

eXtended eXternal Benchmarking eXtension (XXBX)

John Pham and Jens-Peter Kaps

Cryptographic Engineering Research Group (CERG) http://cryptography.gmu.edu Department of ECE, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA

DIAC 2015

Outline

Introduction & Motivation

- Introduction
- Motivation
- 2 Previous Work
 - SUPERCOP
 - XBX
 - FELICS
- 3 XXBX
 - Design Goals
 - Hardware
 - Software
 - Power Measurement
- 4 Conclusions and Future Work
 - Conclusions
 - Future Work

Introduction Motivation

Introduction & Motivation

Introduction Motivation

Introduction

- XXBX is a tool for benchmarking algorithms on microcontrollers that cannot efficiently run their own operating system and compilers.
- It uses the following Metrics:
 - Throughput cycles per byte
 - ROM usage bytes
 - RAM usage bytes
 - Power milliwatts

ххвх

Introduction Motivation

Motivation

- IoT promises a dramatic increase in devices, many will be microcontrollers or SOCs.
- 32-bit microcontrollers are projected to take lead over 8/16-bit by 2018.
- 51% of all 32-bit microcontrollers were ARM based in 2012.

Global internet device installed base forecast

Sep 29th,2015

XXBX

SUPERCOP XBX FELICS

Previous Work

Sep 29th,2015

SUPERCOP

SUPERCOP XBX FELICS

- System for Unified Performance Evaluation Related to Cryptographic Operations and Primitives.
- Benchmarks many implementations of many primitives across multiple operations on multiple hardware platforms.
- Supports environments capable of running Linux and hosting a compiler.
- Series of shell scripts and C test harnesses, and comprehensive collection of algorithm primitive implementations.
- Verifies correct execution of implementations and times cycles required per byte processed.
- Does not measure ROM and RAM usage or power consumption.

http://bench.cr.yp.to/supercop.html

XBX

SUPERCOP XBX FELICS

- eXternal Benchmarking eXtension -extends SUPERCOP
- Automated testing on real microcontrollers
- Compatibility with SUPERCOP algorithm collection ("algopacks") and output format
- Low cost hardware and software
- Our contribution to original XBX was to port it to the MSP430 platform and provide results for SHA-3 finalists.
- Measures ROM and RAM usage. Does not measure power consumption.

SUPERCOP XBX FELICS

XBX Components

Figure : Block Diagram of XBX components

SUPERCOP XBX FELICS

XBX Limitations

- Only supports hash functions
- No power measurements
- Does not use cycle counters
- Benchmarking takes a long time because embedded platforms are slow.
 - Simulation can run faster

Figure : AVR-NET-IO ATmega32 board with MSP430

SUPERCOP XBX FELICS

- Fair Evaluation of Lightweight Cryptographic System
- Targeted for lightweight block ciphers
- Uses simulation when available else real hardware
- Supports Atmel AVR, MSP 430, ARM Cortex-M3
- Measures RAM, ROM, execution time.

https://www.cryptolux.org/index.php/FELICS

Design Goals Hardware Software Power Measurement

Design Goals Hardware Software Power Measurement

Design Goals

- Add AEAD support
- Add power measurement
- Replace XBH in order to facilitate power measurement
- Add resuming partial runs
- Avoid breaking when Link-Time Optimization is enabled
- XBXX? :)

Design Goals Hardware Software Power Measurement

XBH Replacements

- \bullet Requires ethernet and I/O to XBD
- Hardware under initial consideration
 - Raspberry Pi
 - Beaglebone
- Linux-based boards very fast, but do not easily meet real-time requirements
- Tiva Connected Launchpad chosen when it became available
 - ARM Cortex-M4F with ethernet connectivity.
 - 256kiB of SRAM and 1MiB of ROM
 - Dual 12-bit ADCs capable of 2 MSPS
 - Easily worked on bare metal without an OS

Design Goals Hardware Software Power Measurement

Figure : Tiva C Connected Launchpad

Design Goals Hardware Software Power Measurement

XBD Hardware

- MSP-EXP430F5529LP
 - 16-bit MSP430 clockable to 25MHz, 10kiB SRAM and 128kiB flash
- EK-TM4C123GXL
 - 32-bit ARM Cortex M4F clockable to 80MHz, 32kiB SRAM and 128kiB flash
- Both of these newer versions of what is currently supported by XBX
- TODO: Support AVR, MIPS
- XBX also supports ARM Cortex-A which we don't intend to support yet. Regular SUPERCOP may run on some of these.

XBH Software

Design Goals Hardware Software Power Measurement

- Use FreeRTOS with LwIP instead of bare-metal
 - Easier multitasking- OS handles task switching instead of doing it explicitly
 - Easier to write network code LwIP socket API can be used
 - LwIP and FreeRTOS port included in examples provided by Texas Instruments
- Original XBX used webserver-uvm from Ulrich Radig
- Hardware abstracted away

Design Goals Hardware Software Power Measurement

XBH code differences

- \bullet Only support TCP/IP for XBS \leftrightarrow XBH comms
- Only support I²C for XBH \leftrightarrow XBD
- Add length prefix to delimit messages
- Power measurements streamed to XBS

Design Goals Hardware Software Power Measurement

XBH code tasks

- IwIP TCP/IP
- XBH Server
- XBH command execution and XBD communication (same priority as XBH server)
- Ethernet Receive/Transmit sends transmit and receive descriptors to lwIP
- Power Measurement woken up periodically by timer interrupt to perform measurements and enqueuing them to the XBH server task.

