage Assessment (TVLA)
methodology, conducted with the Flexible Opensource workBench
fOr Side-channel analysis (FOBOS), to show information leakage
in an unprotected CLOC-AES implementation. We then tested a
conditionally-protected implementation, and determined that DPA
countermeasures are effective, with the exception of discrete leak-
age spikes in the t-test. Using fine-grain leakage analysis with
FOBOS Profiler, we pin-pointed the source of leakage to a data-
dependent branch condition in the CLOC specification. We restruc-
tured the data-dependency to a non-linear Boolean expression, and
applied TI protection methodologies to the resulting non-linear
transformation. A subsequent t-test confirmed that the source of
leakage was eliminated, and that we achieved an unconditionally
protected CLOC-AES implementation.

The costs of achieving the unconditionally protected implemen-
tation are high: 3.8 the area, 48% reduction in throughput (TP),
and 86% reduction in throughput-to-area (TP/A) ratio compared
to the unprotected implementation; and 1.25X the area, 9% TP
reduction, and 27% TP/A ratio reduction compared to the condi-
tionally protected implementation. In particular, the delta between
the unconditionally and conditionally protected implementations
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is exactly equivalent to the cost of a significant non-linear transfor-
mation, located at the authenticated cipher layer and outside of the
AES cryptographic primitive. The implication for future designers
of authenticated ciphers is that they should carefully consider the
DPA protection costs of any non-linear transformations in their
specifications.
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