Design Goals Hardware Software Power Measurement

XBH Interrupts

- Unused
- Timer Wraparound
- O Timer Capture
- Max FreeRTOS SysCall Priority
- Over Sample Timer
- Watchdog
- Onused
- Onused
- FreeRTOS kernel

Design Goals Hardware Software Power Measurement

XBD Software

- Largely the same as original XBX
- Replaced self-test implementation with SUPERCOP's
- Refactor out hash-specific code to make it easier to add other operations
- Add AEAD payload processing
 - XBH doesn't know anything about the operation under test, just routes it blindly to XBD from XBS.
 - XBD must know what is being in run order to unpack parameters and messages

XBH Software

Design Goals Hardware Software Power Measurement

- Completely rewritten in Python 3
- Now supports resuming runs if run fails and XBS crashes due to hung hardware
- Results now stored in a SQLite database
- Dropped unused features such as KAT-file verification and loading XBD in formats other than IHEX
- Builds performed in parallel

Design Goals Hardware Software Power Measurement

Current Sensing

- Measured by sensing voltage drop across a small shunt resistor
- High side
 - Directly measures current delivered by voltages source
 - Multiple ground paths do not need to be accounted for
 - $\bullet~$ No issues w/ ground loops
 - Must handle common-mode voltage
- Low side
 - Can be single-ended
 - Does not have to deal with common mode voltage
- We chose the high side configuration, as I/O pins could provide alternate ground paths causing measurement errors.

Design Goals Hardware Software Power Measurement

High side vs Low side

Design Goals Hardware Software Power Measurement

Current Sensor

- Utilize ADCs on Launchpad
 - These ADCs have input low-impedance, must be buffered
 - Need amplification, as shunt drop is low
- Considered putting op-amp in front of ADCs
 - Requires precision resistor network
 - More parts to deal with
- Use current sense amplifier in front of ADC specifically INA225
 - Selectable gain to adjust for different target devices in different ranges (25-200), buffered output to deal with low ADC input impedance

INA225

Introduction & Motivation Previous Work XXBX Conclusions and Future Work Design Goals Hardware Software Power Measurement

Figure : Power measurement circuit using INA225

Conclusions Future Work

Conclusions and Future Work

Conclusions Future Work

Conclusions

- XBX extended to include support for AEAD
- Enables benchmarking of power
- Allows resuming partial runs

Conclusions Future Work

SUPERCOP, XBX, XXBX Feature Comparison

	SUPERCOP	XBX	XXBX		
Target Platform	Desktop/Server	Embedded	Embedded		
Speed Benchmarks	\checkmark	\checkmark	\checkmark		
Memory Benchmarks		\checkmark	\checkmark		
ROM Benchmarks	N/A	\checkmark	\checkmark		
Supports AEAD	\checkmark		\checkmark		
Power Benchmarks			\checkmark		

Conclusions Future Work

XBX-XBD and XXBX-XBD Comparison

XBX Supports									
Device		Chip	ISA		Bus	f	OS	Price	
	Atmel	ATmega1284P	AVR		8-bit	20 MHz	bare		
Exp.Board	ті	MSP430FG4618	MSP430		16-bit	8 MHz	bare	\$117	
FritzBox	ТІ	AR7	MIPS32	4KEc	32-bit		Linux	\$300	
Artila M501	Atmel	AT91RM9200	ARM920T	ARMv4T	32-bit	180 MHz	Linux	\$116	
NSLU2	Intel	IXP420	XScale	ARMv5TE	32-bit	266 MHz	Linux	\$90	
	IXP	LPC1114	ARM Cortex-M0	ARMv6-M	32-bit	50 MHz	bare		
	ті	LM3S811	ARM Cortex-M3	ARMv7-M	32-bit	120 MHz	bare		
BeagleBoard	ті	DM3730	ARM Cortex-A8	ARMv7-A	32-bit	1 GHz	Linux	\$89	

.

XXBX Supports

Device	Chip		ISA	Bus	f	OS	Price		
Launchpad	TI	MSP430FR6989	MSP430		16-bit	16 MHz	bare	\$18	
Launchpad	ТΙ	TM4C123GXL	ARM Cortex-M4	ARMv7E-M	32-bit	80 MHz	bare	\$13	
Future	Atmel	ATmega1284P	AVR		8-bit	20 MHz	bare		
MikroE	Microchip	PIC32MX360F064H	MIPS32	M4K	32-bit	80 MHz	bare	\$25	

Conclusions Future Work

Remaining work

- Integrate the power measurement hardware
- Perform a full benchmarking run on all AEAD and hash algorithms that have implementations that can run
- Extend platform support to AVR
- Documentation.

Conclusions Future Work

Thanks for your attention.